
Resource Management Aspects for Sensor Network Software

Sean Walton Eric Eide
University of Utah, School of Computing

{swalton, eeide}@cs.utah.edu

Abstract
The software that runs on a typical wireless sensor network node
must address a variety of constraints that are imposed by its pur-
pose and implementation platform. Examples of such constraints
include real-time behavior, highly limited RAM and ROM, and
other scarce resources. These constraints lead to crosscutting con-
cerns for the implementations of sensor network software: that is,
all parts of the software must be carefully written to respect its re-
source constraints. Neither traditional languages (such as C) nor
component-based languages (such as nesC) for implementing sen-
sor network software allow programmers to deal with crosscutting
resource constraints in a modular fashion.

In this paper we describe Aspect nesC (ANesC), a language
we are now implementing to help programmers modularize the
implementations of crosscutting concerns within sensor network
software. Aspect nesC extends nesC, a component-based dialect
of C, with constructs for aspect-oriented programming. In addi-
tion to combining the ideas of components and aspects in a sin-
gle language, ANesC will provide specific and novel constructs for
resource-management concerns. For instance, pointcuts can iden-
tify program points at which the run-time stack is about to be ex-
hausted or a real-time deadline has been missed. Corrective actions
can be associated with these points via “advice.” A primary task of
the Aspect nesC compiler is to implement such resource-focused
aspects in an efficient manner.

1. Introduction
A wireless sensor network consists of inter-communicating embed-
ded devices (called motes) that collect, process, and distribute data
gathered from their surroundings. These networks are being devel-
oped for an increasing number of applications such as monitoring
natural environments [26], localizing urban events [22], and struc-
tural health monitoring [18].

Many wireless sensor networks are intended to operate for long
periods of time, over relatively large physical spaces, and in places
that are difficult for people to reach. Thus, the motes that make
up a wireless sensor network must be energy-efficient and rela-
tively inexpensive. As a result, typical motes are highly resource-

This material is based upon work supported by the National Science Foun-
dation under Grant No. 0410285.

c©ACM, 2007. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the Fourth Workshop on
Programming Languages and Operating Systems (PLOS), Stevenson, Washington,
USA, Oct. 2007, http://doi.acm.org/10.1145/1376789.1376796

constrained. The popular Mica2 platform, for instance, contains
just 4 KB of RAM and 128 KB of flash memory.

Such resource constraints have a strong impact on the devel-
opment of sensor network software [13]. Because resources such
as memory can be easily exhausted through careless coding, ap-
plications must be designed with resource conservation as a pri-
mary concern. For example, many sensor network programs must
be written in ways that deal with the following issues (and others):

• Limited stack space. The execution stack space across 8-
and 16-bit microcontroller platforms varies widely in size and
flexibility—from very small (say, 100-byte) stacks at fixed ad-
dresses to stacks that can fill available RAM and be located any-
where. Stack overflows are not detected in hardware by most
mote platforms and can occur any time stack is consumed: e.g.,
by a procedure call, auto variable, or interrupt.

• Real-time deadlines. Many sensor network applications must
behave in a timely manner for interacting with hardware com-
ponents (e.g., sensors), implementing application protocols
(e.g., heartbeat signals), or both. Ensuring real-time behav-
iors can be difficult, especially when parts of the overall ap-
plication are scheduled dynamically or involve interrupts. Less
predictable than stack issues, deadlines can occur at any time
during task execution.

• API-managed resources. Some resources, such as packet
buffers, may be created and managed by OS-like or middleware-
like software that underlies an application. Like bare physical
resources, such “logical” resources are often limited and must
be used conservatively by an application.

An essential part of designing and implementing a sensor net-
work application, therefore, is to address resource management and
exhaustion. An undetected resource error—e.g., a stack overflow
or a null pointer returned from a malloc-like routine—can lead
to seemingly “random” misbehaviors and crashes that can greatly
reduce the utility of a network as a whole. In some cases, it may
be acceptable to deal with resource errors merely through detec-
tion and coarse remedies such as whole-node reboots. This suffices
when errors are sufficiently rare and no important state is lost, but
not all applications meet these criteria. In some of these other cases,
it may be necessary to eliminate resource errors at compile time,
through techniques such as stack analysis [21]. Static techniques,
however, are imprecise: some programs that are truly error-free at
run time may be judged to contain potential errors. For this reason,
it is common to combine static analysis with compiler-inserted dy-
namic checks to ensure that resource properties, such as type and
memory safety, hold [20]. If a dynamic test fails at run time, some
remedial action is taken: e.g., halting or rebooting the mote.

When halting or rebooting an entire node is unacceptable, a
programmer is faced with two tasks. First, he or she must specify
the behavior that should occur when a resource error is imminent
or has occurred. Second, the programmer must implement that

mailto:swalton@cs.utah.edu
mailto:eeide@cs.utah.edu
http://plosworkshop.org/2007/
http://doi.acm.org/10.1145/1376789.1376796


behavior in a complete and consistent fashion throughout his or her
application. Although tools exist to help programmers deal with
issues such as protocol failures [11], to our knowledge, there are
no tools or languages for sensor network programming that are
designed to help people specify the treatment of resource errors.

To address this gap, we are now designing and implementing
Aspect nesC (ANesC), a new language for sensor network program-
ming. Our language is based on nesC [10], a popular language for
sensor network programming that adds component-oriented con-
structs to C. Aspect nesC adds constructs for aspect-oriented pro-
gramming (AOP) to nesC. This is motivated by the insight that re-
source management policies are concerns that “crosscut” the many
components that constitute a nesC application. The aspect-oriented
features of ANesC are based on those found in general-purpose
AOP languages such as AspectJ [14] and AspectC++ [23]. ANesC
adapts these features to fit the component-oriented style of nesC.

More significantly, ANesC provides unique constructs that are
designed to help programmers modularize the implementations
of resource-management concerns within sensor network applica-
tions. For example, special pointcut designators will identify pro-
gram points at which a stack overflow is imminent or a real-time
deadline has been missed. Other constructs will allow program-
mers pick out interesting events on “logical” resources, such as
the packet buffers described previously. Through AOP, a program-
mer will be able to specify—in a modular fashion—the actions to
be taken when resource-related events occur. Because AOP allows
programmers to refer to program context (e.g., the currently exe-
cuting component), the responses to resource events can differ ac-
cording to program state. Alternatively, a programmer can declare
that statically decidable events such as stack overflows should be
completely ruled out at compile time, using well-known AOP id-
ioms such as “declare error” [14]. In all cases, it is the task of
the ANesC compiler to implement the programmer’s specifications
in ways that are precise and efficient at run time.

The ultimate goal of Aspect nesC is to help programmers “dis-
entangle” the implementations of resource-related concerns—and
other crosscutting concerns—from the components that make up
their sensor network applications. The design and implementation
of the ANesC language and compiler are currently in development.
This paper describes our work in progress and explains ANesC con-
cepts in the context of a hypothetical sensor network application.

2. Background
Our Aspect nesC language adds aspect-oriented programming con-
structs to nesC, which itself is a component-oriented extension to C.
We briefly review nesC and AOP below.

2.1 nesC
nesC [9, 10] is the implementation language for TinyOS [15], a
popular, open-source, and component-based software platform for
sensor network applications. The nesC language is a componen-
tized flavor of C and introduces three language constructs for de-
signing components: modules, interfaces, and configurations.

• A module is a component that is implemented by nesC code.
Its body is made up of function and variable definitions, and these
are encapsulated within (i.e., private to) the module unless they are
explicitly exported via an interface.

• An interface describes a bidirectional connection between
components. It names a set of functions that must be implemented
by any component that provides the interface, as well as a set of
functions that must be implemented by any component that uses the
interface. The former are called commands, and the latter are called
events. This follows the idea that the user of an interface invokes
commands upon and later receives events from the provider.

• A configuration is a component that is implemented by con-
necting, or wiring, a set of other components. The components
within a configuration are explicitly connected to one another via
their used and provided interfaces. The inner components’ inter-
faces can also be wired to the interfaces of the configuration itself.
All wiring specifications are static; they cannot change at run time.

A complete nesC application is a configuration of compo-
nents. Typically, a configuration contains a relatively small number
of application-specific components—“business logic”—and many
components that are directly reused from the library provided by
TinyOS. The nesC compiler translates the entire nesC application
(including the TinyOS components) into a single C file, which is
then compiled by the GNU C compiler [10]. This strategy supports
static error checking and whole-system optimization.

At run time, a nesC application operates as a collection of tasks
and interrupt handlers. Tasks are invoked by the TinyOS scheduler
and do not preempt each other: this run-to-completion model helps
avoid multitasking errors. An interrupt handler, however, is invoked
by a hardware interrupt and may preempt a task (or other handler).
The nesC language provides features, such as atomic blocks, for
managing concurrency between tasks and interrupt handlers [10].

2.2 Aspect-oriented programming
The goal of aspect-oriented programming (AOP) is to help pro-
grammers modularize the implementations of crosscutting con-
cerns (CCCs). Briefly stated, a crosscutting concern is one that
affects or is affected by many parts of a program’s implementa-
tion. In a procedural or object-oriented language, the code of a
CCC would be “scattered”—spread over many program points. An
aspect-oriented language, in contrast, provides constructs to allow
such a concern to be written as a cohesive unit of code.

Many AOP languages, including Aspect nesC, are designed
around the notions of join points and advice. A join point is a
point in a program’s execution at which new behavior can be in-
troduced. New behavior is called advice: it can augment, modify,
or replace a program’s existing behavior. Join points are selected
according to syntactic and semantic predicates (designators) over
a program’s code and behavior, and a set of join points is called
a pointcut. Many AOP languages also support inter-type declara-
tions (ITDs), which allow new fields and methods to be added to
existing datatypes in the style of open classes [7].

All of these constructs can be grouped into an aspect, which is
a modular container of crosscutting behavior. The process of incor-
porating an aspect into the compiled representation of a program is
called weaving.

3. Aspect nesC (ANesC)
TinyOS and nesC open new opportunities to use more advanced
technologies in embedded systems, but there are still stumbling
blocks that nesC cannot adequately address. In particular, key con-
straints and concerns still crosscut functions, components, and pro-
grams. Aspect nesC seeks to address such crosscutting concerns
through aspect-oriented programming.

3.1 A sensor network application
To make our discussion of ANesC more concrete, we first describe
some of the implementation problems that might be faced in a
hypothetical wireless sensor network application for detecting and
tracking tornados.

In the 1970s, researchers discovered that natural events such as
tornados have infrasound signatures. Scientists have successfully
used infrasound detectors in the field, but full-featured computers
still accompany the tests, and since the sensors use sound, nearby
human-generated noise may affect test results [3, 6].

2



Tasks

Collect
Samples

Process
Data

Transmit
Alert Byte sent

Timers tick
Sample ready

Peer msg

Interrupts

Consult
Peers

Figure 1. The basic device collects information and processes the
information. If the device finds a match, it notifies central control.

In contrast, a large-scale wireless sensor network could operate
autonomously—detecting events with minimal human interaction—
and thus facilitate research. Such a network could be made from
geographically distributed stations with infrasound detectors and
radios. Many stations would need to be deployed, so scientists
might choose to place a mote in each station, instead of full-fledged
PC, in order to reduce cost and energy consumption.

The use of motes in this application leads to difficult resource-
management challenges in the system’s software. Each site must
gather and process comparably large sound samples while coor-
dinating with other devices and a control center. Once a sample is
obtained, it must be analyzed and then compared with results stored
in a database of “interesting” acoustic signatures. The best diagno-
sis is through sound frequencies thus requiring a Discrete Fourier
Transform (DFT) to convert the sampled data, and one compu-
tationally efficient implementation is called a Fast Fourier Trans-
form (FFT). Nonetheless, FFT and database searches are costly in
time and space. Finally, when a sample is found to be interesting,
the mote would consult its nearby neighbors for confirmation and
then transmit its data to a control center. The overall architecture of
the detector application is shown in Figure 1.

This application is naturally resource-constrained in several
ways. Data gathering and analysis tasks will contend for memory
and CPU: however, these tasks do not necessarily need memory
at the same time, so sharing memory between these components
may reduce overall memory requirements. This would mean that
data collection could not run while analysis is in progress, however,
leading to a real-time deadline for the analysis task. The stack is
also at risk. The system designer must typically choose a stack size
at compile time, but two classes of computation can consume more
stack space that a system designer can (or chooses to) allocate:
the FFT and interrupt servicing. FFT is naturally recursive, but the
depth is bounded by the sample size. Similarly, interrupts may not
be statically bounded, since a mote can be interrupted by a number
of sources concurrently.

A solution is needed to help the programmer manage these
resource constraints in a system-wide fashion. Because of AOP’s
intrinsic ability to target CCCs, we see it as a natural approach.

3.2 Aspects for resource management
An aspect in ANesC is written as a special sort of component, as
shown in upcoming figures. ANesC implements a “standard” set
of AOP constructs like those found in AspectJ and AspectC++.
This includes common pointcut designators (e.g., call, args, and
within), various types of advice (before, after, and around),
and ITDs. ANesC extends these constructs with new features for
nesC and for handling specific resource-management concerns.
These special features fall into three main categories.

• First, ANesC’s aspect language works with nesC’s extensions
to C: components, interfaces, commands, events, and tasks. Us-
ing these extensions, ANesC pointcut designators can capture
join points within a certain component’s implementation of a
particular interface, for example.

• Second, an ANesC aspect can manipulate the wiring within a
configuration. (Recall that a configuration is a component that

aspect WatchRealtimeDeadline {
} implementation {

advice after(): task_deadline_reached() {
//--- Change FFT accuracy, reducing calculations

}
advice before(): task_completion() {

//- If ends before deadline
//- Increase analysis accuracy
//- If accuracy tuning was visited before
//- Revert accuracy

}
...

}

Figure 2. Adaptation for a real-time deadline. If the analysis dead-
line is hit before task completion, turn the analysis accuracy down.
Readjust as deadlines are met, but try to avoid “bouncing.”

is made by instantiating and connecting other components.) By
“advising” the component graph within a configuration, an as-
pect can redirect wirings and add new components. Resource-
management aspects can use this feature, for example, to intro-
duce components that implement desired policies.

• Third, ANesC defines new and specialized pointcut designa-
tors to capture resource-related program events, e.g., “deadline
reached” and “imminent stack overflow.” Such designators al-
low programmers to express their intent clearly. Moreover, the
ANesC compiler is responsible for locating the relevant join
points, and it can perform static analyses to improve precision
and produce optimized, woven code.

Adapting for real-time deadlines. A nesC application runs as a
collection of non-preemptive tasks. This scheduling strategy can
make it difficult to build systems that meet real-time deadlines, es-
pecially when tasks have variable (e.g., data-dependent) processing
times. A task that overruns its deadline cannot simply be aborted:
that would leave locks held, resources allocated, and produce in-
correct results in general. An alternative is for tasks to be self-
monitoring. When a task detects that it has overrun, it cleans up
safely and terminates as quickly as possible. When coupled with a
mechanism for adjusting the workload of future tasks, this strategy
allows a system to adapt to meet soft real-time deadlines.

To implement self-monitoring in plain nesC, a programmer
would need to insert—by hand—deadline checks and cleanup steps
at many places in a task’s code. This is tedious, error-prone, and
“tangles” the task functionality with the implementation of the real-
time concern. ANesC offers a better alternative: implement the self-
monitoring code as an aspect, as illustrated in Figure 2.

In ANesC, a special pointcut designator can capture task dead-
line events. The ANesC compiler is responsible for inserting dead-
line checks where they must occur. (It can implement various strate-
gies for periodic checks, which we do not describe here.) When an
overrun is detected, programmer-written advice can free resources
and locks, and terminate the task safely. The same aspect can en-
capsulate the workload adaptation strategy as well. Figure 2 shows
this for the analysis task in our tornado application. If the analysis
runs too long (impacting the rate of the sample-collection task), ad-
vice throttles back accuracy and thus frees CPU time. If more CPU
is made available, precision can be carefully increased.

Avoiding stack overflow. Impending stack overflow is tricky, both
in detection and in resolution. As described previously, in some
sensor network applications, it may not be practical to statically
eliminate the possibility of stack overflow due to resource or anal-
ysis limits. In such systems, we need to address overflows at run
time. The desire is to detect overflow before it actually occurs, and

3



aspect PreventStackOverflow {
} implementation {

advice inline after(): stack_overflow_imminent() &&
withintask(task void process_data(void)) {

//- Report the current results of processing
//- Stop task and release buffers

}
}

Figure 3. Catching an imminent stack overflow. An application
can take corrective action before the stack overflow occurs.

then deal with the event gracefully. Static information from the
compiled program (object files) is needed to implement overflow
checks accurately and efficiently.

Figure 3 outlines how the tornado detector could respond to a
stack overflow in the analysis task by using the intermediate re-
sults and halting the task. The analysis’ stack demand can be pre-
dicted by static analysis, because the FFT consumes O(log2 N )
stack frames for an N -sample buffer. Suppose, however, that due to
resource constraints, the size of the system’s stack segment is vari-
able. For instance, when the system is put in a (very rare) diagnostic
mode, part of the stack segment is repurposed to hold a log. When
this occurs, there is not enough stack space for the normal FFT exe-
cution path. Fortunately, if the stack fills up, all is not lost: DFTs be-
come more precise with each pass, but even the intermediate results
are useful. If the stack space is unexpectedly exhausted—an event
detected by a custom ANesC pointcut designator—advice can de-
liver intermediate results as the final output.

The implementation of the “imminent stack overflow” desig-
nator is platform-specific, depending on the flexibility and size of
the stack. Furthermore, the location of stack checks in the woven
program depends on information from the C compiler and static
analysis tools. Resolution is also tricky: how can a programmer
advise a join point that does not have enough stack for another sec-
tion of code? For this reason, advice at stack-full join points must
be written carefully (and checked by the ANesC compiler). We ex-
pect that common recovery advice will involve an exception-like
mechanism for unwinding to an appropriate program point.1 Other
strategies such as stack compression are possible in some cases;
exploring these is part of our current research.

Managing memory buffers. Having limited RAM naturally en-
courages the use of memory pools [13], or requiring a certain
amount of trust so that a handed-over buffer is not reused, or care-
ful scheduling of multiple tasks that share a block of memory. The
best strategy for memory management within a nesC component is
often context-specific: that is, not a property of a component itself,
but a property of how a component is used in a complete appli-
cation. Moreover, once a particular strategy is chosen, it must be
implemented in a coordinated manner over many individual com-
ponents. AOP can simplify this task so that a programmer can focus
on resource strategies, replacing one with another without having
to rewrite large sections of program code.

Consider our hypothetical tornado detector with limited RAM.
Each component needs a certain amount of RAM to receive or
process samples, collect frequency results, or transmit a message.
Having well-defined places where each component expresses a
need for memory—i.e., join points—makes it possible for an aspect
to introduce a memory strategy in a straightforward way. In our
application, an appropriate strategy would be for components to
allocate buffers dynamically from a single memory pool.

1 Jacobsen et al. provide a catch/throw-like mechanism in ACC [12]. How-
ever, “ACC-exception” handling has several limitations and does not imple-
ment state unwinding.

The system has two characteristics that enable a memory-pool
strategy. First, the sampling rate for the infrasound range (1–20 Hz)
is a very low 40 samples/sec. Thus, a single sample may not need to
occupy most of RAM, and processing can proceed while collecting
data without much regard for pool underflows. Second, DFTs split
the sample array in half after each pass, turning the array into
an ordered tree. As the analysis task makes a pass through the
tree in an in-order traversal, parts of the sample buffer can be
incrementally released to be refilled by the data collector.

When there is need to report a sighting, ANesC advice can
redistribute buffers for a message to the home station. Advice
can change the sample size parameters for the data collector and
analyzer, thereby freeing memory for the reporter task.

3.3 Discussion
Applying high-level techniques like AOP to sensor network pro-
gramming reasonably raises concerns about impacts on perfor-
mance and memory footprints. Each level of language abstraction
often increases binary footprint by some percentage, and certainly,
dynamic deadline checks and stack checks will invariably increase
code footprint a few bytes per test. However, the nature of AOP—
being able to modularize crosscutting concerns—offers the poten-
tial to reduce code footprint overall by modularizing code that is
currently duplicated across components.

The design of ANesC from the beginning has focused on code
and data footprint impact. This is in contrast with some other AOP
languages, which offer features that are expensive in space and
time. For example, our analysis of an earlier version of ACC [12]
discovered that ACC added several method call layers, and even
marshaled and unmarshaled parameters. Clearly, such an approach
would not be conducive to an embedded system in which the stack
is shallow and memory and CPU are scarce.

Finally, an important benefit of adding AOP functionality to
nesC is the ability to advise a sensor network application and
its operating system, TinyOS, at the same time. This is possible
because the application and OS are compiled together as a single
program. This opportunity is not readily available to most other
AOP languages.

4. Related Work
Our ANesC language is part of a family of efforts to extend C and
C-based languages with AOP constructs. These languages include
AspectC [8], ACC [12], and AspectC++ [23]. Like ANesC, most
of these languages have been applied to modularizing concerns
within embedded and/or systems code. Unlike our language, how-
ever, these previous languages have been designed for “general-
purpose” AOP, meaning that they are not tailored to addressing
specific concerns. ANesC, on the other hand, is designed with a
specific problem domain in mind: improving the implementations
of resource-management concerns on small devices. To this end, it
extends general-purpose AOP constructs with novel constructs that
pick out resource-related program points.

Applying general-purpose AOP to embedded systems contin-
ues to be an active area of research, especially for investigations
into software product lines for embedded software. For instance,
Afonso et al. discuss the use of AspectC++ for the BOSS em-
bedded operating system [1], and Pukall et al. and Tesanovic ex-
plain their efforts in using other AOP languages to develop product
lines of embedded systems [19, 25]. In separate papers, Beuche
and Spinczyk describe their product-line systems based on the As-
pectC++ Pure::Consul library [5, 23]. Lohmann and Spinczyk de-
scribe their implementation of a weather-station application on a
microcontroller platform and present the tools that they use includ-
ing Pure::Variants, a variant-management system [16]. We believe
that the focus of much of this work is complementary to our own.

4



One can easily imagine resource-management aspects being signif-
icant elements of an embedded system product line.

Like ourselves, other researchers have applied language tech-
niques to address particular concerns of sensor network program-
ming. Gummadi et al., for example, propose the use of “macropro-
gramming” to create a distributed program composed of multiple
firmware images acting in concert to perform specified tasks [11].
Regiment and COSMOS use this concept to manage the crosscut-
ting concern of embedded node failures and recovery [2, 17]. Their
work is similar to ours in that they use a language to modularize a
crosscutting concern. Our approach differs from theirs, however, in
that ANesC combines its features for problem-specific AOP with
well-known constructs for general-purpose AOP.

Over the years, languages and systems such as Ada, Es-
terel [4], Java Card [24], and others have been developed to im-
prove the design and implementation of embedded software for
microcontroller-class devices. Despite the many desirable features
of these languages, most embedded software today continues to be
written in the C family of languages. The nesC language provides
evolutionary improvements for C-based sensor network program-
ming. Our hope is that ANesC will enable a similar evolutionary
approach for the management of crosscutting concerns in the sen-
sor network domain.

5. Conclusion
We have described Aspect nesC (ANesC), our new language that
seeks to improve programmers’ control of resource management
concerns in sensor network software. Resource management is an
essential part of most sensor network software because common
motes are resource-impoverished. In addition, because resource
constraints generally influence many or all parts of an applica-
tion, resource management is a classic example of a crosscutting
concern. ANesC is designed to help programmers manage such
crosscutting concerns through aspect-oriented programming. We
have described how ANesC adds aspects to the component-oriented
features of the existing nesC language. In addition, we have de-
scribed how ANesC will provide novel features for modularizing
the implementations of resource-management concerns in particu-
lar, and we have discussed ANesC’s application through a hypo-
thetical tornado-detector example. Through these language-based
techniques, our goal is to improve both (1) the behavior and re-
silience of sensor network applications in the face of resource short-
ages, and (2) the flexibility of such software to changes in resource
concerns. Both the ANesC language and its compiler are currently
in development.

Acknowledgments
We thank David Gay for his assistance with the inner workings of
the nesC compiler, and we thank John Regehr for his insightful
comments on drafts of this paper.

References
[1] F. Afonso, C. Silva, S. Montenegro, and A. Tavares. Applying aspects

to a real-time embedded operating system. In Proc. of ACP4IS,
Vancouver, BC, Canada, Mar. 2007.

[2] A. Awan, S. Jagannathan, and A. Grama. Macroprogramming
heterogeneous sensor networks using COSMOS. In Proc. of EuroSys,
pages 159–172, Lisbon, Portugal, Mar. 2007.

[3] A. J. Bedard Jr. and T. M. Georges. Atmospheric infrasound. Physics
Today, Mar. 2000.

[4] G. Berry. The foundations of Esterel. In Proof, language, and
interaction: essays in honour of Robin Milner, pages 425–454. MIT
Press, 2001.

[5] D. Beuche and O. Spinczyk. Variant management for embedded
software product lines with Pure::Consul and AspectC++. In
OOPSLA Companion, pages 108–109, Anaheim, CA, USA, Oct.
2003. Demonstration abstract.

[6] H. B. Bluestein. A history of severe-storm-intercept field programs.
Weather and Forecasting, 14(4):558–577, Aug. 1999.

[7] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava:
Modular open classes and symmetric multiple dispatch for Java. In
Proc. of OOPSLA, pages 130–145, Minneapolis, MN, USA, Oct.
2000.

[8] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to
improve the modularity of path-specific customization in operating
system code. In Proc. of ESEC/FSE, pages 88–98, Vienna, Austria,
Sept. 2001.

[9] D. Gay, P. Levis, D. Culler, and E. Brewer. nesC 1.2 language
reference manual. http://sourceforge.net/projects/nescc,
2005.

[10] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler.
The nesC language: A holistic approach to networked embedded
systems. In Proc. of PLDI, pages 1–11, San Diego, CA, USA, June
2003.

[11] R. Gummadi, N. Kothari, T. Millstein, and R. Govindan. Declarative
failure recovery for sensor networks. In Proc. of AOSD, pages 173–
184, Vancouver, BC, Canada, Mar. 2007.

[12] H.-A. Jacobsen. AspeCt oriented C compiler. http://research.
msrg.utoronto.ca/ACC, 2007.

[13] K. Klues et al. Dynamic resource management in a static network
operating system. Technical Report WUCSE–2006–56, Washington
University in St. Louis, Oct. 2006.

[14] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications Company, 2003.

[15] P. Levis. TinyOS programming. http://csl.stanford.edu/

~pal/pubs/tinyos-programming.pdf, 2006.

[16] D. Lohmann and O. Spinczyk. Developing embedded software
product lines with AspectC++. In OOPSLA Companion, pages 740–
742, Portland, OR, USA, Oct. 2006. Demonstration abstract.

[17] R. Newton, G. Morrisett, and M. Welsh. The Regiment macropro-
gramming system. In Proc. of IPSN, pages 489–498, Cambridge,
MA, USA, Apr. 2007.

[18] J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and S. Masri. A
wireless sensor network for structural health monitoring: Performance
and experience. In Proc. of EmNetS-II, pages 1–10, Sydney, Australia,
May 2005.

[19] M. Pukall, T. Leich, M. Kuhlemann, and M. Rosenmueller. Highly
configurable transaction management for embedded systems. In Proc.
of ACP4IS, Vancouver, BC, Canada, Mar. 2007.

[20] J. Regehr, N. Cooprider, W. Archer, and E. Eide. Efficient type
and memory safety for tiny embedded systems. In Proc. of PLOS,
San Jose, CA, Oct. 2006.

[21] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by
abstract interpretation. ACM Transactions on Embedded Computing
Systems, 4(4):751–778, Nov. 2005.

[22] G. Simon et al. Sensor network-based countersniper system. In Proc.
of SenSys, pages 1–12, Baltimore, MD, Nov. 2004.

[23] O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP with
AspectC++. In Proc. of SoMeT, Tokyo, Japan, Sept. 2005.

[24] Sun Microsystems. Java Card Platform Spec. 2.2.2, Mar. 2006.
http://java.sun.com/products/javacard/specs.html.

[25] A. Tesanovic. Evolving embedded product lines: Opportunities for
aspects. In Proc. of ACP4IS, Vancouver, BC, Canada, Mar. 2007.

[26] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh.
Fidelity and yield in a volcano monitoring sensor network. In Proc.
of OSDI, pages 381–396, Seattle, WA, Nov. 2006.

5

http://sourceforge.net/projects/nescc
http://research.msrg.utoronto.ca/ACC
http://research.msrg.utoronto.ca/ACC
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf
http://csl.stanford.edu/~pal/pubs/tinyos-programming.pdf
http://java.sun.com/products/javacard/specs.html

	Introduction
	Background
	nesC
	Aspect-oriented programming

	Aspect nesC (ANesC)
	A sensor network application
	Aspects for resource management
	Discussion

	Related Work
	Conclusion
	Acknowledgments
	References

