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ABSTRACT

A variability mechanism is a software implementation technique that realizes a choice

in the features that are incorporated into a software system. Variability mechanisms are

essential for the implementation of configurable software, but the nature of mechanisms as

structuring abstractions is not well understood. Mechanisms are often equated with their

stereotypical realizations. As a consequence, certain variability mechanisms are generally

viewed as having limited applicability due to run-time performance overhead.

We claim that it is feasible and useful to realize variability mechanisms in novel ways

to improve the run-time performance of software systems. This claim is supported by the

implementation and evaluation of three examples.

The first is the flexible generation of performance-optimized code from high-level specifications.

As exemplified by Flick, an interface definition language (IDL) compiler kit, concepts from

traditional programming language compilers can be applied to bring both flexibility and

optimization to the domain of IDL compilation.

The second is a method for realizing design patterns within software that is neither

object-oriented nor, for the most part, dynamically configured. By separating static

software design from dynamic system behavior, this technique enables more effective and

domain-specific detection of design errors, prediction of run-time behavior, and more

effective optimization. The method is demonstrated using a suite of operating-system

components.

The third, middleware-based brokering of resources, can improve the ability of multi-agent,

real-time applications to maintain quality of service (QoS) in the face of resource contention.

A CPU broker, for instance, may use application feedback and other inputs to adjust CPU

allocations at run time. This helps to ensure that applications continue to function, or at

least degrade gracefully, under load.
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CHAPTER 1

INTRODUCTION

This dissertation provides three examples of novel software variability mechanisms to

support the following hypothesis:

It is feasible and useful to realize variability mechanisms in novel ways to improve the

run-time performance of software systems.

Each of the examples is based on a well-known style of modular software composi-

tion, and each modifies the composition mechanism while maintaining implementation

modularity. Each example shows that, by appropriately modifying the technique used to

compose software “parts,” the run-time performance of software systems can be improved.

Composed systems can be made faster or more predictable.

1.1 Software Configuration and Variation
Because software systems are complex, a program today is essentially never made from

just a single part. Instead, any nontrivial program is a composition of many pieces. The

exact composition is the result of many individual decisions, made over a potentially long

period of time by many different people. The chain of decisions starts even before the

software is implemented—i.e., during the requirements analysis phase of the software life

cycle—and may continue even after the program has started to execute.

The architecture of a software system describes how the parts of the system fit together.

An architectural style defines what it means to be a “part” and what it means for parts to

be connected to one another. For example, the architecture of a software system might

be described as a collection of files that are stored and organized within a file system. A

second architectural style might describe software systems as compositions of module or

class definitions, written in a particular language and connected to one another according

to the rules of the language. A third style might describe software structures in terms of

objects that are created and connected during the execution of a process. A fourth might

describe a (distributed) system as a collection of processes: the processes execute over a
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set of one or more physical computers and exchange messages with one another via a

network.

An architectural style provides a language—often nontextual, and often informal—for

constructing models of software systems. More generally, an architectural model does not

describe just a single instance of a software system. Instead, a typical model describes

a family of systems. The members of the family share an architectural “blueprint” but

differ in their details, because the blueprint or its associated software-development process

defines points at which decisions must be made.

A model of a distributed system, for example, may not define the network locations

(e.g., IP addresses) of the computers on which the distributed processes execute. Omitting

this detail from the model allows the model to be more general; the model thereby can

describe not just a particular instance of a system, but instead all instances, independently

of the locations of processes. The processes’ locations are parameters of the systems that

are described by the model.

A more interesting kind of decision occurs when a software developer, installer, or

user decides how a software system should be composed from parts. In contrast to the

example above, which concerns the implementation of a connection within a fixed graph

of communicating parts (processes), architectural decisions can also involve choices among

the parts themselves and their assembly. For example, consider a software system that

requires persistent storage. The designer of this system might decide that the system

should allow persistent data to be stored either in a file system or in a database—a choice

between two software components that each implement persistent storage. The system’s

programmer may then decide to implement the choice as a compile-time option. The

installer then chooses between the options when he or she compiles the software.

This example illustrates that a software designer must make certain choices about

parts and their composition when he or she creates an initial architecture. However, a

designer can also choose to defer certain decisions. Doing so makes it possible for a

product assembler, system administrator, or user to decide the exact set of parts that will

be combined within an instance of the software system. In the current example, at design

time, a person established an option and deferred the decision-making for that option. At

implementation time, another person coded the option in a way that further deferred the

decision-making. One can imagine that at compile time, the system installer could further

defer the choice for the persistent storage mechanism, perhaps by selecting a software
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module that implements the choice at run time.

At the level of architectural descriptions, feature models are popular for describing

the choices that are defined within the description of a software family (often called

a software product line [5]). A feature model highlights the places where configuration

decisions must be made, e.g., where one must choose to include or exclude features

from a software configuration. The complete implementation of a software product

line, as described by a feature model, includes not only the implementations of the

described software features but also mechanisms that support the configuration options

that are described by the model. Many software implementation techniques—including

modules [25, page 122], components [30], design patterns [13], frameworks [17], plug-

ins [31, page 553], dependency injection [11], and others—can be used in isolation or

combination to implement decisions about software assembly.

This dissertation is concerned with how the decision points defined by software

architectures are implemented, and how the decisions are ultimately made.

1.2 Variability Mechanisms
A variability mechanism is a software implementation technique that realizes a choice

in the features that are incorporated into a software system [16]. This definition is

intentionally broad. It refers not only to the use of specific source-code language

constructs—e.g., virtual functions—but also to idioms that use source-code constructs

in combination to create more complex structures, such as design patterns. The notion

of a variability mechanism also includes the realization of choices outside of the basic

source code of a system. In particular, things such as build scripts (e.g., Makefiles [19]),

preprocessing scripts (e.g., Autoconf [33]), compiler options, and static and dynamic

linking can be used to realize choices in the ways that software is composed, configured,

and deployed. Such a broad view is useful for addressing a wide range of software

features. In the context of describing variability mechanisms, we take “feature” to mean

any software functionality or property that a software architect or designer wishes to treat

as a unit of composition or configuration.

A wide variety of variability mechanisms have been cataloged and studied [2, 12], and

they have been classified according to numerous qualities [29]. The most inherent qualities

of any variability mechanism, however, arise from its binding time and its binding sites.
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1.2.1 Binding Time

The binding time of a variability mechanism is the point in the software life cycle at which

an instance of the mechanism may be utilized to make a composition or configuration

decision. The binding time of a mechanism is typically described as one of the following:

• Compile time: the time at which the source code of the software system is translated

into machine code, byte code, or another internal form.

• Link time: the time when the compiled units of a system are composed to form a

complete program. This includes composition with compiled units that are provided

by the program’s execution environment, e.g., system libraries.

• Initialization time: the time between the invocation of the program and the time at

which the program enters its normal mode of operation. It is during this time that a

program creates its initial data structures, reads configuration files and command-line

options, and performs other preparatory actions.

• Run time: the time during the normal execution of the program, following its

initialization phase.

Finer-grain distinctions are possible [6, 12], and the phases listed above may be

overlapping or even recurring. Although such distinctions are possible, for the purposes

of this dissertation, it is sufficient to classify variability mechanisms using the basic four

times listed above. These are sufficient to describe the effects of binding time on one of the

primary concerns addressed in this dissertation: the run-time performance of software.

In general, mechanisms that support compile-time binding are associated with im-

proved run-time performance of the final, configured software. When a feature selection

is known at compile time, the feature’s interactions with the rest of the software system

can be more easily analyzed by the system’s compiler. Excluded features also create

opportunities for analysis, through their known absence. These analyses can enable

well-known, significant optimizations, which in turn can improve the ultimate run-time

performance of the compiled software.

The cost of compile-time binding comes in terms of subsequent flexibility of the

compiled software. When a binding decision is made at compile time, it cannot generally

be unmade at a later point in the software life cycle. This inflexibility may be intended by

the provider of the software, but it may nevertheless be a hindrance to downstream uses

of the compiled software by users and software integrators.
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In contrast to variability mechanisms with compile-time binding, mechanisms with

initialization-time or run-time binding are generally associated with configuration decisions

that are expected to be made by site administrators or users. (Dynamic linking supports

such decisions as well.) Such binding times allow a single program to be more generally

useful to consumers: for example, the parsing of command-line options allows a user to

enable and disable features each time he or she executes the software. Run-time binding

can be a building block for other capabilities such as software updates and user-selected

software plug-ins.

In comparison to a variability mechanism that has compile-time binding, a mechanism

with initialization-time or run-time binding may introduce performance overhead into

the software. This overhead stems from two factors. The first is the cost associated

with the mechanism itself: this includes time spent parsing feature-selection inputs

(e.g., command-line options), time spent configuring selected features, and time spent

evaluating the language constructs that implement the connections to selected features (e.g.,

testing variables, or dispatching virtual function calls). The second source of overhead,

in comparison to compile-time mechanisms, is due to the compile-time optimization

opportunities that are lost when run-time binding mechanisms are used. These sources of

overhead can be significant for some applications, such as the implementation of network

communication protocols [20, 21].

Initialization-time and run-time binding do not always result in run-time performance

overheads, of course. If the dynamically selected features perform better than the features

that would have been selected statically, then dynamic feature selection can lead to overall

performance improvements for the software system as a whole. Chapter 4 details an

example of such a system.

1.2.2 Binding Sites

In the language of software product lines, a binding site is a point within the realization

of a software product at which a variability mechanism is applied to implement a variation

point [6]. A single variation point in a conceptual feature model may correspond to

numerous binding sites within the implementation of a software product. Collectively, the

binding sites that make up the implementation of a variation point are an instance of the

variability mechanism.

The modularity of a variability mechanism refers to the ability to isolate typical instances
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of the mechanism within a well-defined—and ideally small—set of product implementation

constructs.1 This may be isolation at the level of source code (e.g., files and function

definitions) or it may be isolation within non-source-code artifacts such as build and

deployment scripts. Two factors influence the isolation of binding sites, and thus the

degree of modularity associated with a variability mechanism.

The first is the degree to which binding sites must be implemented individually as

hand-coded changes to the implementation. If a particular variation point requires many

binding sites, and if each binding site is implemented as a hand-coded change to the

software source, then the instances of the mechanism will be scattered over the many parts

of the software [9, page 4]. Scattering can make it difficult to identify all of the code that

implements a variation point (i.e., all of the binding sites); scattering can also make it

difficult to change the instance of the variability mechanism.

The second factor is the degree to which binding sites for a variation point must be

located with code or other implementation constructs that stem from concerns other than

the implementation of the variation point. When a binding site must be inserted into code

that exists for other concerns, it may be tangled with that other code [9, page 4]. Tangling

refers to situations in which the implementations of multiple concerns become intermixed

within a single programming artifact, e.g., a function, class, or a source file. Variability

mechanisms that require such tangling harm modularity by causing programming artifacts

to become associated with more than one concern—and often, by not clearly delineating

which parts of an artifact belong to which concerns.

Consider, for example, the use of dynamic linking to choose among possible implemen-

tations of a library. On modern operating systems, dynamic linking is often implemented

so as to be transparent to a system’s source code—thus, it has no binding sites in the source

code at all (and thus no source-level scattering or tangling). Rather than requiring changes

to source code, the primary requirement for using dynamic linking is to write a system’s

build scripts so that they collect the system’s compiled units into separate libraries as

desired. Given that dynamic linking implements a variation point, and a variation point is

by definition a point of connection between features, the library boundaries in this case

follow the feature boundaries. A programmer would likely implement a compilation-unit

1Particular mechanisms may be modular in other respects as well. For example, a feature implemented as
a class in an object-oriented language may be described as modular in the sense that it hides the details of its
implementation from its callers. This form of modularity also provides software-engineering benefits, but it is
not the intended meaning of modularity in this section.
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boundary between feature implementations in any case, regardless of how the systems’

features are ultimately linked. Thus, dynamic linking is an example of a variability

mechanism that often exhibits high modularity—the implementation of the mechanism

often involves few changes to the implementation of a software system overall.

One can contrast the qualities of dynamic linking with the qualities of conditional

compilation, which is another commonly used variability mechanism. Conditional

compilation uses a preprocessing tool, such as the C preprocessor, to manipulate the

source code of a system to include or exclude code that is associated with given features.

Typically, each selectable feature is associated with a unique preprocessor symbol. When

the preprocessor is executed, the values of the features’ symbols are set so that the

implementation of each feature is included in or excluded from the output of the

preprocessor, according to the wishes of the person configuring the software.

In contrast to dynamic linking, conditional compilation often involves many binding

sites within the implementation of a software system. Each place that the feature’s

preprocessor symbol is set or checked is a binding site.2 The number of such sites can be

small or large depending on the requirements of the feature being controlled. In contrast to

dynamic linking, each check of a preprocessor symbol involves a change to the source code

of the software—i.e., potentially many individual changes spread across multiple program

artifacts [18, 26], thus leading to scattering. Because the preprocessor directives are “inlined”

into the implementation of other concerns, tangling can be a problem as well. Indeed, if

numerous features are controlled via conditional compilation, all of the binding sites—the

preprocessor directives and segments of code controlled by those directives—can impair

the readability of the source code as a whole [27]. The binding sites for different features

may also interfere with each other, leading to complicated preprocessing directives. Such

heavy and convoluted use of the C preprocessor for software configuration is commonly

known as “#ifdef hell” [18]. All of these qualities suggest that conditional compilation is

not a very modular variability mechanism in general.

2As we have described conditional compilation, the symbols associated with features are used only by the
preprocessor; their values are not incorporated into the output of the preprocessor. We do not discuss other
ways to use a preprocessor to implement variability mechanisms here. Ernst et al. classify common uses of
preprocessor macros in C [8]; many of the idioms they identify can be used to implement feature binding sites.
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1.3 Selecting a Variability Mechanism
In choosing the implementation technique for a variation point, a software designer

or programmer must consider several issues. These arise from the requirements of the

variation point. For example, to decide if a particular variability mechanism is suitable for

implementing a particular variation point, a person would consider issues such as these:

• Applicability: can the mechanism be used to express the required variation? Ap-

plicability is partly about the logical possibility of using a given mechanism: for

example, it is not possible to use conditional compilation to implement a variation

point that has a requirement to be bound at run time. Applicability also relates to

the role of the mechanism in the ecosystem in which the software is being developed.

For instance, although it is possible to use dynamic code generation to implement

variability within a C program [7, 24], this is not common practice in C software.

• Clarity: how well does the mechanism capture the intent of the variation point?

Beyond applicability, clarity of intent is about communicating the requirements of

the variation point to human readers of the code. Clear expression of intent is

related to the amount of code that the use of the variability mechanism will require

(conciseness) and the distribution of that code (modularity, Section 1.2.2) throughout

the implementation. It is also related to programming language idioms and design

patterns: constructs that have emerged from the software community as means for

encoding particular kinds of intent.

• Consequences: what are the effects of choosing the mechanism? One obvious effect is

the human effort that will be needed to implement and maintain the variation point’s

implementation. This relates to concerns mentioned previously including conciseness,

modularity, and the role of the mechanism in the programming ecosystem (e.g., tool

support). A second effect is that the choice may entail, preclude, or otherwise involve

the mechanisms that may be used for other variation points. A decision to use a

particular remote procedure call [3] facility, for example, typically determines both

an API to the facility and the formats of the messages that will be exchanged through

the facility. A software designer may not want these decisions to be coupled, however.

A third effect of a mechanism is its influence on properties of the software system

overall. Although metrics such as source-code complexity and compiled program

size can be important, variability mechanisms are often judged in terms of their

effects on the run-time performance of software.
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Software implementers often evaluate these issues in an implicit manner. Rather than

select a variability mechanism based on an explicit list of requirements, it is common

for a designer or programmer to choose a mechanism based on previously decided

architectural qualities of the software being constructed, well-known programming idioms,

well-known design patterns, and personal experience. A result of this casual assessment

is that the applicability, clarity, and consequences of well-known variability mechanisms are

often seen as preset and fixed. In some cases, this view may be warranted due to the

limitations of the software-development tools that support the mechanisms. If all the

available implementations of a particular variability mechanism work alike, then a decision

to use the mechanism may entail certain consequences such as coupled decisions and

run-time performance costs. In other cases, the view of fixed consequences is simply

myopic. For example, many well-known design patterns are often seen as being applicable

to object-oriented software only. When these patterns are viewed more abstractly—as

definitions of entities, their roles, and their protocols—one can use them to guide the

implementation of object-oriented and non-object-oriented software systems.

1.4 Novel Realizations of Variability
Mechanisms

This dissertation seeks to demonstrate the benefits of thinking about well-known

variability mechanisms in new ways. To that end, it focuses on three variability mechanisms

that embody significant amounts of implementation detail: remote procedure calls, design

patterns, and scheduling. These are representative mechanisms that embody some degree

of abstraction over concrete implementation constructs.

Although these mechanisms are intended to provide architectural abstraction, software

designers and programmers have a tendency to associate each of these mechanisms with

particular implementation techniques. The result is that the applicability, clarity of intent,

and consequences of a mechanism’s stereotypical implementation becomes conflated with

the applicability, clarity, and consequences of the mechanism itself. This dissertation shows

the benefits that can be obtained by avoiding such confusion—by distinguishing between

a variability mechanism and its stereotypical realization. A novel realization can make

a mechanism applicable where it was not previously so. It can improve clarity of intent

by promoting the concise and modular implementation of system requirements. Finally,

novel realizations can mitigate or avoid the undesirable consequences that are associated
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with stereotypical implementations—in particular, run-time overheads.

The main part of this dissertation details three novel realizations of well-known

variability mechanisms. Each is based on a well-known mechanism for modular soft-

ware composition, and each modifies the composition mechanism while maintaining its

modularity. Each demonstrates the ability of a novel realization to improve the run-time

performance of a software system.

1.4.1 Flexible and Optimizing IDL Compilation
The first novel realization of a variability mechanism is Flick, a flexible and opti-

mizing compiler for implementing remote procedure call (RPC) and remote method

invocation (RMI) interfaces.

Flick is an example of an interface definition language (IDL) compiler. An IDL compiler

reads an interface definition, written in an IDL, and outputs an implementation of that

interface in a programming language such as C, C++, or Java. The implementation

allows two or more agents—typically running in separate operating system processes, and

perhaps running on different computers—to communicate through what appear to be

ordinary procedure calls or object method invocations. The implementation of the interface

hides the fact that the client of the interface (the caller) and the server of the interface

(the callee) may be located in different processes. In other words, behind the facade of

intra-process (“local”) procedure call or method invocations, the code produced by an IDL

compiler implements inter-process (“remote”) communication. The implementations of

the interface in the client and the server typically communicate by exchanging messages

through a network protocol, e.g., a protocol based on TCP/IP.

As variability mechanisms, RPC and RMI provide several advantages.

Most obviously, RPC and RMI make it possible for the client and server of an interface

to be connected at run time. This is in contrast to ordinary procedure-call interfaces

within a program, which are typically bound and fixed at compile time or link time. Some

implementations of RPC and RMI, such as those based in CORBA [22], even allow clients

and servers to be connected, disconnected, and reconnected at run time. This allows for a

high degree of flexibility in terms of binding features whose connections are realized via

RPC or RMI.

Another potential advantage of RPC or RMI as a variability mechanism is that it may

have relatively little impact on the implementation of other parts of the software system.

Even when the clients and providers of a service are expected to reside within a single
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process, it is common software-engineering practice to separate the implementations of

the clients and servers, and to clearly define an interface between them. Given this,

implementing the interface via RPC or RMI may be relatively straightforward—but not

necessarily trouble-free!

The disadvantages of the stereotypical realizations of RPC and RMI are threefold.

First, a typical IDL compiler provides little or no control over the interface to the

code that it generates from an IDL specification. To compile an interface specification,

an IDL compiler must map constructs in an IDL file (e.g., operations) onto constructs

in another language (e.g., functions) that represent the original IDL constructs. The

mapping from IDL constructs to target language constructs is the presentation of the

interface in the target language. The presentation determines such things as the names

of generated functions and the types of those functions’ arguments and return values. In

addition to syntactic issues, the presentation also encompasses semantic issues such as

allocation protocols for memory. Interface definition languages such as CORBA IDL [22],

the ONC RPC language [28], and the MIG language [23] are associated with standard

mappings into languages such as C and C++. Those mappings are designed to be general

and straightforward. Unfortunately, an unmalleable standard mapping can be a barrier

to high-performance applications that rely on optimized communication channels. A

“one size fits all” IDL compiler prevents programmers from using application-specific

knowledge to optimize a system’s performance.

Second, typical IDL compilers couple decisions that a designer or implementer may

want to separate. The most significant of these deal with the communication infrastructure

that the compiler-generated code will use. Some IDL compilers, such as MIG, support

only a single underlying messaging system or a small and fixed set of such systems. A

design-time decision to use such a compiler, therefore, becomes a design-time decision

about the networking basis that the final software system will use. This may limit

the applicability of such a compiler. Other IDL compilers, such as rpcgen and many

implementations of CORBA, are supported by libraries that select a desired messaging

subsystem at run time. Although this provides flexibility, it too represents a coupled choice:

an implementation-time decision to use a traditional ONC RPC or CORBA compiler entails

an implementation-time decision to postpone the choice of the transport system until run

time. This lack of information at compile-time may impede the ability of an IDL compiler

to produce optimized code.
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Third, stereotypical IDL compilers make little effort to generate fast code. Many IDL

compilers still assume that the transport medium is inherently slow, and therefore, that

the generation of optimized code will not yield significant speed increases. Modern

network architectures, however, have moved the performance bottlenecks for distributed

applications out of the operating system layers and into the applications themselves [4, 14,

15]. The run-time overhead that is associated with stereotypical IDL compilers limits the

perceived applicability of RPC and RMI as variability mechanisms in general.

Flick, our IDL compiler, addresses the disadvantages described above. Flick adapts

concepts from traditional programming language compilers to bring both flexibility and

optimization to the domain of IDL compilation.

To address the issues of inflexible language mappings and unnecessarily coupled

decisions, Flick is designed as a set of components that may be specialized for particular

IDLs, target-language mappings, data encodings, and transport mechanisms. It has front

ends that parse the CORBA, ONC RPC, and MIG IDLs. Flick compiles an interface

specification in any of these languages through a series of intermediate representations to

produce CORBA-, rpcgen-, or MIG-style C code communicating via TCP, UDP, Mach [1]

messages, or Fluke [10] kernel IPC. Flick’s compilation stages are implemented as

individual components, and it is easy for a system designer to select components at

IDL compilation time in order to create the RPC or RMI implementation that he or she

needs. The organization of Flick makes it straightforward to implement new component

front ends, “presentation generators,” and back ends.

To address the issue of run-time performance, Flick implements techniques such as

code inlining, discriminator hashing, and careful memory management to maximize the

speed at which data can be encoded and decoded for communication. Flick’s optimization

techniques are similar to those provided by modern optimizing compilers, but its domain-

specific knowledge allows Flick to implement important optimizations that a general-

purpose language compiler cannot.

Chapter 2 details the design, implementation, and evaluation of Flick. By addressing

both flexibility and optimization concerns, Flick widens the potential applicability of RPC

and RMI as variability mechanisms for software design.
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1.4.2 Static and Dynamic Structure in Design Patterns

The second area of novel variation mechanism realizations is based on design patterns.

A design pattern is a reusable solution to a recurring problem in software design [13]. A

pattern is meant to describe a general solution technique that can be applied to a particular

kind of situation in software design. In contrast to describing the implementation-level

details of a particular solution within a particular software system, a pattern describes

the general structure of a problem and a solution, so that the solution can be adapted

and implemented as needed for solving many instances of a given design problem. The

problem is described in terms of design issues; the solution is described in terms of

participating entities, their roles, and how they cooperate to address the problem.

Many design patterns describe ways of organizing variability in software, and thus,

the implementations of patterns are often used as variation mechanisms. As detailed in

Chapter 3, however, the stereotypical view of design patterns limits their application in

practice.

The conventional approach to realizing patterns [13] primarily uses classes and objects

to implement participants and uses inheritance and object references to implement

relationships between participants. The parts of patterns that are realized by classes

and inheritance correspond to static information about the software—information that can

be essential for understanding, checking, and optimizing a program. Unfortunately, class

structures can disguise the underlying pattern relationships, both by being too specific (to

a particular application of a pattern) and by being mixed with unrelated code. In contrast,

the parts of patterns realized by run-time objects and references are more dynamic and

flexible, but are therefore harder to understand and analyze.

More generally, software designers and programmers commonly associate design

patterns with their stereotypical implementations in object-oriented languages, which

involve classes and objects as described previously. This means that patterns may not

applied in situations in which they might be helpful—i.e., in the design of non-object-

oriented systems. The stereotypical implementation of patterns using run-time objects

also has certain consequences, such as potential run-time performance overheads. These

costs can potentially be mitigated or avoided when necessary, however, through novel

realizations of design patterns.

Chapter 3 describes such a novel approach to realizing patterns, one based on sep-

arating the static parts of a pattern from the dynamic parts. The static participants
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and relationships in a pattern are realized by component instances and component

interconnections that are set at compile- or link-time, while the dynamic participants continue

to be realized by objects and object references. Expressing static pattern relationships

as component interconnections provides more flexibility than the conventional approach

while also promoting ease of understanding and analysis.

The basis of the approach is to permit system configuration and realization of design

patterns at compile- and link-time (i.e., before software is deployed) rather than at

initialization- and run-time (i.e., after it is deployed). Components are defined and

connected in a language that is separate from the implementation language of a software

system, thus allowing one to separate configuration concerns from the implementation of

a system’s parts. A system can be reconfigured at the level of components, possibly by

a nonexpert, and can be analyzed to check design rules or optimize the overall system.

This approach helps a programmer to identify design trade-offs and strike an appropriate

balance between design-time and run-time flexibility. More generally, the approach

described in Chapter 3 demonstrates the usefulness of a novel realization of variability

mechanisms—design patterns—for implementing systems in which run-time performance

is a concern.

1.4.3 Dynamic CPU Management for Real-Time Systems

The third novel realization of a variability mechanism is the CPU Broker, a facility

for mediating between multiple real-time tasks and the facilities of a real-time operating

system. The CPU Broker allows the tasks of a real-time system to be usefully composed

late in the software life cycle, i.e., after the individual tasks have been implemented, and

possibly after they have been delivered to a customer and deployed on a computer. In

other words, the features (individual tasks) of the real-time system can be selected and

usefully composed. The CPU Broker supports such late composition by connecting to its

managed tasks in a noninvasive manner. During system execution, using feedback and

other inputs, the broker adjusts the CPU allocations of its managed tasks to ensure that

high application-level quality-of-service (QoS) is maintained.

The CPU Broker is designed to apply to multi-agent real-time systems that are built

atop commercial, off-the-shelf (COTS) real-time operating systems and middleware. Even

with modern systems as a basis, it can be a significant challenge for system developers to

design and build real-time systems that meet their overall requirements for performance.
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• Because the parts of a software system must often be designed to be reusable across

many products, the code that implements real-time behavior for any particular system

must be decoupled from the “application logic” of the system’s parts. Decoupling

makes it possible to collect the real-time specifications for all of the system’s parts in

one place, but leads to the problem of reintroducing that behavior into the software.

• Even if the implementation of real-time behavior is modularized, developers are

challenged with specifying the desired behavior at all. It is common for the execution

times of parts of a system to be data-dependent, mode-dependent, configuration-

dependent, unpredictable, or unknown. In a multi-agent real-time system, the sets

of communicating tasks and available processor resources may not be known until

run time, or may change as the system is running.

Thus, the challenges of implementing real-time behavior in multi-agent systems include

not only (1) decoupling and modularizing of the behavior, but also (2) describing a variety

of policies in a high-level and tractable manner and (3) ensuring that the system continues

to operate—perhaps at reduced capacity—in the face of events that occur at run time, both

expected and unexpected.

The CPU Broker described in Chapter 4 addresses these challenges. It is designed to

ensure that the CPU demands of “important” applications are satisfied insofar as possible,

especially in the face of dynamic changes in resource requirements and availability, in the

set of managed tasks, and in the relative importances of the tasks.

The CPU Broker is a CORBA-based server that mediates between the multiple real-time

tasks and the facilities of a real-time operating system, such as TimeSys Linux [32].

The broker addresses design-time challenges by connecting to its managed tasks in a

noninvasive fashion and by providing an expressive and open architecture for specifying

CPU scheduling policies. The broker can manage resources for both CORBA and non-

CORBA applications. At run time, the broker uses feedback and other inputs to monitor

resource usage, adjust allocations, and deal with contention according to a configured

policy or set of policies. The broker is configured at run time through a command-line

tool or via invocations on the CORBA objects within the broker: policies are easily set up

and changed dynamically. The experimental results presented in Chapter 4 show that the

broker approach can effectively address both the design-time and run-time challenges of

managing real-time behavior in COTS-based real-time systems.

The broker demonstrates the benefits that can be obtained through a novel implementa-
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tion of scheduling, which is an essential part of a variation mechanism that divides a large

system into separate tasks. By implementing a centralized and programmable “negotiation”

facility atop a COTS real-time scheduler, the CPU Broker increases the effectiveness of

scheduling for realizing multi-agent, real-time systems in which the agents, their CPU

requirements, or their relative importances are determined late in the software life cycle.
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CHAPTER 2

FLICK: A FLEXIBLE, OPTIMIZING

IDL COMPILER

An interface definition language (IDL) is a nontraditional language for describing

interfaces between software components. IDL compilers generate “stubs” that provide

separate communicating processes with the abstraction of local object invocation or

procedure call. High-quality stub generation is essential for applications to benefit from

component-based designs, whether the components reside on a single computer or on

multiple networked hosts. Typical IDL compilers, however, do little code optimization,

incorrectly assuming that interprocess communication is always the primary bottleneck.

More generally, typical IDL compilers are “rigid” and limited to supporting only a single

IDL, a fixed mapping onto a target language, and a narrow range of data encodings and

transport mechanisms.

Flick, our new IDL compiler, is based on the insight that IDLs are true languages

amenable to modern compilation techniques. Flick exploits concepts from traditional

programming language compilers to bring both flexibility and optimization to the domain

of IDL compilation. Through the use of carefully chosen intermediate representations,

Flick supports multiple IDLs, diverse data encodings, multiple transport mechanisms, and

applies numerous optimizations to all of the code it generates. Our experiments show that

Flick-generated stubs marshal data between 2 and 17 times faster than stubs produced by

traditional IDL compilers, and on today’s generic operating systems, increase end-to-end

throughput by factors between 1.2 and 3.7.

2.1 Introduction
An interface definition language (IDL) is a special-purpose language for describing the

interfaces of a software component. An IDL specification declares one or more interfaces;

each interface declares a set of operations that may be invoked on objects implementing the

interface. The input and output behavior of each operation is given by the IDL specification.
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For example, the following CORBA [18] IDL program declares a simple interface to an

electronic mail service:

interface Mail {

void send(in string msg);

};

A largely equivalent mail system interface would be defined in the ONC RPC1 [23] IDL by

this program:

program Mail {

version MailVers {

void send(string) = 1;

} = 1;

} = 0x20000001;

As shown by these examples, an IDL program declares a set of functions or methods

but does not describe the computations that those functions and methods perform. IDLs

are typically independent of the programming language in which the components are

themselves implemented, further decoupling interface from implementation.

An IDL compiler accepts an IDL interface specification and outputs an implementation

of that specification. Typically, the implementation is a set of data type declarations and

“stubs” written in a conventional programming language such as C, C++, or Java. The

stubs encapsulate the communication that must occur between the entity that invokes an

operation (i.e., the client) and the entity that implements the operation (i.e., the server). The

stubs that are output by the IDL compiler hide the details of communication and allow

the client and server to interact through a procedural interface. Traditionally, stubs have

implemented remote procedure calls (RPC) [3] or remote method invocations (RMI): the client

and server are located in separate processes, and the stubs in each process communicate by

exchanging messages through a transport medium such as TCP/IP. More recently, IDLs

have become popular for defining high-level interfaces between program modules within

a single process.

1ONC RPC was previously known as Sun RPC, and Sun’s rpcgen is the standard compiler for the
ONC RPC IDL. The numbers in the example ONC RPC IDL program are chosen by the programmer to
identify components of the interface.
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IDLs and IDL compilers arose for reasons familiar to any programming language

veteran: descriptive clarity, programmer productivity, assurance of consistency, and ease

of maintenance. Performance of IDL-generated code, however, has traditionally not been

a priority. Until recently, poor or mediocre performance of IDL-generated code was

acceptable in most applications: because interprocess communication was generally both

expensive and rare, it was not useful for an IDL compiler to produce fast code. For

performance critical applications, implementors resorted to hand-coded stubs—tolerating

the accompanying greater software engineering costs. Some IDL compilers such as

MIG [20] struck a middle ground by providing a language with a restricted set of

structured data types, blended with programmer control over implementation details.

This compromise could be likened to that provided by a traditional compiler that permits

embedded assembly language. Although embedded “hints” can lead to performance gains,

reliance on hints moves the burden of optimization from the compiler to the programmer,

and has the additional effect of making the language non-portable or useful only within

restricted domains.

Today, in almost every respect, IDL compilers lag behind traditional language compilers

in terms of flexibility and optimization. IDL compilers such as Sun’s rpcgen [25] are

generally written “from scratch” and are implemented without incorporating modern

compiler technologies such as multiple, flexible intermediate representations. The result is

that today’s IDL compilers are “rigid”: they accept only a single IDL, they implement only

a single, fixed mapping from an IDL specification to a target language, and they generate

code for only one or two encoding and transport mechanisms. Today’s IDL compilers still

assume that the transport medium is inherently slow, and therefore, that optimization

of the stubs will not yield significant speed increases. Modern network architectures,

however, have moved the performance bottlenecks for distributed applications out of the

operating system layers and into the applications themselves [5, 12, 13].

In this paper we show that in order to solve the problems inherent to existing IDL

compilers, IDL compilation must evolve from an ad hoc process to a principled process

incorporating techniques that are already well-established in the traditional programming

language community. Although IDL compilation is a specialized domain, IDL compilers

can be greatly improved through the application of concepts and technologies developed

for the compilation of general programming languages. Flick, our Flexible IDL Compiler

Kit, exploits this idea. Flick is designed as a “toolkit” of reusable components that may be



23

specialized for particular IDLs, target language mappings, data encodings, and transport

mechanisms. Flick currently has front ends that parse the CORBA [18], ONC RPC [23], and

MIG [20] IDLs. Flick compiles an interface specification in any of these languages through

a series of intermediate representations to produce CORBA-, rpcgen-, or MIG-style C

stubs communicating via TCP, UDP, Mach [1] messages, or Fluke [10] kernel IPC. Flick’s

compilation stages are implemented as individual components and it is easy for a system

designer to mix and match components at IDL compilation time in order to create the

high-performance communication stubs that he or she needs. Further, the organization of

Flick makes it easy to implement new component front ends, “presentation generators,”

and back ends.

Flick’s design as a traditional language compiler promotes not only flexibility but also

optimization. Flick implements techniques such as code inlining, discriminator hashing,

and careful memory management to maximize the speed at which data can be encoded and

decoded (marshaled and unmarshaled) for communication. Flick’s optimization techniques

are similar to those provided by modern optimizing compilers, but its domain-specific

knowledge allows Flick to implement important optimizations that a general-purpose

language compiler cannot. Most of Flick’s techniques are implemented by an abstract

C++ base class for code generators, and therefore, all back ends inherit the optimizations

provided by the large code base. The results presented in Section 2.4 show that Flick-

generated communication stubs are up to 3.7 times faster than those generated by other

IDL compilers.

2.2 Flick
The Flick IDL compiler is divided into three phases as illustrated in Figure 2.1. These

phases are analogous to those in a traditional language compiler and correspond to

separable aspects of IDL compilation. Each phase is primarily implemented by a large,

shared library of C and C++ code that provides abstractions for such things as IDL source

constructs, target language data types, and “on the wire” message data types. Each of

Flick’s libraries implements a generic set of methods to manipulate these abstractions. The

libraries are the bases for specializations that override the generic methods as necessary

in order to implement behaviors peculiar or specific to a single IDL, language mapping,

message format, or transport facility.

The first phase of the compiler is the front end. The front end reads an IDL source file
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Figure 2.1. Overview of the Flick IDL compiler. Flick is divided into three compilation
phases, and each phase is implemented by a large library of code. Specialized components
are derived from the Flick libraries in order to parse different IDLs, implement different
target language mappings, and produce code for a variety of message formats and
transport systems.
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and produces an abstract representation of the interface defined by the IDL input. This

representation, called an Abstract Object Interface (AOI), describes the high-level “network

contract” between a client and a server: the operations that can be invoked and the data

that must be communicated for each invocation.

Flick’s second compilation phase, the presentation generator, reads the network contract

produced by the front end and outputs a separate and lower-level “programmer’s contract.”

The programmer’s contract defines the interface between the programmer’s client or server

code and the stubs, e.g., how parameters are passed between them.

For example, consider the CORBA IDL input shown in Section 2.1 that defines a

network contract between the client and server of a Mail interface. Given that input, a

CORBA IDL compiler for C will always produce the following prototype describing the

programmer’s contract:2

void Mail_send(Mail obj, char *msg);

This programmer’s contract declares the C functions and data types that will connect the

client or server code to the stub: we say that this contract is a presentation of the interface

in the C language.

The presentation shown above conforms to the CORBA specification for mapping

IDL constructs onto the C programming language. However, it is not the only possible

presentation of the Mail interface. For instance, if we depart from the CORBA mapping

rules, the Mail_send function could be defined to take a separate message length argument:

void Mail_send(Mail obj, char *msg, int len);

This presentation of the Mail interface could enable optimizations because Mail_send

would no longer need to count the number of characters in the message [8, 9]. This change

to the presentation would not affect the network contract between client and server; the

messages exchanged between client and server would be unchanged. The addition of a

separate len parameter changes only the calling conventions for the Mail_send function.

Flick’s ability to handle different presentation styles can be important for optimization as

just described, but it is also essential for supporting multiple IDLs in a reasonable way.

2For clarity, we have omitted the declaration of the Mail object type and the CORBA_Environment parameter
to the Mail_send function.
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To summarize, a presentation describes everything that client or server code must

understand in order to use the function and data type declarations output by an IDL

compiler: this includes the names of the functions, the types of their arguments, the

conventions for allocating memory, and so on. Because there can be many different

presentations of a single interface, Flick provides multiple, different presentation generators,

each implementing a particular style of presentation for a particular target programming

language. When C is the target language, the presentation is described in an intermediate

format called PRES C. Because the presentation of an interface may differ between client

and server, a presentation generator creates separate PRES C files for the client- and

server-side presentations of an interface.

The third and final phase of the compiler is the back end. The back end reads a

presentation description (PRES C) and produces the source code for the C functions that

will implement client/server communication. The generated functions are specific to a

particular message format, message data encoding scheme, and transport facility.

Table 2.1 compares the number of substantive C and C++ source code lines in each

of Flick’s libraries with the number of lines particular to each of Flick’s specialized

components. The number of lines specific to each presentation generator and back end is

extremely small when compared to the size of the library from which it is derived. Front

Table 2.1. Code reuse within the Flick IDL compiler. Percentages show the fraction of the
code that is unique to a component when it is linked with the code for its base library. The
CORBA presentation library is derived from the generic presentation library; the CORBA
and Fluke presentation generators are derived from the CORBA presentation library.

Phase Component Lines
Front End Base Library 1797

CORBA IDL 1661 48.0%
ONC RPC IDL 1494 45.4%

Pres. Gen. Base Library 6509
CORBA Library 770 10.6%

CORBA Pres. 3 0.0%
Fluke Pres. 301 4.0%

ONC RPC rpcgen Pres. 281 4.1%
Back End Base Library 8179

CORBA IIOP 353 4.1%
ONC RPC XDR 410 4.8%
Mach 3 IPC 664 7.5%
Fluke IPC 514 5.9%
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ends have significantly greater amounts of specialized code due to the need to scan and

parse different IDL source languages.

2.2.1 Front Ends

As just described, the purpose of a Flick front end is to translate an interface description

(source IDL program) to an intermediate representation. Each of Flick’s front ends is

specific to a particular IDL. However, each is completely independent of the later stages

of IDL compilation: the presentation of the interface that will be constructed, the target

programming language that will implement the presentation, the message format and

data encodings that will be chosen, and the transport mechanism that will be used. In

sum, the output of a Flick front end is a high-level “network contract” suitable for input to

any presentation generator and any back end.

Flick’s MIG front end, however, is a special case. A MIG interface definition contains

constructs that are applicable only to the C language and to the Mach message and IPC

systems [20]. Therefore, as illustrated in Figure 2.1, Flick’s MIG front end is conjoined

with a special MIG presentation generator that understands these idioms. Flick’s MIG

components translate MIG interface descriptions directly into PRES C representations;

this is different than Flick’s CORBA and ONC RPC front ends, which produce AOI. This

difference reveals a strength: Flick’s multiple intermediate representations provide the

flexibility that is necessary for supporting a diverse set of IDLs.

2.2.1.1 AOI: The Abstract Object Interface

AOI is Flick’s intermediate representation language for describing interfaces: the

data types, operations, attributes, and exceptions defined by an IDL specification. AOI

is applicable to many IDLs and represents interfaces at a very high level. It describes

constructs independently of their implementation: for instance, AOI has separate notions

of object methods, attributes, and exceptions, although all of these things are generally

implemented as kinds of messages. AOI supports the features of typical existing IDLs

such as the CORBA and ONC RPC IDLs, and Flick’s front ends produce similar AOI

representations for equivalent constructs across different IDLs. This “distillation process”

is what makes it possible for Flick to provide a large and general library for the next stage

of compilation, presentation generation.
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2.2.2 Presentation Generators

Presentation generation is the task of deciding how an interface description will be

mapped onto constructs of a target programming language. Each of Flick’s presentation

generators implements a particular mapping of AOI constructs (e.g., operations) onto

target language constructs (e.g., functions). Therefore, each presentation generator is

specific to a particular set of mapping rules and a particular target language (e.g., the

CORBA C language mapping).

A presentation generator determines the appearance and behavior (the “programmer’s

contract”) of the stubs and data types that present an interface—but only the appearance

and behavior that is exposed to client or server code. The unexposed implementation of these

stubs is determined later by a Flick back end. Therefore, the function definitions produced

by a presentation generator may be implemented on top of any available transport

facility, and each presentation generator is independent of any message encoding or

transport. Moreover, each of Flick’s presentation generators (except for the MIG generator

as described previously) is independent of any particular IDL. A single presentation

generator can process AOI files that were derived from several different IDLs.3

Flick currently has two presentation generators that read AOI files: one that implements

the C mapping specified by CORBA [18] and a second that implements the C mapping

defined by Sun Microsystems’ rpcgen program [25]. Each of these presentation generators

outputs its presentations in an intermediate representation called PRES C (Presentation

in C). PRES C is a fairly complex description format containing three separate sublan-

guages as illustrated in Figure 2.2 (and described separately below): a MINT representation

of the messages that will be exchanged between client and server, a CAST representation

of the output C language declarations, and a set of PRES descriptions that connect

pieces of the CAST definitions with corresponding pieces of the MINT structures. Of the

three intermediate representations within a PRES C file, only CAST is specific to the C

language; MINT and PRES are applicable to any programming language. We plan to

create intermediate representation languages for C++ and Java presentations, for example,

3Naturally, the ability to process AOI files generated from different IDLs is somewhat restricted due to the
limitations of particular presentations. For example, the presentation generator that implements the rpcgen
presentation style cannot accept AOI files that use CORBA-style exceptions because there is no concept of
exceptions in standard rpcgen presentations. Similarly, the CORBA presentation generator cannot handle
self-referential type definitions that may occur in an AOI file produced from an ONC RPC IDL input because
CORBA does not support self-referential types.
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by replacing CAST with intermediate representation languages for C++ and Java source

code.

2.2.2.1 MINT: The Message Interface

The first step of presentation generation is to create an abstract description of all

messages, both requests and replies, that may be exchanged between client and server as

part of an interface. These messages are represented in a type description language called

MINT. A MINT representation of a data type is a directed graph (potentially cyclic) with

each node representing an atomic type (e.g., an integer), an aggregate type (e.g., a fixed-

or variable-length array, structure, or discriminated union), or a typed literal constant.

MINT types do not represent types in the target programming language, nor do they

represent types that may be encoded within messages. Rather, MINT types represent

high-level message formats, describing all aspects of an “on the wire” message except for

low-level encoding details. MINT types serve as glue between transport encoding types

and target language types as illustrated in Figure 2.2. The first example in Figure 2.2

utilizes a MINT integer type that is defined to represent signed values within a 32-bit

range. The MINT integer type does not specify any particular encoding of these values,

however. Target language issues are specified by the representation levels above MINT in

the figure; “on the wire” data encodings are specified by the representation level below

MINT. The second example in Figure 2.2 illustrates a MINT array type containing both a

length and a vector of characters. Again, MINT specifies the ranges of the values within

the type but does not specify any encoding or target language details.

2.2.2.2 CAST: The C Abstract Syntax Tree

The second portion of a PRES C file is a description of the C language data types and

stubs that present the interface. These constructs are described in a language called CAST,

which is a straightforward, syntax-derived representation for C language declarations

and statements. By keeping an explicit representation of target language constructs,

Flick can make associations between CAST nodes and MINT nodes described previously.

Explicit representation of target language constructs is critical to flexibility; this is the

mechanism that allows different presentation generators and back ends to make fine-grain

specializations to the base compiler libraries. Similarly, explicit representation is critical to

optimization because Flick’s back ends must have complete associations between target
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language data and “on the wire” data in order to produce efficient marshaling and

unmarshaling code.

Although Flick’s explicit representation for C language constructs is ordinary in

comparison to the intermediate representations used by traditional language compilers,

it is unique in comparison to traditional IDL compilers because most IDL compilers

including rpcgen and ILU [15] maintain no explicit representations of the code that they

produce.

2.2.2.3 PRES: The Message Presentation

PRES, the third and final component of PRES C, defines the mapping between the

message formats defined in MINT and the target language-specific, application-level

formats defined in CAST. Like MINT and CAST, PRES is a graph-based description

language. A node in a PRES tree describes a relationship between a MINT node and

a CAST node: the data described by the MINT and CAST nodes are “connected” and

marshaling and unmarshaling of data will take place as determined by the connecting

PRES node. In language terms, a PRES node defines a type conversion between a MINT

type and a target language type.

Different PRES node types describe different styles of data presentation as illustrated

in Figure 2.2. In the first example, a MINT integer is associated with a C language integer

through a direct mapping: no special data transformation is specified. In the second

example, a MINT variable-length array is associated with a C pointer. The PRES node is an

OPT PTR node and specifies that a particular kind of transformation must occur for both

data marshaling and unmarshaling. Consider the unmarshaling case. The OPT PTR node

defines that when the MINT array size is nonzero, the array elements will be unmarshaled

and the C pointer will be set to point at the decoded array elements—in this example,

characters. If the MINT array size is zero, the C pointer will be set to null. Reverse

transformations occur when the C pointer data must be marshaled into a message.

Other PRES node types define similar kinds of presentation styles, and the set of PRES

node types is designed to cover all of the transformations required by existing presentation

schemes. PRES is not specific to any one programming language, although certain node

types depend on certain language features. For instance, OPT PTR nodes only make sense

for target languages that have pointers.
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2.2.2.4 PRES C: The C Presentation

PRES C combines the intermediate representations described above to create a complete

description language for C language interface presentations. A PRES C file contains the

array of stub declarations that will present the interface (to the client or server, not both).

Each stub is associated with its declaration in CAST, the MINT description of the messages

it receives, the MINT description of the messages it sends, and two PRES trees that

associate pieces of the two MINT trees with the function’s CAST declaration.

In total, a PRES C file is a complete description of the presentation of an interface—it

describes everything that a client or server must know in order to invoke or implement the

operations provided by the interface. The only aspect of object invocation not described

by PRES C is the transport protocol (message format, data encoding, and communication

mechanism) that will be used to transfer data between the client and the server. This final

aspect of IDL compilation is the domain of Flick’s back ends.

2.2.3 Back Ends

A Flick back end inputs a description of a presentation and outputs code to implement

that presentation in a particular programming language. For presentations in C, the input

to the back end is a PRES C file and the output is a “.c” file and a corresponding “.h” file.

The output C code implements the interface presentation for either the client or the server.

Because the output of a presentation generator completely describes the appearance and

exposed behavior of the stubs that implement an interface, Flick’s back ends are entirely

independent of the IDL and presentation rules that were employed to create a presentation.

Each back end is, however, specific to a single programming language, a particular

message encoding format, and a particular transport protocol. All of the currently

implemented back ends are specific to C, but Flick’s “kit” architecture will support

back ends specific to other languages such as C++ or Java in the future. Each of Flick’s

C back ends supports a different communication subsystem: the first implements the

CORBA IIOP (Internet Inter-ORB Protocol) [18] on top of TCP; the second sends ONC RPC

messages [23, 24] over TCP or UDP; the third supports MIG-style typed messages sent

between Mach 3 ports; and the fourth implements a special message format for the fast

Fluke kernel IPC facility [10]. Although these four communication subsystems are all very

different, Flick’s back ends share a large library of code to optimize the marshaling and

unmarshaling of data. This library operates on the MINT representations of the messages.
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Whereas a presentation generator creates associations between MINT types and target

language types (through PRES), a back end creates associations between MINT types and

“on the wire” encoding types. The mapping from message data to target language is

therefore a chain: from encoded type to MINT node, from MINT node to PRES node, and

from PRES node to CAST. Flick’s library for C back ends operates on these chains and

performs optimizations that are common to all transport and encoding systems.

2.3 Optimization
Flick’s back ends apply numerous domain-specific optimization techniques to address

the performance problems that typically hinder IDL-based communication. Flick’s

optimizations are complementary to those that are generally implemented by traditional

language compilers. While many of Flick’s techniques have counterparts in traditional

compilers, Flick is unique in that it has knowledge of its specialized task domain and

has access to many different levels of information through its multiple intermediate

representations. This allows Flick to implement optimizations that a general language

compiler cannot. Conversely, Flick produces code with the expectation that general

optimizations (e.g., register allocation, constant folding, and strength reduction) will be

performed by the target language compiler. In summary, Flick implements optimizations

that are driven by its task domain and delegates general-purpose code optimization to the

target language compiler.

2.3.1 Efficient Memory Management

2.3.1.1 Marshal Buffer Management
Before a stub can marshal a datum into its message buffer, the stub must ensure that the

buffer has at least enough free space to contain the encoded representation of the datum.

The stubs produced by typical IDL compilers check the amount of free buffer space before

every atomic datum is marshaled, and if necessary, expand the message buffer. These

repeated tests are wasteful, especially if the marshal buffer space must be continually

expanded. The stubs produced by Flick avoid this waste.

Flick analyzes the overall storage requirements of every message that will be exchanged

between client and server. This is accomplished by traversing the MINT representation of

each message. The storage requirements and alignment constraints for atomic types are

given by the “on the wire” data types that are associated with the various MINT nodes.

The storage requirements for aggregate types are determined by working backward from
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nodes with known requirements. Ultimately, Flick classifies every type into one of three

storage size classes: fixed, variable and bounded, or variable and unbounded.

From this information, Flick produces optimized code to manage the marshal buffer

within each stub. Before marshaling a fixed-size portion of a message, a Flick-generated

stub will ensure that there is enough free buffer space to hold all of the component data

within the fixed-size message segment. The code that actually marshals the data is then

free to assume that sufficient buffer space is available. In cases in which an entire message

has a fixed size, Flick generates a stub that checks the size of the marshal buffer exactly

once.4 A different message segment may be variable in size but bounded by a limit known

at stub generation time or by a limit known at stub execution time. In this case, if the range

of the segment size is less than a predetermined threshold value (e.g., 8KB), Flick produces

code similar to that for fixed-size message fragments: the generated stub will ensure that

there is enough space to contain the maximum size of the message segment. If the range is

above the threshold, however, or if the message fragment has no upper bound at all, then

Flick “descends” into the message segment and considers the segment’s subcomponents.

Flick then analyzes the subcomponents and produces stub code to manage the largest

possible fixed-size and threshold-bounded message segments as described above. Overall,

our experiments with Flick-generated stubs have shown that this memory optimization

technique reduces marshaling times by up to 12% for large messages containing complex

structures.

2.3.1.2 Parameter Management

Another optimization that requires domain knowledge is the efficient management

of memory space for the parameters of client and server stubs. Just as it is wasteful to

allocate marshal buffer space in small pieces, it is similarly wasteful to allocate memory for

unmarshaled data on an object-by-object or field-by-field basis. Therefore, Flick optimizes

the allocation and deallocation of memory used to contain the unmarshaled data that

will be presented to clients and servers. For example, Flick-generated stubs may use the

runtime stack to allocate space for parameter data when this is allowed by the semantics of

the interface presentation. In some situations, Flick-generated stubs use space within the

4Flick-generated stubs use dynamically allocated buffers and reuse those buffers between stub invocations.
This is generally preferable to allocating a new buffer for each invocation. However, it means that stubs that
encode fixed-size messages larger than the minimum buffer size must verify the buffer size once.
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marshal buffer itself to hold unmarshaled data—this optimization is especially important

when the encoded and target language data formats of an object are identical. Generally,

these optimizations are valid only for in (input) parameters to the functions in a server

that receive client requests. Further, the semantics of the presentation must forbid a server

function from keeping a reference to a parameter’s storage after the function has returned.

Our experiments have shown that stack allocation is most important for relatively modest

amounts of data—stack allocation for small data objects can decrease unmarshaling time

by 14%—and that reuse of marshal buffer space is most important when the amount of

data is large. However, the behavior of stack and marshal buffer storage means that it is

suitable only in certain cases. Flick can identify these cases because it has access to the

behavioral properties of the presentations that it creates.

2.3.2 Efficient Copying and Presentation

2.3.2.1 Data Copying

By comparing the encoded representation of an array with the representation that

must be presented to or by a stub, Flick determines when it is possible to copy arrays of

atomic types with the C function memcpy. Copying an object with memcpy is often faster

than copying the same object component-by-component, especially when the components

are not the same size as machine words. For instance, our measurements show that

this technique can reduce character string processing times by 60–70%. In order for this

optimization to be valid, the encoded and target language data formats must be identical,

and this can be determined by examining the type chains constructed by the presentation

generator and back end as described in Section 2.2.3. A more flexible copy optimizer

that allows for byte swapping and word copying of other aggregate types—similar to the

optimizer in USC [19]—will be implemented in a future version of Flick.

Even when an object cannot be copied with memcpy, Flick performs an optimization to

speed component-by-component copying. As part of the analysis performed for optimizing

marshal buffer allocation described above, Flick identifies portions of the message that

have fixed layouts. A message region with a fixed size and a fixed internal layout is

called a chunk. If Flick discovers that a stub must copy data into or out of a chunk, Flick

produces code to set a chunk pointer to the address of the chunk. Subsequent stub accesses

to components of the chunk are performed by adding a constant offset to the chunk pointer.

The chunk pointer itself is not modified; rather, individual statements perform pointer
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arithmetic to read or write data. Flick assumes that the target language compiler will

turn these statements into efficient pointer-plus-offset instructions. Chunking is a kind of

common subexpression elimination that would not ordinarily be performed by the target

language compiler itself due to the general difficulty of optimizing pointer-based code.

Chunk-based code is more efficient than code produced by traditional IDL compilers,

which generally increments a read or write pointer after each atomic datum is processed.

Our experiments with Flick-generated stubs show that chunking can reduce some data

marshaling times by 14%.

2.3.2.2 Specialized Transports
Because Flick is a toolkit, it is straightforward to implement back ends that take

advantage of special features of a particular transport system. For example, Flick’s Mach 3

back end allows stubs to communicate out-of-band data [20] and Flick’s Fluke [10] back end

produces stubs that communicate data between clients and servers in machine registers. A

Fluke client stub stores the first several words of the message in a particular set of registers;

small messages fit completely within the register set. When the client invokes the Fluke

kernel to send the message, the kernel is careful to leave the registers intact as it transfers

control to the receiving server. This optimization is critical for high-speed communication

within many microkernel-based systems.

2.3.3 Efficient Control Flow

2.3.3.1 Inline Code
The stubs produced by many IDL compilers are inefficient because they invoke separate

functions to marshal or unmarshal each datum in a message. Those functions in turn may

invoke other functions, until ultimately, functions to process atomic data are reached. This

type of code is straightforward for an IDL compiler to generate. However, these chains

of function calls are expensive and impose a significant runtime overhead. Not only are

the function calls wasteful, but reliance on separate, type-specific marshal and unmarshal

functions makes it difficult for an IDL compiler to implement memory management

optimizations such as those described previously in Section 2.3.1. A general-purpose

marshal function must always check that buffer space is available; a separate unmarshal

function cannot use the runtime stack to allocate space for the unmarshaled representation

of a data object. Therefore, Flick aggressively inlines both marshal and unmarshal code

into both client- and server-side stubs. In general, Flick-generated stubs invoke separate
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marshal or unmarshal functions only when they must handle recursive types such as

linked lists or unions in which one of the union branches leads back to the union type

itself.5 For a large class of interfaces, inlining actually decreases the sizes of the stubs

once they are compiled to machine code. This effect is illustrated in Table 2.2. Inlining

obviously removes expensive function calls from the generated code, but more importantly,

it allows Flick to specialize the inlined code in context. The memory, parameter, and copy

optimizations described previously become more powerful as more code can be inlined

and specialized. In total, our experiments with Flick show that stubs with inlined code

can process complex data up to 60% faster than stubs without this optimization.

2.3.3.2 Message Demultiplexing

A server dispatch function must demultiplex messages received by the server process

and forward those messages to the appropriate work functions. To perform this task, the

dispatch function examines a discriminator value at the beginning of every message. This

discriminator may be one or more integer values, a packed character string, or any other

complex type, depending on the message format. Regardless of the type, Flick generates

demultiplexing code that examines machine word-size chunks of the discriminator insofar

as possible. The acceptable values for a discriminator word are used to produce a C

switch statement; multi-word discriminators are decoded using nested switches. When a

5A future version of Flick will produce iterative marshal and unmarshal code for “tail-recursive” data
encodings in the marshal buffer.

Table 2.2. Object code sizes in bytes. Each IDL compiler produced stubs for the directory
interface described in Section 2.4 and the generated stubs were compiled for our SPARC
test machines. The sizes of the compiled stubs, along with the sizes of the library code
required to marshal and unmarshal data, were determined through examination of the
object files. Numbers for MIG are not shown because the MIG IDL cannot express the
interface. Library code for ORBeline is not shown because we had limited access to the
ORBeline runtime.

Size of Client Size of Server
Compiler Stubs Library Stub Library
Flick 2800 0 2116 0
PowerRPC 2656 2976 2992 2976
rpcgen 2824 2976 3796 2976
ILU 7148 24032 6628 24032
ORBeline 14756 16208
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complete discriminator has been matched, the code to unmarshal the rest of the message

is then inlined into the server dispatch function.

2.4 Experimental Results
To evaluate the impact of Flick’s optimizations, we compared Flick-generated stubs to

those from five other IDL compilers, including three sold commercially. The different IDL

compilers are summarized in Table 2.3. The first compiler, Sun’s rpcgen, is in widespread

use. PowerRPC [17] is a new commercial compiler derived from rpcgen. PowerRPC

provides an IDL that is similar to the CORBA IDL; however, PowerRPC’s back end

produces stubs that are compatible with those produced by rpcgen. ORBeline is a CORBA

IDL compiler distributed by Visigenic, implementing the standard mapping for CORBA

onto C++. ILU and MIG represent opposite ends of a spectrum: ILU is a very flexible

compiler that produces slow stubs, whereas MIG is a very rigid compiler that produces

fast stubs.

For the ONC RPC and CORBA IDL-based compilers, we measured the performance

of generated stub functions communicating across three different networks: a 10 Mbps

Ethernet link, a 100 Mbps Ethernet link, and a 640 Mbps Myrinet link [4]. For MIG

interfaces, we measured Mach IPC speeds between separate tasks running on a single

host.6 For each transport and compiler, we measured the costs of three different method

6Our hosts for the network and marshaling tests were two Sun SPARCstation 20/50 machines. Each ran at

Table 2.3. Tested IDL compilers and their attributes. rpcgen, PowerRPC, and ORBeline
are commercial products, while ILU and MIG are well known compilers from research
organizations. The PowerRPC IDL is similar to the CORBA IDL. The target language was
C, except for ORBeline which supports only C++.

Compiler Origin IDL Encoding Transport
rpcgen Sun ONC XDR ONC/TCP
PowerRPC Netbula ˜CORBA XDR ONC/TCP
Flick Utah ONC XDR ONC/TCP

ORBeline Visigenic CORBA IIOP TCP
ILU Xerox PARC CORBA IIOP TCP
Flick Utah CORBA IIOP TCP

MIG CMU MIG Mach 3 Mach 3
Flick Utah ONC Mach 3 Mach 3
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invocations. The first method takes an input array of integers. The second takes an

input array of “rectangle” structures: each structure contains two substructures, and each

substructure holds two integers (i.e., a coordinate value). The third method takes an

input array of variable-size “directory entry” structures: each directory entry contains a

variable-length string followed by a fixed-size, UNIX stat-like structure containing 136

bytes of file information (30 4-byte integers and one 16-byte character array). Although the

size of a directory entry is variable, in our tests we always sent directory entries containing

exactly 256 bytes of encoded data.

These methods were repeatedly invoked in order to measure both marshaling speed

and end-to-end throughput for a variety of message sizes. The first two methods were

invoked to send arrays ranging in size from 64 bytes to 4MB. The third method was

invoked to send arrays ranging in size from 256 bytes to 512KB.

2.4.1 Marshal Throughput

Marshal throughput is a measure of the time required for a stub to encode a message for

transport, independent of other runtime overhead or the time required to actually transmit

the message. To measure marshal throughput, we instrumented the stubs produced by

Flick, rpcgen, PowerRPC, ILU, and ORBeline, and the resultant throughput measurements

are shown in Figure 2.3. The figure shows that Flick-generated marshal code is between

2 and 5 times faster for small messages and between 5 and 17 times faster for large

messages. As expected, Flick-generated stubs process integer arrays more quickly than

structure arrays because Flick performs its memcpy optimization only for arrays of atomic

types. ORBeline stubs use scatter/gather I/O in order to transmit arrays of integers and

thereby avoid conventional marshaling [12]; this is why data for ORBeline’s performance

over integer arrays are missing from Figure 2.3.

50 MHz, had 20K/16K (I/D, 5/4 set-associative) L1 caches, no L2 caches, were rated 77 on the SPECint 92
benchmark, and had measured memory copy/read/write bandwidths of 35/80/62 MBps, although the libc
bcopy gives only 29 MBps. They ran Solaris 2.5.1. One machine had 64 MB DRAM, while the other had 96 MB
DRAM. Our host for the MIG tests was a 100 MHz Pentium with an 8K/8K (I/D 2/2 assoc) L1 cache, a 512 K
direct-mapped L2 cache, both write-back, and 16 MB of DRAM, running CMU Mach 3. It had copy/read/write
bandwidths of 36/62/82 MBps. All memory bandwidth tests were performed using lmbench 1.1 [16], and all
throughput measurements were performed with the operating system socket queue size set to 64K.
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2.4.2 End-to-End Throughput

The gains derived from greater marshal throughput can only be realized to the extent

that the operating system and network between client and server do not limit the possible

end-to-end throughput of the system. To show that improved network performance

will increase the impact of an optimizing IDL compiler, we measured the round-trip

performance of stubs produced by the three compilers supporting ONC transports: rpcgen,

PowerRPC, and Flick, on three different networks. The stubs produced by the three

compilers all have minimal runtime overhead that is not related to marshaling, thus

allowing a fair comparison of end-to-end throughput.7 Figure 2.4 shows that the maximum

end-to-end throughput of all the compilers’ stubs is approximately 6.5–7.5 Mbps when

communicating across a 10 Mbps Ethernet. Flick’s optimizations have relatively little

impact on overall throughput.

Over fast communication links, however, Flick’s optimizations again become very

significant. Figures 2.5 and 2.6 show that for stubs communicating across 100 Mbps

Ethernet and 640 Mbps Myrinet, Flick’s optimizations increase end-to-end throughput by

factors of 2–3 for medium size messages, factors of 3.2 for large Ethernet messages, and

factors of 3.7 for large Myrinet messages. With Flick stubs, both 100 Mbps and 640 Mbps

transports yield significant throughput increases. In contrast, PowerRPC and rpcgen stubs

did not benefit from the faster Myrinet link: their throughput was essentially unchanged

across the two fast networks. This indicates that the bottleneck for PowerRPC and rpcgen

stubs is poor marshaling and unmarshaling behavior.

Measurements show that the principal bottlenecks for Flick stubs are the memory

bandwidth of the SPARC test machines and the operating system’s communication protocol

stack. Flick’s maximum throughput is less than half of the theoretical Ethernet bandwidth

and less than 10% of the theoretical Myrinet bandwidth. These results, however, must be

viewed in terms of the effective bandwidth that is available after memory and operating

system overheads are imposed. As measured by the widely available ttcp benchmark

program, the maximum effective bandwidth of our 100 Mbps Ethernet link is 70 Mbps and

the maximum bandwidth of our Myrinet link is just 84.5 Mbps. These low measurements

are due to the performance limitations imposed by the operating system’s low-level

7Unlike stubs produced by Flick, rpcgen, and PowerRPC, stubs generated by ORBeline and ILU include
function calls to significant runtime layers. These runtime layers perform tasks that are necessary in
certain environments (e.g., multi-thread synchronization) but which are not required for basic client/server
communication.
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protocol layers [12]. Through calculations based on these numbers and measured memory

bandwidth, we have confirmed that the difference between ttcp throughput and the

performance of Flick stubs is entirely due to the functional requirement to marshal and

unmarshal message data—which requires memory-to-memory copying and is thus limited

by memory bandwidth. As operating system limitations are reduced by lighter-weight

transports [6, 7], Flick’s ability to produce optimized marshal code will have an increasingly

large impact.

2.4.3 End-to-End Throughput Compared to MIG

In Figure 2.7 we compare the end-to-end throughput of Flick-generated stubs to

the throughput of stubs generated by MIG, Mach 3’s native IDL compiler. In this
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experiment the stubs transmit arrays of integers; we did not generate stubs to transmit

arrays of structures because MIG cannot express arrays of non-atomic types. MIG

is a highly restrictive IDL compiler, but it is also highly specialized for the Mach 3

message communication facility. The effect of this specialization is that for small messages,

MIG-generated stubs have throughput that is twice that of the corresponding Flick stubs.

However, as the message size increases, Flick-generated stubs do increasingly well against

MIG stubs. Beginning with 8 KB messages, Flick’s stubs increasingly outperform MIG’s

stubs, showing 17% improvement at 64 KB. The results of this experiment demonstrate

the potential for further improvements in Flick and are encouraging because they show

that although Flick is much more flexible and general-purpose than MIG, Flick-generated

stubs can compete against stubs produced by the operating system’s own IDL compiler.

At a current cost for small and moderate sized messages, Flick allows Mach programmers

to use modern IDLs such as CORBA and supports many C language presentations (e.g.,

structures) that MIG cannot offer.

2.5 Related Work
Previous work has shown that flexible, optimizing compilers are required in order to

eliminate the crippling communication overheads that are incurred by many distributed

systems. In a seminal paper in the networking domain, Clark and Tennenhouse [5]

identified data representation conversion as a bottleneck to many communication protocols.

They emphasized the importance of optimizing the presentation layer of a protocol stack

and showed that it often dominates processing time. Recent work by Schmidt et al. [12, 21]

has quantified this problem for rpcgen and two commercial CORBA implementations. On

average, due to inefficiencies at the presentation and transport layers, compiler-generated

stubs achieved only 16–80% of the throughput of hand-coded stubs.

To address these and similar performance issues, several attempts have been made to

improve the code generated by IDL compilers. Mach’s MIG [20] compiler generates fast

code but only by restricting the types that it can handle: essentially just scalars and arrays

of scalars. Hoschka and Huitema [14] studied the trade-offs between (large, fast) compiled

stubs and (small, slow) interpreted stubs and suggested that an optimizing IDL compiler

should use both techniques in order to balance the competing demands of throughput

and stub code size. However, their experimental results appear to apply only to the

extraordinarily expensive type representations used in ASN.1, in which type encoding
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is dynamic even for fundamental scalar types such as integers. Of more relevance to

commonly used representations is the Universal Stub Compiler (USC) work by O’Malley

et al. [19]. USC does an excellent job of optimizing copying based on a user-provided

specification of the byte-level representations of data types. This work is complementary to

ours: as the authors state, USC may be used alone to specify simple conversion functions

(e.g., for network packet headers) or it may be leveraged by a higher-level IDL compiler.

By incorporating USC-style representations for all types, Flick could improve its existing

copy optimizations as outlined in Section 2.3.2.

Recently, Gokhale and Schmidt [13] addressed performance issues by optimizing

SunSoft’s reference implementation of IIOP [26]. The SunSoft IIOP implementation does

not include an IDL compiler but instead relies on an interpreter to marshal and unmarshal

data. The authors optimized the interpreter and thereby increased throughput over an

ATM network by factors of 1.8 to 5 for a range of data types. Their implementation achieved

throughput comparable to that of commercial CORBA systems that utilize compiled stubs,

including ORBeline [11]. However, since Flick-generated stubs typically greatly outperform

stubs produced by ORBeline, Flick must also outperform the best current interpretive

marshalers.

In the area of flexible IDL compilers, the Inter-Language Unification [15] (ILU) system

from Xerox PARC emphasizes support for many target languages, supporting C, C++,

Modula-3, Python, and Common Lisp. However, like most IDL compilers, ILU uses as

its sole intermediate representation a simple AST directly derived from the IDL input

file. ILU does not attempt to do any optimization but merely traverses the AST, emitting

marshal statements for each datum, which are typically (expensive) calls to type-specific

marshaling functions. Each separate backend is essentially a full copy of another with only

the printfs changed. For Flick to do similarly, it would simply emit marshaling code as it

traversed an AOI structure. ILU does support two IDLs—its native, unique IDL and the

CORBA IDL—but only by translating the CORBA language into its own IDL.

Like Flick, the Concert/C distributed programming system [2] quite fully develops the

concept of flexible presentation. In Concert, the primary purpose of this separation is to

handle the vagaries of RPC mapping to different target languages, striving for a “minimal

contract” in order to achieve maximal interoperability between target languages. However,

this separation is not leveraged for optimizations. In earlier work [8, 9] we concentrated

on leveraging Flick’s explicit separation of presentation from interface in order to produce
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application-specialized stubs. We showed that programmer-supplied interface annotations

that coerce the “programmer’s contract” to applications’ needs could provide up to an

order of magnitude speedup in RPC performance.

Finally, several techniques used by Flick are similar or analogous to those in traditional

compilers for general purpose programming languages. In addition, it appears that our

work has many similarities to type-based representation analysis [22] directed to achieving

more efficient “unboxed” data representations whenever possible, and to convert between

such representations.

2.6 Conclusion
This work exploits the fundamental and overdue recognition that interface definition

languages are indeed programming languages, albeit specialized and nontraditional in

their computational content. This insight is the basis for Flick, a novel, modular, and flexible

IDL compiler that approaches stub generation as a programming language translation

problem. This, in turn, allows established optimizing compiler technology to be applied

and extended in domain-specific ways.

Flick exploits many fundamental concepts of modern compiler organization includ-

ing carefully designed intermediate representations, modularized front and back ends

localizing source and target language specifics, and a framework organization that

encourages reuse of software implementing common abstractions and functionality.

Our quantitative experimental results confirm that this approach is indeed effective for

producing high-performance stubs for a wide variety of communication infrastructures.

2.7 Availability
Complete Flick source code and documentation are available at http://www.cs.utah.

edu/projects/flux/flick/.
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CHAPTER 3

STATIC AND DYNAMIC STRUCTURE

IN DESIGN PATTERNS

Design patterns are a valuable mechanism for emphasizing structure, capturing design

expertise, and facilitating restructuring of software systems. Patterns are typically applied

in the context of an object-oriented language and are implemented so that the pattern

participants correspond to object instances that are created and connected at run-time. This

paper describes a complementary realization of design patterns, in which many pattern

participants correspond to statically instantiated and connected components.

Our approach separates the static parts of the software design from the dynamic parts

of the system behavior. This separation makes the software design more amenable to

analysis, thus enabling more effective and domain-specific detection of system design

errors, prediction of run-time behavior, and more effective optimization. This technique is

applicable to imperative, functional, and object-oriented languages: we have extended C,

Scheme, and Java with our component model. In this paper, we illustrate our approach in

the context of the OSKit, a collection of operating system components written in C.

3.1 Introduction
Design patterns allow people to understand computer software in terms of stylized

relationships between program entities: a pattern identifies the roles of the participating

entities, the responsibilities of each participant, and the reasons for the connections

between them. Patterns are valuable during the initial development of a system because

they help software architects outline and plan the static and dynamic structure of software

before that structure is implemented. Documented patterns are useful for subsequent

system maintenance and evolution because they help maintainers understand the software

implementation in terms of well-understood, abstract structuring concepts and goals.

The conventional approach to realizing patterns [13] primarily uses classes and objects

to implement participants and uses inheritance and object references to implement
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relationships between participants. The parts of patterns that are realized by classes

and inheritance correspond to static information about the software—information that can

be essential for understanding, checking, and optimizing a program. Unfortunately, class

structures can disguise the underlying pattern relationships, both by being too specific (to

a particular application of a pattern) and by being mixed with unrelated code. In contrast,

the parts of patterns realized by run-time objects and references are more dynamic and

flexible, but are therefore harder to understand and analyze.

This paper describes a complementary approach to realizing patterns based on sep-

arating the static parts of a pattern from the dynamic parts. The static participants

and relationships in a pattern are realized by component instances and component

interconnections that are set at compile- or link-time, while the dynamic participants continue

to be realized by objects and object references. Expressing static pattern relationships

as component interconnections provides more flexibility than the conventional approach

while also promoting ease of understanding and analysis.

To illustrate the trade-offs between these approaches, consider writing a network

stack consisting of a TCP layer, an IP layer, an Ethernet layer, and so on. The usual

implementation strategy, used in mainstream operating systems, is for the implementation

of each layer to directly refer to the layers above and below except in cases where the

demand for diversity is well understood (e.g., to support different network interface cards).

This approach commits to a particular network stack when the layers are being written,

making it hard to change decisions later (e.g., to add low-level packet filtering in order to

drop denial-of-service packets as early as possible).

An alternate implementation strategy is to implement the stack according to the

Decorator1 pattern with objects: each layer is implemented by an object that invokes

methods in objects directly above and below it. The objects at each layer provide a

common interface (e.g., methods for making and breaking connections, and for sending

and receiving packets), allowing the designer to build a large variety of network stacks. In

fact, stacks can be reconfigured at run-time, but that is more flexibility than most users

require.

Our design and implementation approach offers a middle ground. Having identified

the Decorator pattern and having decided that the network stack may need to be recon-

1Unless otherwise noted, the names of specific patterns refer to those presented in Gamma et al.’s Design
Patterns catalog [13].
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figured, but not at run-time, each decorator would be implemented as a component that

imports an interface for sending and receiving packets and exports the same interface.

The choice of network stack is then statically expressed by connecting a particular set of

components together.

The basis of our approach is to permit system configuration and realization of design

patterns at compile- and link-time (i.e., before software is deployed) rather than at init- and

run-time (i.e., after it is deployed). Components are defined and connected in a language

that is separate from the base language of our software, thus allowing us to separate

“configuration concerns” from the implementation of a system’s parts. A system can be

reconfigured at the level of components, possibly by a nonexpert, and can be analyzed to

check design rules or optimize the overall system. Our approach helps the programmer

identify design trade-offs and strike an appropriate balance between design-time and

run-time flexibility.

The contributions of this paper are as follows:

• We describe an approach to realizing patterns that clearly separates the static

parts of the design from the dynamic parts, making the system more amenable

to optimization and to analyses that detect errors or predict run-time behavior

(Section 3.3).

• We define a systematic method for applying our approach to existing patterns

(Section 3.3.1).

• We show that our approach is applicable to three major programming language

paradigms that support the unit component model: imperative languages, exempli-

fied by C [21]; functional languages, exemplified by Scheme [11]; and object-oriented

languages, exemplified by Java [17] (Sections 3.2 and 3.3). We demonstrate our ap-

proach with two examples from the OSKit [12], a set of operating system components

written in C (Sections 3.3.2 and 3.3.3).

• We evaluate the approach by applying it to each pattern described by Gamma

et al. [13] (Section 3.3.4) and by analyzing its costs and benefits (Section 3.4).

In summary, although the benefits of separating system architecture from component

implementations are well-known, the distinctive features of this paper are that: we show

a general approach that can be applied to many patterns and in multiple language

paradigms; we consider the static-dynamic decision in the context of design patterns; and

we thoroughly evaluate when to apply and when not to apply our approach.
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3.2 The Unit Model
Our approach to realizing patterns is most readily expressed in terms of units [10, 11],

a component definition and linking model in the spirit of the Modula-3 and Mesa [19]

module systems. The unit model emphasizes the notion of components as reusable

architectural elements with well-defined interfaces and dependencies. It fits well with the

definitions of “component” in the literature [22, p. 34] but differs from other component

models that emphasize concerns such as separate compilation and dynamic component

assembly. In the unit model, components are compile- or link-time parts of an assembly:

i.e., software modules, not run-time objects.

Three separate implementations of the unit model exist: Knit [21] for C, Jiazzi [17] for

Java, and MzScheme [11] for Scheme. The implementations differ in details both because

of technical differences in the base languages and because of stylistic differences in the

way the base languages are used. For the purposes of this paper, we focus on the common

features of the three implementations.

3.2.1 Atomic and Compound Units

An atomic unit can be thought of as a module with three parts: (1) a set of imports that

name the dependencies of the unit, i.e., the definitions that the unit requires; (2) a set of

exports that name the definitions that are provided by the unit and made available to other

units; and (3) an implementation, which must include a definition for each export, and

which may use any of the imports as required.

Each import and export is a port with a well-defined interface. An interface has a name

and serves to group related terms, much like an interface or abstract class in an OOP

language. The three implementations of the unit model make different choices about what

makes up an interface. In Knit, an interface refers to sets of related C types, function

prototypes, and variable declarations. In Jiazzi, port interfaces are like Java packages:

they describe partial class hierarchies and the public methods and fields of classes. In

MzScheme, because Scheme uses run-time typing, interfaces are simply lists of function

names.

Definitions that are not exported are inaccessible from outside the unit. The implemen-

tation of a unit is usually stored in a file separate from the unit definition, allowing code

that was not intended for use as a unit to be packaged up as a unit.

Although all implementations of the unit model use a textual language to define units,
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in this paper we use a graphical notation to avoid inessential details and to emphasize

the underlying structure of our systems. The smaller boxes in Figure 3.1 represent atomic

units. The export interfaces are listed at the top of a unit, the import interfaces are listed

at the bottom, and the name of the unit is shown in the center. Consider the topmost

unit, called Draw. It has the ability to load, save, and render images, encapsulating the

main parts of a simple image viewing program. Draw exports (i.e., implements) one port

with interface I Main and imports two ports: one with interface I Widget and a second with

interface I File.

Units are instantiated and interconnected in compound units. Like atomic units,

compound units have a set of imports and a set of exports that define connection points to

other units. The implementation of a compound unit consists of a set of unit instances

and a set of explicit interconnections between ports on these instances and the imports

and exports of the compound unit. The result of composing units is a new unit, which is

available for further linking.

Figure 3.1 as a whole represents a compound unit composed of three other units. In

this figure, an instance of Draw is composed with an instance of Win32 Widgets and an

I_Win32

I_Main

I_File

I_Win32

I_Main

Draw

I_Widget I_File

I_Widget

Win32 Widgets

I_Win32

Win32 Files

Figure 3.1. Atomic and compound units
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instance of Win32 Files. Within a compound unit, connections are defined explicitly: this is

necessary when there is more that one way to connect the units. Although not shown in

this example, a system designer may freely create multiple unit instances from a single

unit definition (e.g., two instances of Draw).

3.2.2 Exploiting Static Configuration
One of the key properties of programming with the unit component model is that

component instantiation and interconnection are performed when the program is built

instead of when the program is executed. This allows implementations of the unit model

to make use of additional resources that may be available at compile- and link-time:

powerful analysis and optimization techniques; in the case of embedded systems, orders

of magnitude more cycles and memory with which to perform analyses; test cases, test

scaffolding, and debugging builds; and finally, freedom from real-world constraints such

as real-time deadlines. All three unit implementations check the component composition

for type errors. Knit, which implements units for C, provides additional features that

exploit the static nature of unit compositions.

3.2.2.1 Constraint Checking
Even if every link in a unit composition is “correct” according to local constraints such

as type safety, the system as a whole may be incorrect because it does not meet global

constraints. For example, [21] describes a design constraint used by operating system

designers: “bottom-half code,” executed by interrupt handlers, must not invoke “top-half

code” that executes in the context of a particular process. The reason is that while top-half

code typically blocks when a resource is temporarily unavailable, storing its state in the

process’s stack, an interrupt handler lacks a process context and therefore must not block.

The problem with enforcing this constraint is that units containing bottom-half code (e.g.,

device drivers) may invoke code from other units that, transitively, invokes a top-half

unit. Keeping track of such conditions is difficult, especially when working with low-level

systems code that is highly interconnected and not strictly layered. To address this problem,

Knit unit definitions can include constraint annotations that describe the properties of

imports and exports. Constraints can be declared explicitly (e.g., that imported functions

are invoked by bottom-half code) or by description (e.g., that the import properties are set

by the exports). At system build-time, Knit propagates unit properties in order to ensure

that all constraints are satisfied.
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3.2.2.2 Cross-Component Inlining

When source is available, Knit inlines function definitions across component boundaries

with the help of the C compiler. By eliminating most of the overhead associated with

componentization, Knit reduces the need to choose between a clean design and a fast

implementation.

3.2.3 Using Units Without Language Support

The unit model makes it possible for a software architect to design a system from

components, describe local and global relationships between components, and reuse

components both within and across system designs. These are the features that make

it useful to develop and apply units for expressing design patterns. In particular, our

unit-based approach to realizing patterns relies on these features of the unit model:

• Programming to interfaces. The only connections between components are through

well-typed interfaces.

• Configurable intercomponent connections. Unit imports describe the “shapes” but

not the providers of required services. A system architect links unit instances as

part of a system definition, not as part of a component’s base (e.g., C or Java)

implementation.

• Static component instantiation and interconnection. Units are instantiated and

linked when the system is built, not when the system is run.

• Multiple instantiation. A single unit definition can be used to create multiple unit

instances, each of which has a unique identity at system build-time. Each instance

can be linked differently.

It is possible to make use of features of the unit component model without support

from languages such as Knit, Jiazzi, and MzScheme. However, without support, some

benefits of the model may be lost. For instance, a C++ programmer might use template

classes to describe units: this can provide optimization benefits but does not help the

system designer check constraints of the sort described previously. A C programmer might

use the C preprocessor to achieve similar results. In sum, although unit tools can provide

important benefits, people who cannot or decide not to use our unit description languages

can nevertheless take advantage of our general approach to realizing design patterns.
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3.3 Expressing Patterns with Units
The essence of a design pattern is the set of participants in the pattern and the relation-

ships between those participants. As outlined previously, the conventional approaches to

describing and realizing patterns are based on the idioms of object-oriented programming.

At design-time, the participants in the pattern correspond to classes. At run-time, the

pattern is realized by object instances that are created, initialized, and connected by explicit

statements in the program code. This style of implementation allows for a great deal of

run-time flexibility, but in some cases it can disguise information about the static properties

of a system—information that can be used to check, reason about, or optimize the overall

system.

The key idea of this paper is that it is both possible and fruitful to separate static

knowledge about a pattern application from dynamic knowledge. In particular, we believe

that static information should be “lifted out” of the ordinary source code of the system,

and should be represented at the level of unit definitions and connections. The unit model

allows a system architect to describe the static properties of a system in a clear manner,

and to separate “configuration concerns” from the implementations of the system’s parts.

Consider, for example, an application of the Decorator pattern: this pattern allows a

designer to add additional responsibilities to an entity (e.g., component or object) in a

way that is transparent to the clients of that entity. One might apply Decorator to protect a

non-thread-safe singleton component with a mutual exclusion wrapper (which acquires a

lock on entering a component and releases the lock on exit) when using the component

in a multithreaded environment. In an object-oriented setting, this pattern would often

be realized by defining three classes: one abstract class to define the component interface,

and two derived classes corresponding to the concrete component and decorator. At

init-time, the program would create instances of each concrete class and establish the

appropriate object connections. While workable, this implementation of the pattern can

disguise valuable information about the static properties of this system. First, it hides the

fact that there will be only one instance each of the component and decorator. Second and

more important, it hides the design constraint that the base component must be accessed

only through the decorator: because the realization of the pattern doesn’t enforce the

constraint, future changes to the program may violate the rule.

To overcome these problems, we would realize the Decorator pattern at the level of

units, as illustrated in Figure 3.2(a). We create one unit definition to encapsulate the base
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Figure 3.2. Units realizing Decorator patterns
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component definition; by instantiating this definition exactly once, we make it clear that

there will be only one instance in the final program. Furthermore, we annotate the unit

definition with the constraint that the implementation is non-thread-safe. We then create

a separate unit definition to encapsulate our decorator, and include in the definition a

specification that it imports a non-thread-safe interface and exports a thread-safe one.

The resulting structure in Figure 3.2(a) makes it clear that there is one instance of each

participant and that there is no access to the base component except through the decorator.

Units make the static structure of the system clear, and unit compositions can be checked by

tools to enforce design constraints. Of course, unit definitions are reusable between systems

(and within a single system): we can include the decorator instances only as needed. If

we desire greater reuse, we can apply the Strategy pattern to our decorator to separate its

wrapping and locking aspects as shown in Figure 3.2(b). This structure provides greater

flexibility while still allowing for cross-component reasoning and optimization when the

strategy is statically known.

In sum, our approach to realizing patterns promotes the benefits of static knowledge

within patterns by moving such information to the level of units. The unit model allows

us to describe and separate the static and dynamic properties of a particular pattern

application, thus making it possible for us to exploit the features described in Section 3.2.2.

In the sections below we define a method for applying our approach, demonstrate the

method in detail on a small example, demonstrate the effect of our method on a large

example, and consider how the method applies to each of the patterns in Gamma et al.’s

Design Patterns catalog [13].

3.3.1 A Method for Expressing Patterns with Units

In realizing a pattern via units, the software architect’s task is to identify the parts of the

pattern that correspond to static (compile-time or link-time) knowledge about the pattern

and its participants, to “lift” that knowledge out of the implementation code, and then

to translate that knowledge into parts of unit definitions and connections. This process

is necessarily specific to individual uses of a pattern: each time a pattern is applied, the

situation dictates whether certain parts of the pattern correspond to static or dynamic

knowledge. In our experience, however, we have found that many patterns are commonly

applied in situations that provide significant amounts of static information, and which

therefore allow system architects to exploit the features of the unit model.
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We have found the following general procedure to be useful in analyzing the application

of a pattern and translating that pattern into unit definitions, instances, and linkages.

Because patterns are ordinarily described in terms of object-oriented structures (classes,

interfaces, and inheritance), we describe our method as a translation from object-oriented

concepts to parts of the unit model.

1. Identify the abstract classes/interfaces. Many pattern descriptions contain one or

more participating abstract classes that serve to define a common interface for a set of

derived classes. The abstract classes therefore serve the same purpose as interfaces in

the unit model; the three implementations of the model all allow related operations (and

types, if needed) to be grouped together in named interfaces. In Figure 3.2(a), for example,

I Component corresponds to the abstract component class described in the Decorator pattern.

The exact translation from abstract class to unit interface depends on whether or not

the derived classes are “static participants” in the application of the pattern at hand, as

described next.

2. Identify the “static” and “dynamic” participants within the pattern. Within the

context of a pattern, it is often the case that some pattern participants will be realized by

a small and statically known number of instances. For example, in uses of the Abstract

Factory pattern (see Section 3.3.2), there will often be exactly one Concrete Factory instance

in the final system (within the scope of the pattern). The number of instances does not

need to be exactly one: what is important is that the number of instances, their classes,

and the inter-instance references are all known statically.

We refer to these kinds of participants as static participants, and in the steps below, we

realize each of these participants as an individual unit instance—essentially, realizing

the participant as a part of our static architecture, rather than as a run-time object. In

Figure 3.2(a), the context of our example says that in this particular use of Decorator, both

the base component and its decorator are singletons. Thus, they are static participants.

If a pattern participant is not static we refer to it as a dynamic participant. In this case, we

will translate the participant as a unit that will encapsulate the participant class and will

be able to produce instances at run-time. Figure 3.2(a) has no dynamic participants; later

examples will show their use.

3. Define the interfaces for static participants. Following the class hierarchy of the

pattern, the software architect defines the unit interfaces to group the operations that will

be provided by the static participants. The architect may choose to create one interface
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per class (i.e., one interface for the new operations provided at each level of the class

inheritance hierarchy), or may group the operations at a finer granularity.

Because each instance of a static participant will be implemented by a unique unit

instance in the realization of the pattern, the identity of each instance is part of the static

system architecture and need not be represented by an object at run-time. Therefore, in

the translation from class to unit interface, the methods that constitute the interface to a

static participant can be translated as ordinary functions (or as class static methods, in the

case of Jiazzi), and data members can be translated as ordinary variables (static members).

Any method arguments that represent references to static participants can be dropped

from the translated function signatures: these arguments will be replaced by imports to

the unit instances (i.e., explicit, unit-level connections between the static participants).

Thus, in the running example of Figure 3.2(a), the operations in I Component can be

implemented by ordinary functions. Because all of our participants are static, we do not

need to represent them as run-time objects.

4. Define the interfaces for dynamic participants. Following the class hierarchy of

the pattern, the designer now creates the interfaces for the dynamic participants. As

described for the previous step, the designer may choose to create one or several interface

definitions per class.

Unlike the static case, each instance of a dynamic participant must be represented by a

run-time object (or other entity in a non-OOP language). This means that in translating

the participant class to unit interfaces, the designer must include the definition of the

type of the run-time objects, as the implementation language requires. With Jiazzi, this is

straightforward: Jiazzi unit interfaces contain Java class definitions. In Knit, the interface

would include a C type name along with a set of functions, each of which takes an instance

of that type as an argument (i.e., the “self” parameter). MzScheme is the simplest: because

Scheme uses run-time typing, the unit interface does not need to include the type of the

dynamic pattern participants at all.2

Although the interfaces for a dynamic participant must include the class of the partici-

pant objects, the unit model allows the designer to avoid hard-coding class inheritance

knowledge into the interfaces. By writing our units so that they import the superclasses

of each exported class, we can implement our dynamic participant classes in a manner

2If the pattern structure relies on implementation inheritance, dynamic method dispatch, or other essentially
OOP features, these capabilities must be emulated when translating the pattern to Knit or MzScheme units.
In our experience, this is sometimes tedious but generally not too difficult.
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corresponding to mixins [8, 17]. In other words, we can represent the static inheritance

relationships between pattern participants not in the definitions of our units or in the unit

interfaces, but in the connections between units.

5. Create a unit definition for each concrete (static or dynamic) participant. With

the interfaces now defined, the designer can write the definitions of the units for each

participant. The unit definition for a dynamic participant encapsulates the class of the

dynamic instances; normally, in the context of a single pattern, these kinds of units

will be instantiated once. The unit definition for a static participant, on the other hand,

encapsulates a single instance of the participant. The unit definition for a static participant

may be instantiated as many times as needed, each time with a possibly different set of

imports, to create all of the needed static participant instances. In either case, the exports

of a unit correspond to the services that the participant provides. The imports of a unit

correspond to the connections described in the pattern; the imports of each unit instance

will be connected to the exports of other unit instances that represent the other (static and

dynamic) participants.

Continuing the example of Figure 3.2(a), the software designer writes definitions for the

Component and Decorator units, each encapsulating a single instance of the corresponding

participant. The base component has an I Component export, while the Decorator both

imports and exports that interface.

6. Within a compound unit definition, instantiate and connect the participant units.

Within a compound unit, the designer describes the instantiation of the pattern as a whole.

The implementation of the compound unit specifies how the participant units are to be

instantiated and connected to one another. The connections between units follow naturally

from the structure of the pattern and its application in the current context. In addition,

one must import services that are required by the encapsulated participants.

The above considers just one pattern applied before any code is written. In practice,

participants have roles in multiple patterns and patterns are applied during code evolution.

These considerations necessitate changes such as omitting the enclosing compound unit,

moving some participants outside the compound unit, or choosing to treat a static

participant as dynamic (or vice versa) to avoid extensive changes to the implementations

of the participants. The system designer may want to make additional changes, such as

aggregating groups of interfaces into single interfaces, to reduce the complexity of the unit

descriptions.



65

3.3.2 Example: Managing Block Devices

We illustrate our approach in the context of a concrete system. The OSKit [12] is a

collection of components for building operating systems and standalone systems. The

components are almost all written in C, with a few in assembly code. Although the

OSKit includes a number of small and modest-sized “from-scratch” components, such

as memory and thread management, the majority of its code is taken from elsewhere,

including FreeBSD, NetBSD, Linux, and the Mach research operating system. The OSKit

consists of over 1,000,000 lines of code, most of which is being independently maintained

by the developers of the “donor” systems. At this time, about 40% of the OSKit has been

explicitly converted to Knit units. Although the OSKit is written in C, some parts are

distinctly object-oriented: a lightweight subset of Microsoft’s COM is used in a number of

places. The OSKit has been used to build large systems such as operating system kernels

and file servers, to implement advanced languages directly on the hardware, and for

smaller projects such as embedded systems and bootloaders.

As an initial example, consider the problem of managing block I/O device drivers,

which provide low-level access to block-oriented storage media such as disks and tapes.

An operating system is generally configured at build-time to include one device driver

for each kind of supported block device: e.g., IDE disk, SCSI disk, and floppy disk drive.

At run-time, the operating system queries each driver for information (e.g., the type and

capabilities of the driver): the driver discovers the physical devices that it manages, and at

the request of the OS, creates run-time objects to represent each of these devices. To make

it easy to configure OSKit-based systems with different sets of block device drivers, we

apply the Abstract Factory pattern as illustrated in Figure 3.3. In OOP terms, we define a

common abstract class (BlockDevice) to be supported by all block devices, and we define

abstract classes (BlkIO and DriverInfo) for the products that each driver may produce. The

actual drivers and products map to concrete classes as shown.

Having identified the pattern at hand, we can now apply the steps of our method to

translate the pattern structure into appropriate unit definitions. First (step 1) we identify

the abstract classes: clearly, these are BlockDevice, BlkIO, and DriverInfo. Next (step 2):

because each device driver can manage multiple physical devices, we need at most one

instance of each driver in any system we might build. (We need zero or one, depending

on whether or not we choose to support a particular kind of device.) Thus, each of our

concrete factories is a static participant. In contrast, since we do not know the number of
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physical devices that will be present at run-time, each concrete product class is a dynamic

participant.

We now define the interfaces for our static participants (step 3). The interface to each

concrete factory class is defined by the abstract BlockDevice class: we therefore define

a corresponding I BlockDevice interface. As described in Section 3.3.1, we translate the

BlockDevice methods into ordinary C functions, because we do not need to represent our

static participants as run-time objects.

In defining the interfaces for our dynamic participants (step 4), we need to translate the

participant’s methods in a way that allows us to identify instances at run-time. Because

we are using Knit, we translate the BlkIO and DriverInfo classes into unit port interfaces that

include C types for the products. In addition, each product method becomes a C function

that takes a run-time instance.

Next (step 5) we create the unit definitions for each of our concrete participants. This

is a straightforward mapping from the pattern structure: the exports of each unit are

determined by the provided interfaces (i.e., the participants’ classes), and the imports are

determined by the connections in the pattern structure.

Finally, we create a compound unit in which we instantiate the units that we need, and

connect those instances according to the pattern (step 6). For example, to create a system

with just IDE support, we would define the unit instances and links shown in Figure 3.4.

The unit definitions that we created in steps 1–5 are reusable for many systems, but the

structure of the final unit composition in step 6 is often specific to a particular system

configuration.

Our method describes the process of creating appropriate unit definitions, but it

does not address the problem of unit implementation: i.e., the source code. We have

found, however, that appropriate implementation is often straightforward. In the example

above, the OSKit units are implemented by existing OS device drivers with little or no

modification. Most changes, if needed at all, can be implemented by Adapter units that

wrap the existing code. Furthermore, the device-specific code can be isolated in the units

that define our products. This means that we can write one unit definition for our factory

instead of one each for IDE, SCSI, and Floppy. Each instance of this factory imports the

units that define a related family of products. Knit’s constraint system can be used to

statically ensure that the system designer does not accidentally connect a mismatched set

of products.
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I_BlockDevice

IDE DriverInfoIDE BlkIO

Client

I_BlockDevice

I_BlockDevice

IDE

I_BlkIO I_DriverInfo

I_DriverInfoI_BlkIO

Figure 3.4. Result of applying our method to Figure 3.3
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3.3.3 Example: OSKit Filesystems

Having illustrated the method in detail in the previous section, we now show the

result of applying the method to a more complex example. Figure 3.5 shows one possible

configuration of a filesystem in the OSKit. The primary parts of the system are: Main, an

application that reads and writes files; FS Namespace, which implements filepaths (like

/usr/bin/latex) on top of the more primitive file and directory abstraction; Ext2FS, a

filesystem from the Linux kernel distribution; and Linux IDE, a Linux device driver for IDE

disks. The other units in the system connect these primary parts according to the Abstract

Factory, Adapter, Decorator, Strategy, Command, and Singleton patterns. All participants

in these patterns are currently implemented as described with one exception (Command)

described below.

3.3.3.1 Abstract Factory

Figure 3.5 contains two abstract factories: the Linux IDE and OSEnv/x86 units. (In

both cases, only the enclosing compound unit is shown.) The OSKit defines an interface

(called the “OS Environment Interface”) for all components to use when manipulating

interrupts, setting timers, allocating memory, and so on. This interface abstracts the more

obtrusive details of the underlying platform. In Figure 3.5, this interface is implemented

by OSEnv/x86 for the Intel x86 hardware but we could have chosen OSEnv/StrongARM for

the StrongARM architecture or OSEnv/Linux to run as a user-mode Linux program. (The

latter choice would necessitate a different choice of device driver.) It is appropriate to fix

on a particular platform at this stage because moving to another would require the system

to be rebuilt.

3.3.3.2 Adapter

The hybrid nature of the OSKit gives rise to many adapters. The OSEnv→Linux adapter

implements Linux internal interfaces in terms of the OSKit-standard I OSEnv, allowing us

to include Linux-derived units in the system. The LinuxFS→FS and Linux→BlkDev adapters

implement standard OSKit interfaces for filesystems and block devices using the internal

Linux interfaces for these things. Being able to use Linux-derived units is extremely useful

for OSKit systems: instead of writing and maintaining new filesystems and device drivers,

the OSKit exploits the hard work of the Linux community. The OSKit uses this approach

to provide 30 Ethernet drivers, 23 SCSI drivers, and 11 filesystems.
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Figure 3.5. A possible configuration of an OSKit filesystem
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An interesting part of the LinuxFS→FS and Linux→BlkDev adapters is that they have

both static and dynamic aspects. The static aspect adapts the static interfaces of the

participants: those used for initialization, finalization, and mounting a filesystem on a disk

partition. The dynamic aspect adapts the interfaces of dynamic participants, wrapping

Linux block device objects as OSKit block device objects, Linux filesystem objects as OSKit

filesystem objects, and Linux file and directory objects as their OSKit equivalents. This

illustrates how our approach complements the conventional approach: our units make it

apparent which decisions are static (e.g., the decision to use Linux components with OSKit

components) and which are dynamic (e.g., how many files will be opened, which files will

be opened).

3.3.3.3 Decorator

If this is a multithreaded system, we must take care to acquire and release locks when

accessing the filesystem and device driver objects. The decorators Lock Filesys and Lock

BlockDevice acquire locks when entering the decorated objects and release locks when

leaving.

It would be a serious error to omit one of these lock decorators (leading to race

conditions) or to insert it in the wrong place (leading to deadlock), so we use the constraint

system to check that they are placed correctly. This may seem like overkill in such a simple

configuration, but the reader will appreciate that this is just one of many rules that must

be enforced and that we have omitted many units that would appear in a complete system.

The complete system—including units for bootstrapping, console I/O, memory allocation,

threads and locks, etc.—consists of over 100 unit instances.

3.3.3.4 Strategy

Disk drivers can optimize disk operations by coalescing reads and writes on adjacent

blocks and can optimize disk seeks by reordering read and write requests. The series of

actual requests issued to the disk is determined by a strategy unit. In Figure 3.5, we have

selected the Simple Disk Strategy unit (which queues requests in the order they are issued)

but we could have chosen a strategy that coalesces disk operations or reorders requests

using an elevator algorithm. (The elevator strategy is not yet implemented.)
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3.3.3.5 Command
The Simple Disk Strategy unit manipulates a list of outstanding requests, and these

requests are parts of a Command pattern. The participants in this pattern are currently

integrated within the implementation of the Simple Disk Strategy unit, but could be separated

as shown in Figure 3.5 into a separate unit Encode BlockOp which provides a separate

function for each kind of request (e.g., read or write). This unit would construct request

objects and pass them to Simple Disk Strategy, which would process the requests.

3.3.3.6 Singleton
In this system, we made a design decision to have a single device and a single filesystem

instance. One could imagine using a device driver implementation that supports just one

instance of that device type or a filesystem implementation that supports just one instance

of that filesystem type. But this is not what Linux components do. Most Linux device

drivers and filesystems are written to support multiple instances of a device or filesystem.

To overcome this mismatch, we use the BlkDev Instance and FS Instance units that each

create and manage a single instance of the corresponding dynamic objects. These units are

effectively adapters, making dynamic pattern participants appear as if they were static. This

mismatch is common in reuse and maintenance scenarios: the cost of making changes influ-

ences the choice of design. Our approach to patterns addresses such real-world concerns.

3.3.4 Discussion
The previous sections demonstrate our approach to utilizing design patterns in the

context of two example systems. In both examples we had a mix of static and dynamic

participants: the static participants were realized by unit instances corresponding to “object

instances” while the remaining dynamic participants were realized by units that create the

pattern participant objects at run-time. In both examples we were able to lift a great deal

of static knowledge to the unit level, but the exact amount depended on the patterns and

their application to the particular design problems at hand.

In general, the static and dynamic parts of many patterns will vary from situation to

situation. However, in common use, most pattern structures contain many participants and

connections that are in fact static: these parts can be fruitfully lifted out of the participants’

source implementations and then managed at the level of units. To test this claim, we

analyzed the structures of all of the patterns described in Gamma et al.’s Design Patterns

catalog [13]. For each, we considered common uses of the pattern in component-based
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systems software such as that built with the OSKit. We then applied our method to

translate the pattern structures into appropriate units and unit parts.

Table 3.1 summarizes the results of our analysis. Each row of the table shows the

translation of the participants within a single pattern. Overall, the table shows that most

participants frequently correspond to static, design-time information and are therefore

realizable within our unit model as design-time entities. (These are the columns under

the “Design-Time/Static Participants” heading.) Abstract classes map naturally to unit

interfaces. Participants that are singletons within the context of a pattern map naturally to

unit instances that implement these participants. In some cases, a participant both defines

an interface and represents a concrete instance, as indicated in the table. For example, in

the Facade pattern, the Facade entity has both interface and implementation roles. In some

cases, the designer may choose to implement a particular participant in more than one

way: for instance, the designer may choose to implement a Client participant as a unit

instance, or as a set of ports that allow the client to be connected at a later stage of the

overall design. In other cases, the appropriate implementation of one participant depends

on the characteristics of another: in the Decorator pattern, for example, the appropriate

realizations of Decorator and Concrete Decorator differ according to the “singleton-ness” of

the Concrete Component. Where the common translation or use varies, we have indicated

this with italics, and we list the participant in multiple categories.

Because the OSKit is such a large body of code, largely derived from systems not

explicitly organized around patterns, it is difficult to identify all uses of a particular

pattern and so it is hard to determine the ratio of static uses to dynamic uses. With

that caveat, we have found static instances of all three categories of patterns (creational,

structural, and behavioral) in OSKit-based systems, but most examples are either creational

or structural. Our admittedly incomplete study failed to find static examples of some

patterns including Flyweight, Chain of Responsibility, and Visitor.

In summary, Table 3.1 shows that our approach to realizing patterns is applicable to

many patterns: most have common applications in which many or all of the participants

represent static system design knowledge that can be utilized by tools for design rule

checking, code generation, and system optimization. This applies even when a participant

is dynamic and is realized by a unit that produces objects at run-time. In these cases,

we can use the unit model to define our run-time classes/types in terms of mixins, thus

increasing the potential reuse of our unit definitions and implementations.
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3.4 Analysis
The key feature of our approach is that we express static pattern relationships in

a component configuration language instead of expressing those relationships in the

component implementation language. In this section, we detail the benefits and costs

of this separation of concerns.

3.4.1 Benefits of Our Approach
Our technique for realizing patterns has three main consequences. First, because

static pattern information is located in single place (our compound units) and because

component interconnections are fully resolved at build-time, it is possible for tools to

perform a more thorough analysis of the software architecture than in the conventional

approach to realizing patterns. Second, because the unit language has a single purpose—to

express components, their instantiations, and their interconnections—it is possible to

provide features in the language that make this task easier. Third, because the task

of pattern composition is moved out of the implementations of the participants, those

implementations can be simpler and are less likely to be hard-wired to function only in

fixed pattern roles. These three consequences lead to benefits in the areas of error detection,

performance, and ease of understanding and reuse, which we explore in the following

sections.

3.4.1.1 Checking Architectural Constraints
In the conventional approach to realizing design patterns, it can be difficult to enforce

static system design constraints: the rules are encoded “implicitly” in the implementation,

making them difficult for people to find and for tools to enforce in the face of future

system evolution. Our approach to realizing patterns has the following advantages over

the conventional method.

The constraint checker detects global, high-level errors. The constraint checker within the

Knit unit compiler can detect “global” errors that involve many parts of a system, whereas

a conventional language type system is restricted to detecting relatively local errors. Such

global constraints often deal with high-level system composition issues—e.g., ensuring

that domain-specific properties hold across many interconnected components—whereas

conventional type systems and tools are restricted to detecting relatively low-level and

general types of errors such as uncaught exceptions [1], dereferenced null pointers [7], and

race conditions [9].
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Constraints express domain-specific design rules. A software architect is often interested

in detecting domain-specific errors. For example, recent versions of RTLinux [24] permit

normal (user-level) application code to be called from a hard real-time kernel. Without

going into detail, an essential requirement of such applications is that they never invoke a

system call while running in real-time mode. We have used Knit’s constraint system to

check this constraint for RTLinux applications: i.e., to verify, at compile-time, that there

are no paths from an application’s real-time signal handler into the Linux kernel.

Design errors are separated from implementation errors. In particular, this reduces the level

of expertise required in order to use (or reuse) a component correctly, inside or outside of

a pattern.

The constraint checker need not deal with the base implementation language. Our constraint

checker deals only with the unit specification language, not with the source code of

the components. Because the unit language is simple, the constraint checker is simple

and precise. Further, it would be easy to extend with more powerful and perhaps more

pattern-specific reasoning methods in the future. In contrast, to detect design errors in a

conventionally realized design pattern, a tool would need to deal with all the complexities

of the base implementation language: loops, recursion, exceptions, typecasts, virtual

functions, pointers, and so on. Such a tool is therefore difficult to create—greatly raising

the barrier to developing domain-specific analyses—and is often imprecise.

Many architecture description languages can provide the advantages described above:

like our tools, they achieve this by separating the description of the architecture from

the implementation of the components, and by being domain-specific instead of general-

purpose. Bringing these features to bear on the realization of design patterns is one of the

strengths of our tools and approach.

3.4.1.2 Performance Optimization

Another strength of our approach is that static pattern knowledge is readily available

for system optimization. The conventional approach to realizing patterns uses language

features that introduce indirections to achieve greater flexibility. These indirections—prin-

cipally indirect function calls—impose a performance penalty that can often be avoided in

our approach.

Static implementation enables many optimizations. When component instances are con-

nected statically, indirect function calls are often turned into direct calls. This affords
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the compiler the opportunity to inline function calls, thus eliminating overhead and

exposing additional and often more significant opportunities for optimization, especially

those that specialize a function for a particular context. In addition, highly optimizing

compilers, or compilers aided by a source transformation that Knit can perform, are able

to inline functions across module boundaries. In previous work [21], we used Knit to

implement a network router made of very small components. (Each packet traversed 10–20

components while being forwarded.) Applying cross-component inlining eliminated the

cost of many function calls but, more significantly, enabled the C compiler to apply all of

its intra-procedural optimizations. The overall effect of this optimization was to reduce the

execution time of the routing components by 35%.

Static implementation makes performance less sensitive to code changes. To eliminate virtual

function calls, a compiler requires a global (or near global) analysis of the program being

optimized. These analyses are necessarily affected by subtle features of how the program is

expressed: a consequence is that any change to that program could potentially change the

analysis result and therefore change whether or not the optimization can be applied. In a

performance-sensitive situation (e.g., in real-time code), loss of an optimization may affect

program correctness. By making static knowledge explicit, our approach to patterns helps

to reduce the complexity of the resulting system, thus promoting compile-time analysis

and making “global” performance less sensitive to local code changes.

3.4.1.3 Ease of Understanding and Code Reuse

In the conventional approach to realizing design patterns, one takes into account the

role of each participant when implementing the participant—or, if the pattern is applied

after implementation, one modifies the participant to reflect their roles in the pattern. In

our approach, because units do not contain direct references to other participants, units

often need no modification in order to be used in a particular role in a pattern. Avoiding

even small changes to the participants leads to significant benefits.

The approach is usable when code cannot be changed. The implementation of a participant

may be unchangeable if the code has multiple users with different needs, if the source

code is not available, or if the code is being actively maintained by a separate organization.

For instance, the developers of the OSKit cannot practically afford to change the Linux

components that they incorporate: they must deal with the code as it is written.

A participant can be used in multiple patterns. Separating a participant’s role from its
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implementation is beneficial when the implementation can be “reused” to serve in many

different roles, perhaps concurrently in several different patterns. The unit model allows a

programmer to separate a participant’s primary implementation from any code needed to

adapt that implementation to a particular pattern role: by creating a unit composition, a

programmer can “weave” code at the imports and exports of a participant unit instance.

Code is not obfuscated with indirections. The conventional realization of a design pattern

often achieves flexibility by introducing additional levels of indirection that are apparent in

the implementations of the participants. This indirection can obscure the primary purpose

of the code. For example, before applying the unit model to the OSKit, we relied on objects,

factories, and registries to enable reconfiguration. Over time, much OSKit code came to

look like the following:

clientos = registry->lookup(registry, clios_iid);

fsn = clientos->create_fsnamespace(filesys);

file = fsn->lookup_path("/usr/bin/latex");

The code was often further complicated to deal with run-time errors. In any particular

system, however, the values of clientos and fsn were fixed in the system configuration,

and knowable at compile-time. After applying our approach, such code could often be

simplified to just:

file = lookup_path("/usr/bin/latex");

making it clear that the selection of lookup_path’s implementation is a static, not dynamic,

system property.

3.4.2 Costs of Our Approach

Our approach to realizing design patterns is not appropriate for all situations and

design problems. The following paragraphs summarize the costs and potential problems

of our approach.

Our approach only specifies the static parts of patterns. The main goal of our approach is to

use an external component language to specify the static aspects of system architecture.

It is inappropriate (and often infeasible) to use our approach to specify fundamentally

dynamic elements of software architecture.

Our approach commits code to being static or dynamic. One can imagine that having

carefully used our approach (with its emphasis on static participants and relationships) to
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realize a pattern, a change of requirements might turn a relationship from static to dynamic,

requiring that the pattern be re-implemented using the conventional object-oriented

approach (with its emphasis on dynamic participants and relationships). This is a problem:

while it is easy to use a dynamic system in a static situation, it is not so easy to use a

static system in a dynamic way. Therefore, when using our approach, one should design

systems in such a way that expected changes in the system requirements are unlikely to

require changing the static and dynamic natures of pattern participants—but we recognize

that this is not always possible. An automated implementation of our approach (perhaps

based on partial evaluation [6]) could partly solve this problem by transforming dynamic

code into static code, although this would not promote the benefit of easier writing and

understanding of code through eliminated indirections.

Our approach requires support for the unit component model. To fully benefit from our

approach, one needs language support in the form of an advanced module or component

system and, ideally, a constraint checking system. This implies several costs: one must

switch to using new tools, learn the component definition and linking language, learn to

use the constraint checking language, and convert existing codebases to use the component

language. This can be a significant undertaking. As described in Section 3.2, however, it is

possible to use existing tools and techniques to achieve some (but not all) of the benefits of

the unit component model.

Our approach can obscure the differences between patterns. When one looks at the unit

diagrams of participants and relationships, it is clear that sometimes, different patterns

look the same when realized in our approach. However, this observation is also true of the

conventional approach to patterns: many patterns are realized in similar ways but differ

significantly in their purpose.

3.5 Related Work
Gamma et al.’s Design Patterns book [13] triggered a flurry of papers on implementing

patterns in object-oriented languages. Here, we consider representatives of particular styles

of implementation. Bosch [3] describes a language LayOM for constructing C++ classes by

adding a number of layers to a simple class. By using layers corresponding to particular

patterns, Bosch solves the traceability problem—that it is hard to find and identify patterns

in one’s code—and enables pattern implementations to be reused. However, because the

layers form part of the class description, the role of each pattern participant is hardwired
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and the participants cannot be used in other patterns without being modified. Bosch makes

no mention of static analysis, detecting design errors, or optimization. Marcos et al. [16]

describe an approach that is closer to ours: the code that implements participants is clearly

separated from the code that defines their roles in patterns. The difference is that their

approach is based on run-time reflection within a metaprogramming system (CLOS), and

so they do not support static analysis or optimization. Tatsubori and Chiba [23] describe

a similar approach to that of Marcos et al., except that it uses OpenJava’s compile-time

metaprogramming features. Like Marcos et al., they separate roles from participants and,

because they use compile-time metaprogramming, it should be possible to perform static

analysis. However, OpenJava does not provide anything like Knit’s unit constraint system.

Krishnamurthi et al. [15] describe an approach to pattern implementation based on

McMicMac, an advanced macro system for Scheme. Their approach is like that of Tatsubori

and Chiba: patterns are expanded statically (enabling optimization) and the application

of patterns is not separated from the definitions of the participants. Unlike OpenJava,

McMicMac provides source-correlation and expansion-tracking facilities that allow errors

to be reported in terms of the code that users wrote instead of its expansion, but there is

no overall framework for detecting global design errors.

Baumgartner et al. [2] discuss the influence of language features on the implementation

of design patterns. Like us, they note that Gamma et al.’s pattern descriptions [13] would

be very different in a language that directly supports abstract interfaces and a module

mechanism separate from class hierarchies. Baumgartner also lists a number of other

useful features including mixins and multimethods. MultiJava [5] adds some of these

features to Java, enabling them to cleanly support the Visitor pattern and to describe “open

classes.” Our colleagues’ paper on Jiazzi [17] shows how the open class pattern can be

realized with units. Bruce et al. [4] describe virtual types and show how they apply to the

Observer pattern. All of these papers describe language features that address problems in

implementing patterns in object-oriented languages, but their focus is on the technology,

not the approach enabled by that technology.

At the other end of the spectrum, there are component programming models, module

interconnection languages (MILs) [20], and architecture description languages (ADLs) [18].

Our implementations of the unit model lie at the intersection of these three approaches.

Units are like COM or CORBA components except that units play a more static role

in software design; units are like MILs in that each implementation of the unit model
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supports just one kind of unit interconnection; and units are like ADLs in that units

support static reasoning about system design.

Module interconnection languages are perhaps closest in purpose to the unit model.

The best example we know of using a MIL in the way this paper suggests is FoxNet [14], a

network stack that exploits ML’s powerful module language. However, although FoxNet

clearly uses a number of patterns, there is no explicit statement of this fact and consequently

no discussion of implementing a broad range of patterns using a MIL.

Architecture description languages provide a similar but higher-level view of the

system architecture to MILs. This higher-level view is the key difference. ADLs describe

software designs in terms of architectural features, which may include patterns. ADLs

may also provide implementations of these features: the details of implementation need

not concern the user. In contrast, this paper is all about those implementation issues: we

describe a method that ADL implementors could apply when adding new patterns to

the set provided by their ADL. That said, ADLs provide more expressive languages for

describing design rules, specifying components, and reasoning about system design than

is currently supported by the unit model. We plan to incorporate more high-level ADL

features into our unit languages in the future.

3.6 Conclusion
Design patterns can be realized in many ways: although they are often described in

object-oriented terms, a pattern need not always be realized in an OOP language nor

always with objects and interconnections created at run-time. In this paper we have

presented a complementary realization of design patterns, in which patterns are statically

specified in terms of the unit model of components. While this approach is not applicable

to all software architectures, it can yield benefits when applied to static systems, and

to static aspects of dynamic systems. These benefits include verification of architectural

constraints on component compositions, and increased opportunities for optimization

between components.
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CHAPTER 4

DYNAMIC CPU MANAGEMENT FOR

REAL-TIME, MIDDLEWARE-BASED

SYSTEMS

Many real-world distributed, real-time, embedded (DRE) systems, such as multi-

agent military applications, are built using commercially available operating systems,

middleware, and collections of pre-existing software. The complexity of these systems

makes it difficult to ensure that they maintain high quality of service (QoS). At design time,

the challenge is to introduce coordinated QoS controls into multiple software elements

in a noninvasive manner. At run time, the system must adapt dynamically to maintain

high QoS in the face of both expected events, such as application mode changes, and

unexpected events, such as resource demands from other applications.

In this paper we describe the design and implementation of a CPU Broker for these

types of DRE systems. The CPU Broker mediates between multiple real-time tasks and

the facilities of a real-time operating system: using feedback and other inputs, it adjusts

allocations over time to ensure that high application-level QoS is maintained. The broker

connects to its monitored tasks in a noninvasive manner, is based on and integrated

with industry-standard middleware, and implements an open architecture for new CPU

management policies. Moreover, these features allow the broker to be easily combined with

other QoS mechanisms and policies, as part of an overall end-to-end QoS management

system. We describe our experience in applying the CPU Broker to a simulated DRE

military system. Our results show that the broker connects to the system transparently

and allows it to function in the face of run-time CPU resource contention.

4.1 Introduction
To meet the requirements of the market, real-time and embedded software systems

must increasingly be designed atop commercial, off-the-shelf (COTS) operating systems

and middleware. These technologies promote rapid software development by allowing
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system developers to concentrate on their application logic rather than on low-level

“infrastructural” code. In addition, commercial operating systems and middleware promote

software quality by providing tested, efficient, and reliable implementations of low-level

functionality. Finally, these technologies promote scalability across different types of

embedded platforms, configurability of features and feature selection, and evolvability

of the embedded software systems over time. These so-called “-ilities” are essential in a

world where embedded system technologies change rapidly and where the high cost of

software development must be amortized over several products, i.e., across the life cycle of

a product family rather than the lifetime of a single product.

COTS operating systems and middleware are also increasingly required to support

the development of distributed, real-time, embedded (DRE) systems. Many real-time

systems are built containing multiple processors or processing agents, either tightly

connected (e.g., within an automobile or aircraft) or loosely connected (e.g., multiplayer

networked games, sensor networks, and networked military systems). Middleware

such as CORBA [1] promotes the development of these systems by providing high-level

and scalable abstractions for communication between multiple processes. Real-time

middleware, such as RT CORBA [2], also provides high-level and portable abstractions for

scheduling resources for real-time tasks.

Even with modern middleware, however, it can be a significant software engineering

challenge for system developers to design and build DRE systems that meet their real-time

requirements. First, because the parts of an embedded software system must often be

designed to be reusable across many products, the code that implements real-time behavior

for any particular system must be decoupled from the “application logic” of the system’s

parts. Decoupling makes it possible to collect the real-time specifications for all of the

system’s parts in a single place—in other words, to modularize the real-time behavior of

the system—but leads to the new problem of reintroducing that behavior into the software.

Second, even if the implementation of real-time behavior is modularized, developers

are challenged with specifying the desired behavior at all. It is a common problem

for the execution times of parts of a system to be data-dependent, mode-dependent,

configuration-dependent, unpredictable, or unknown. In a distributed real-time system,

the sets of communicating tasks and available processor resources may not be known until

run time, or may change as the system is running. In sum, the challenges of implementing

real-time behavior in many systems include not only decoupling and modularizing of
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the behavior, but the ability to describe a variety of policies in a high-level and tractable

manner, and ensuring that the system continues to operate (perhaps at reduced capacity)

in the face of events that occur at run time, both expected and unexpected.

To address these challenges, we have designed and implemented a novel CPU Broker

for managing processor resources within real-time systems. Our CPU Broker is a CORBA-

based server that mediates between the multiple real-time tasks and the facilities of a

real-time operating system, such as TimeSys Linux [3]. The broker addresses design-time

challenges by connecting to its managed tasks in a noninvasive fashion and by providing

an expressive and open architecture for specifying CPU scheduling policies. The broker

can manage resources for both CORBA and non-CORBA applications. At run time, the

broker uses feedback and other inputs to monitor resource usage, adjust allocations, and

deal with contention according to a configured policy or set of policies. The broker is

configured at run time through a command-line tool or via invocations on the CORBA

objects within the broker: policies are easily set up and changed dynamically. Finally, the

broker is designed to fit into larger, end-to-end architectures for quality of service (QoS)

management. A single instance of the broker manages CPU resources on a single host, but

because its architecture is open and extensible, the broker’s policies can be directed by

higher-level QoS systems like QuO [4]. This enables coordination of brokers on multiple

hosts, coordination with other resource managers, and cooperation with application-level

QoS such as dynamic adaptation strategies.

Our CPU Broker was designed to ensure that the CPU demands of “important”

applications are satisfied insofar as possible, especially in the face of dynamic changes in

resource requirements and availability, in the set of managed tasks, and in the relative

importances of the tasks. We have evaluated the broker in these situations through

microbenchmarks and synthetic application scenarios. In addition, we have applied and

evaluated the CPU Broker in the context of a simulated DRE military application. Our

results show that the broker correctly allocates CPU resources in our synthetic tests and

in a “real world” system of target-seeking unmanned aerial vehicles (UAVs). The broker

connects to applications in a transparent fashion and improves the ability of the UAV

system to identify targets in a timely manner.

The primary contributions of this paper are threefold. First, we describe our architecture

for dynamic CPU management in real-time systems: an architecture that addresses the

critical software engineering challenges of specifying and controlling real-time behav-
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ior in the presence of anticipated and unanticipated events. Second, we present our

CPU Broker, which effectively implements our architecture atop a commercial RTOS and

industry-standard middleware, enables noninvasive integration, and provides an open

and extensible platform for CPU management. Finally, we demonstrate the use of our

CPU Broker and evaluate its performance in both synthetic scenarios and a simulated

DRE military application. Our results show that the broker approach can effectively

address both the design-time and run-time challenges of managing real-time behavior in

COTS-based real-time systems.

4.2 Related Work
A great deal of work has been done in the areas of feedback-driven scheduling, real-time

middleware, and middleware-based QoS architectures. In this section we summarize

representative work in each of these areas and compare it to the CPU Broker. In general,

our focus has been to improve on previous work by addressing the practical and software

engineering barriers to deploying adaptive, feedback-driven scheduling in modern COTS-

based embedded and real-time systems. These goals are elaborated in our previous

work [5].

In the area of feedback-driven scheduling, Abeni and Buttazzo [6] describe a QoS

Manager that is similar to our CPU Broker. The QoS Manager handles requests from

three types of real-time tasks: pseudo-proportional-share tasks, (periodic) multimedia

tasks, and (aperiodic) event-driven tasks. Tasks are weighted with importance values,

and the QoS Manager uses feedback from multimedia and event-driven tasks to adjust

those tasks’ scheduling parameters. Our work differs from theirs in three important ways.

First, whereas the QoS Manager is implemented within the HARTIK research kernel, our

CPU Broker is built atop a COTS operating system and industry-standard middleware.

(In later work [7], Abeni et al. implemented and analyzed a feedback-driven scheduler for

Linux/RK [8].) Second, our focus is on noninvasive approaches: Abeni and Buttazzo do

not describe how to cleanly separate the feedback from the applications being controlled.

Third, our CPU Broker is based on an open architecture, making it easy to implement

new policies, inspect the broker, or otherwise extend it. The QoS Manager, on the other

hand, has a more traditional, monolithic architecture. Similar differences distinguish our

CPU Broker from Nakajima’s adaptive QoS mapping system [9], which was used to control

video streaming applications under Real-Time Mach.
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In the area of real-time middleware, there has been significant work in both commercial

standards and novel research. For instance, the Object Management Group has defined

and continues to evolve standards for RT CORBA [2, 10]. These standards are concerned

with issues such as preserving thread priorities between clients and servers in a distributed

system and proper scheduling of I/O activities within an ORB. This is in contrast

to our CPU Broker, which manages the resources of a single host, is feedback-driven,

and which operates above the ORB rather than within it. RT CORBA is similar to our

CPU Broker, however, in that both provide an essential level of abstraction above the

real-time services of an underlying operating system: it would be interesting to see if the

(priority-based) RT CORBA and the (reservation-based) CPU Broker abstractions could be

used in combination in the future. Other researchers have incorporated feedback-driven

scheduling into real-time middleware: for example, Lu et al. [11] integrated a Feedback

Control real-time Scheduling service into nORB, an implementation of CORBA for networked

embedded systems. Their service operated by adjusting the rate of remote method

invocations on server objects: i.e., by adjusting the clients to match the resources of the

server. Our CPU Broker, on the other hand, would adjust the resources available to

the server in order to meet its clients’ demands. Our approaches are complementary:

a robust DRE system might use both client-side and server-side adaptation effectively,

and our CPU Broker is open to integration with other QoS adaptation mechanisms.

Finally, it should be noted that our CPU Broker can manage both middleware-based and

non-middleware-based processes, in contrast to the systems described above.

While many middleware-based QoS architectures operate by mediating between

applications and an operating system, other architectures are based on applications that

can adapt themselves to changing resource availability. The Dynamic QoS Resource Manager

(DQM) by Brandt et al. [12] is of this second type and is perhaps the most similar to our

CPU Broker in both its goals and approach. Like our broker, DQM is implemented as a

middleware server atop a commercial OS. It monitors a set of applications, and based on

CPU consumption and availability, it tells those tasks to adjust their requirements. The

primary difference with our CPU Broker is in the level of adaptation. Our broker changes

(and enforces) tasks’ CPU allocations by interfacing with an RTOS. DQM, on the other

hand, requests (but cannot enforce) that applications switch to new “execution levels,” i.e.,

operational modes with differing resource needs. DQM and the CPU Broker implement

complementary approaches to CPU management, and it would be interesting to combine
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our broker with a framework for benefit-based, application-level adaptation like DQM.

Several researchers, including Abeni and Buttazzo [13], have demonstrated the benefits of

combining adaptive reservation-based scheduling with application-specific QoS strategies.

The CPU Broker uses QuO [4] to connect to CORBA-based applications in a noninvasive

manner and to integrate with other QoS management services such as application-level

adaptation. QuO provides an excellent basis for coordinating multiple QoS management

strategies in middleware-based systems, both for different levels of adaptation and for

different resource dimensions. For example, Karr et al. [14] describe how QuO can

coordinate application-level and system-level adaptations, e.g., by dropping video frames

and reserving network bandwidth. More recently, Schantz et al. [15] demonstrated that

the distributed UAV simulation (described in Section 4.5.3) could be made resilient to both

communication and processor loads by applying network reservations in combination

with our CPU Broker.

4.3 Design
The conceptual architecture of the CPU Broker is illustrated in Figure 4.1, which depicts

a sample configuration of the broker. At the top of the figure are the set of tasks (e.g.,

processes) being managed by the broker. Under those, within the dashed box, are the

objects that make up the CPU Broker. As described later in Section 4.4, these objects are

normally located all within a single process, but they do not have to be. The broker mainly

consists of two types of objects, called advocates and policies, that implement per-application

adaptation and global adaptation, respectively.

4.3.1 Advocates
As shown in Figure 4.1, every task under the control of the CPU Broker is associated

with one or more advocate objects. The purpose of an advocate is to request CPU resources

on behalf of a task. More generally, an advocate transforms an incoming request for

resources into an outgoing request.

The primary input to an advocate is a request for a periodic CPU reservation: i.e., a

period and an amount of CPU time to be reserved in each period. This is shown as the

arrow entering the top of each advocate. On a regular basis—usually, at the end of every

task cycle—the topmost advocate for a task receives a report of how much CPU time was

consumed by the task since its last report: this is called the status. (The details of obtaining

a task’s status are described in Section 4.4.) The status amount may be more than what
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is currently reserved for the task: the CPU Broker normally manages “soft” reservations,

which allow tasks to consume unreserved CPU resources in addition to their own reserves.

From this information, the topmost advocate decides how its task’s reservation should

be adjusted. The CPU Broker provides a family of different advocates, implementing

different adaptation algorithms, and is an open framework for programmers who need

to implement their own. A typical advocate works by producing a reservation request

that closely matches its task’s observed behavior. For instance, if the status amount is

greater than the task’s currently reserved compute time, the advocate would request a new

reservation with an increased compute time that (better) meets the task’s demand. If the

status amount is smaller, on the other hand, then the requested compute time would be

reduced. The details of the adaptation strategies are up to the individual advocates; for

instance, different advocates may use historical data or may adapt reservations quickly or

slowly. Advocates can also take input from a variety of sources in order to implement their

policies, as illustrated in Figure 4.2. For instance, our architecture allows an embedded

systems designer to deploy an advocate that observes application-specific data, such

as mode changes, in order to make more predictive reservation requests. The different

strategies that we have implemented are described in Section 4.4.3. In general, the strategies

we have implemented for periodic tasks adjust a task’s reservation so that the allocated

compute time is within a small threshold above the task’s demand, thereby allowing the

task to meet its deadlines. Other implemented advocates are appropriate for controlling

aperiodic and continuous-rate tasks, for example, by requesting user-specified fixed shares

of the CPU.

Other QoS
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The reservation that is requested by an advocate is called the advice. An advocate

computes its advice and then invokes the next advocate in the chain, passing it both the

task status and the computed advice.

Subsequent advocates are used to modify the advice or perform some side-effect:

allowing advocates to be composed in this way greatly increases the CPU Broker’s flexibility

and allows existing advocates to be reused. For example, an advocate can be used to

cap the resource request of a task, or alternately, ensure that the request does not fall

below some minimum reserve. A side-effecting advocate might read or write information

from other QoS management middleware, such as QuO. Another kind of side-effecting

advocate is a “watchdog” that wakes up when some number of expected status reports

have not been received from a monitored task. Reports are normally made at the end of

task cycles, but this granularity may be too large, especially in the case of a task that has an

unanticipated dynamic need for a greatly increased reservation. Without the intervention

of a watchdog, the task might not be able to report its need until several task periods

have passed—and several deadlines missed.1 A watchdog can be used in these cases to

mitigate the effects of dynamic workload increases: the watchdog wakes up, (possibly)

inspects the state of its task, and requests an increased reservation on behalf of the task. In

sum, composed advocates are a powerful mechanism for building complex behaviors from

simple ones, for introducing and modularizing application-specific adaptations, and for

conditioning the requests that are presented to the broker’s contention policy object.

4.3.2 Policies

The last advocate in the chain passes the task’s status and the advice to a policy object

that is responsible for managing the requests made on behalf of all tasks. A policy has

two primary roles. First, it must resolve situations in which the incoming requests cannot

all be satisfied at the same time, i.e., handle cases in which there is contention for CPU

resources. Second, a policy must communicate its decisions to an underlying scheduler,

which implements the actual CPU reservations.

The usual input to a policy object is a reservation request from one of the advocates

in the CPU Broker. In response, the policy is responsible for re-evaluating the allocation

1In cases where missed deadlines are unacceptable, a system designer can easily configure the CPU Broker
with different advocates to ensure that critical tasks have sufficient CPU reserves to process dynamic loads
without missing deadlines. The essential point is that the CPU Broker enables system designers to choose the
strategies that best meet the QoS needs of their applications.
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of CPU resources on the host. Conceptually, a policy recomputes the reservations for

all of the broker’s managed tasks in response to an input from any advocate, but in

practice, this recomputation is fast and most reports do not result in changes to the

existing allocations. As with advocates, the CPU Broker provides a set of policy objects,

each implementing different behaviors and conflict resolution strategies. In addition, if

necessary, the implementer of a real-time system can implement and deploy a custom

policy object within the broker’s open framework. Most policies depend on additional

data in order to be useful: for instance, the broker provides policies that resolve scheduling

conflicts according to user-determined task importances. Dynamic changes to these

importances—signaled via a (remote) method invocation on a policy object—will cause a

policy to redetermine its tasks’ allocations. The broker also provides a policy that partitions

tasks into groups, where each group is assigned a maximum fraction of the CPU, and

contention with each group is resolved by a secondary policy. The details of these policies,

how they are set up, and how they can be changed dynamically are provided in Section 4.4.

Once a policy has determined the proper CPU reservations for its task set, it invokes

a scheduler proxy object to implement those reservations. The scheduler proxy provides

a facade to the actual scheduling services of an underlying RTOS. The RTOS (not the

CPU Broker) is responsible for actually implementing the schedule and guaranteeing

the tasks’ reservations. If the RTOS rejects a reservation that was determined by the

broker’s policy, then the policy is responsible for modifying its request. (In practice, our

implemented policies avoid making inadmissible reservation requests.)

The policy finishes with the scheduler and finally sends information about any changed

reservations back to the advocates, which send the data up the advocate chains. An

advocate may use this information to inform future requests, to cooperate with other

QoS management frameworks, or to signal its application to adapt to its available CPU

resources, for example. Eventually, a new CPU status report is received from one of the

broker’s managed tasks, and the process of the advocates and policies repeats.

4.4 Implementation
In this section we describe how the design goals of the CPU Broker are met in its actual

implementation. To achieve our goal of providing an open and extensible framework for

dynamically managing real-time applications, we implemented the CPU Broker using

CORBA. To achieve noninvasive integration with middleware-based real-time applications
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and other QoS management services, we used the QuO framework. Finally, to apply and

demonstrate our architecture atop a commercial off-the-shelf RTOS, we implemented the

broker for TimeSys Linux. The rest of this section describes how these technologies are

used in our implementation, and also, the advocate and policy algorithms that we provide

as part of the CPU Broker software.

4.4.1 Scheduling and Accounting

At the bottom of our implementation is TimeSys Linux [3], a commercial version of

Linux with support for real-time applications. TimeSys Linux provides several features

that are key to our implementation. First, the kernel implements reservation-based CPU

scheduling through an abstraction called a resource set. A resource set may be associated

with a periodic CPU reservation; zero or more threads are also associated with the resource

set and draw (collectively) from its reservation. Second, the TimeSys kernel API allows a

thread to manipulate resource sets and resource set associations that involve other threads,

even threads in other processes. This makes it straightforward for the CPU Broker to

manipulate the reservations used by its managed tasks. Third, whenever one thread

spawns another, and whenever a process forks a child, the parent’s association with a

resource set is inherited by the child (by default). This makes it easy for the CPU Broker

to manage the reservation of a task (process) as a whole, even if the task is internally

multithreaded. Finally, TimeSys Linux provides high-resolution timers that measure the

CPU consumption of threads and processes. These timers were essential in providing

accurate reservations—and allowing high overall CPU utilization—in the real-time task

loads we studied. To allow the CPU Broker to obtain high-resolution information about all

of the threads in another process, we made a very small patch to the TimeSys Linux kernel

to expose processes’ high-resolution timers through the “/proc/pid/stat” interface.2

The combination of a flexible reservation-based scheduling API and high-resolution

timers allowed us to implement the CPU Broker on TimeSys Linux. The architecture of

the broker is general, however, and we believe that it would be straightforward to port

our current CPU Broker implementation to another RTOS (e.g., HLS/Linux [16, 17]) that

provides both CPU reservations and accurate accounting.

2Only the Linux-standard low-resolution timers (with 10 ms granularity) are exposed in the
“/proc/pid/stat” interface by default. TimeSys’ high-resolution counters are made available through the
getrusage system call, but that cannot be used to inspect arbitrary processes.



98

4.4.2 Openness and Noninvasiveness

We chose to implement the CPU Broker using CORBA [1], an industry-standard

middleware platform for distributed objects. CORBA provides two main features for

achieving the broker’s goals of openness and noninvasiveness. First, CORBA defines a

standard object model and communication mechanism. By implementing the broker’s

advocates and policies as CORBA objects, we provide a framework for real-time systems

designers to use in configuring and extending the broker. Second, CORBA abstracts over

the locations of objects: communicating objects can be located in a single process, on

different processes on a single machine, or on different machines. This has practical

significance for both usability and performance. The broker can be easily extended with

new advocates and policies without modifying existing broker code: this enables rapid

prototyping, late (e.g., on-site) and dynamic customization, and cases in which a custom

broker object is tightly coupled with an application (and therefore is best located in the

application process). When performance is critical, new objects can be located in the same

process as other broker objects; high-quality implementations of CORBA can optimize

communication between colocated objects.

As described in Section 4.1, middleware in general and CORBA in particular are in-

creasingly important for the cost-effective development of reliable real-time and embedded

systems. Using CORBA in the implementation of the CPU Broker allows us to leverage

this trend. We can rely on high-quality real-time middleware—in particular, the TAO [18]

real-time CORBA ORB—in our implementation and also take advantage of the increasing

popularity of CORBA for the development of DRE systems. More important, however, is

that CORBA provides a basis for noninvasively connecting the CPU Broker to the real-time

CORBA-based tasks that it manages.

A primary goal in designing and implementing the broker was to support applications

that are not developed in conjunction with our system: in other words, to support programs

in which the “application logic” is decoupled from the management and control of the

application’s real-time behavior. This makes both the applications and our CPU Broker

more flexible, and it allows real-time control to be modularized within the broker rather

than being scattered throughout many programs. Effective support for this programming

style requires that the broker be able to integrate with its managed tasks in a noninvasive

manner, i.e., in ways that require minimal or no changes to the code of the managed

tasks. The broker itself runs as a user-level process that acts as the default container
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for the advocate, policy, and scheduler objects described previously. Integration with

real-time applications therefore requires that we build “transparent bridges” between the

CPU Broker and those real-time tasks. We have implemented two strategies for noninvasive

integration as illustrated in Figure 4.3.

The first strategy inserts a proxy object, called a delegate, into a CORBA-based real-time

application. This strategy is appropriate when the real-time work of an application is

modularized within one or more CORBA objects, as shown in Figure 4.3(a). The broker’s

delegates are implemented with QuO [4], which provides a family of languages and other

infrastructure for defining and deploying delegates. The implementation of the reporting

delegate class is generic and reusable, not application-specific. Further, delegates can

typically be inserted in ways that are transparent to the application, or localized to just the

points where objects are created. A C++ or Java programmer might add just a few lines

of code to a program’s initialization or to a factory method [19]; alternatively, the code

can be integrated in a noninvasive manner via aspect-oriented programming [20]. In our

experience, delegates can often and effectively modularize the monitoring and control of

real-time behavior in CORBA servers.

For applications that are not built on middleware, however, a second strategy is required.

For these cases, we have implemented a “process advocate” (proc_advocate) as illustrated

in Figure 4.3(b). The process advocate is an adapter between an unmodified application
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and the broker. The proc_advocate is a process: it requests a reservation from the broker

and then forks the unmodified application as a child. The proc_advocate’s reservation is

inherited by the child process, as described in Section 4.4.1. The proc_advocate is then

responsible for monitoring the CPU usage of the application and reporting to the broker.

Information about the child’s resource usage is obtained from kernel’s “/proc/pid/stat”

interface, extended with high-resolution timers as explained previously. Other data about

the child process, such as its period, are specified as command-line options to the process

advocate.

4.4.3 Example Advocates and Policies

The CPU Broker implements an open framework for configurable and extensible

control of real-time applications. To demonstrate the framework, in particular for tasks

with dynamically changing CPU requirements, we implemented a core set of scheduling

advocates and policies. These objects are generic and reusable in combination to construct

a variety of adaptive systems, but we have not attempted to implement a complete toolbox.

Rather, we have implemented example advocates and policies that we have found useful

to date.

For conditioning the feedback from tasks with dynamically changing demands, the

broker provides two advocates called MaxDecay and Glacial. MaxDecay tracks recent

feedback from its task: every time it receives a report, a MaxDecay advocate requests a

reservation that satisfies the application’s greatest demand over its last n reports, for a

configured value of n. A Glacial advocate, on the other hand, is used to adapt slowly:

it adjusts the requested reservation by a configured fraction of the difference between

its task’s current reservation and the task’s current demand. In general, MaxDecay

advocates are useful for applications whose normal behavior includes frequent spikes in

demand that should be anticipated, whereas Glacial advocates are useful for tasks whose

spikes represent abnormal situations that are not useful in predicting future demands.3

Other advocates provided by the broker include an auxiliary advocate for coordinating

with QuO—the advocate sends the status and advice data to QuO “system condition”

objects—and an advocate for logging data to files.

3Note that the distinction is based on an application’s anticipated behavior and not its importance. An
advocate always considers its application to be “important.” It is the job of a policy, not an advocate, to make
decisions based on user-assigned importance values.
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The broker provides three main policy objects. The first, called Strict, allocates reserva-

tions to tasks in order of their user-assigned importances. Requests from high-priority tasks

are satisfied before those from low-priority tasks: when there is contention for CPU time,

important tasks will starve less important tasks. This policy is good for periodic tasks with

critical deadlines, because important tasks can be strongly isolated from less important

ones. The second policy, Weighted, satisfies requests according to a set of user-assigned

task weights. When there is contention for resources, all reservations are reduced, but in

inverse proportion to the tasks’ weights: “heavy”/important tasks are less degraded than

“light”/unimportant tasks. This policy implements the adaptive reservation algorithm

described by Abeni and Buttazzo [6], except that the inputs to our policy are possibly

modified by the advocates described above. Weighted is often preferred over Strict for

aperiodic and CPU-bound tasks. The third policy provided by the broker is Partition,

which divides the available CPU resources into two or more parts. The resources within

each part are controlled by a separate policy object, i.e., a Strict or Weighted policy. This

allows for isolation between task groups and combinations of contention policies, e.g., for

managing both periodic and aperiodic tasks. The Partition policy keeps track of which

tasks belong to which groups, and it allows an administrator to move tasks between groups

at run time. By manipulating the subpolicy objects, the administrator can also dynamically

change the amount of CPU time available within each subpolicy.

4.4.4 Using the CPU Broker

Finally, as a practical matter, the interface to starting and configuring the CPU Broker

is critical to its use. As described previously, the broker is normally run as a single process

that acts as a container for the broker’s CORBA objects. When this process begins, it creates

a bootstrap object that can be contacted by other CORBA tools in order to configure the

broker and implement a desired CPU management strategy. We provide a command-line

tool, called cbhey, that allows interactive communication with the broker, its advocates,

and its policies. For example, setting the importance of a task named mplayer is as

simple as using cbhey to talk to the controlling policy object and telling that policy to

“set priority of task mplayer to 5.” Connecting an external advocate or policy object

to the CPU Broker is accomplished by using cbhey to give the location of the object to

the broker; CORBA handles communication between the broker and the external object.

Tighter and automated integration with the CPU Broker is achieved by making (remote)
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method invocations on the CORBA objects within the broker. For example, an end-to-end

QoS management framework would likely interact with the broker not via cbhey, but

instead by making CORBA calls to the broker’s objects. For performance-critical situations,

we also provide a mechanism for dynamically loading shared libraries into the main broker

process.

4.5 Evaluation
Our evaluation of the CPU Broker is divided into three parts. First, we measure the

important overheads within the broker’s implementation and show that they are small

and acceptable for the types of real-time systems we are targeting. Second, we evaluate the

broker’s ability to make correct CPU allocations for a set of synthetic workloads, with and

without dynamically changing resource requirements, and with and without contention.

Finally, we demonstrate the CPU Broker applied to a simulated DRE military application.

We extend the broker with an application-specific advocate, measure the broker’s ability

to make appropriate CPU allocations, and evaluate the impact on the quality of service

achieved by the system in the face of CPU contention.

All of our experiments were performed in Emulab [21], a highly configurable testbed for

networking and distributed systems research. Each of our test machines had an 850 MHz

Pentium III processor and 512 MB of RAM. Each CPU Broker host ran TimeSys Linux/NET

version 3.1.214 (which is based on the Linux 2.4.7 kernel) installed atop Red Hat Linux 7.3.

The CPU Broker and other CORBA-based programs were built using TAO 1.3.6 and a

version of QuO (post-3.0.11) provided to us by BBN. For experiments with the distributed

military application, the three hosts were connected via three unshared 100 Mbps Ethernet

links.

4.5.1 Monitoring and Scheduling Overhead
There are two primary overheads in the broker: obtaining CPU data from the kernel,

and communication between the broker objects via CORBA. When an application is

monitored by a QuO delegate or proc_advocate, communication involves inter-process

communication (IPC). To measure the total overhead, we built three test applications. The

first was monitored by our ordinary QuO delegate, which performs two-way IPC with

the broker: it sends the task status and waits to receive new reservation data. The second

was monitored by a special QuO delegate that performs one-way IPC only: it does not

wait for the broker to reply. The third was monitored by an “in-broker process advocate”:
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an advocate that functions like proc_advocate, but which lives in the main CPU Broker

process and is run in its own thread. (The performance of an ordinary proc_advocate is

similar to that of a two-way QuO delegate.) Each test application ran a single sleeping

thread. Periodically (every 33 ms), each monitor measured the CPU usage of its task plus

itself via the “/proc/pid/stat” interface and sent a report to the broker. Each test was

run on an unloaded machine with a CPU Broker containing a MaxDecay advocate and

a Weighted policy. We ran each test and measured the CPU and real time required for

processing each of the first 1000 reports following a warm-up period.

The average times for the reports are shown in Table 4.1. The first data column shows

the average of the total user and kernel time spent in both the monitor and broker per

report: this includes time for obtaining CPU data, doing IPC if needed, and updating

the reservation. The second column shows the average wall-clock time required for each

report as viewed from the monitoring point. This is a measure of per-report latency: in

the QuO delegate cases, it is less than total CPU time because it does not account for time

spent in the broker. We believe that the measured overheads are reasonable and small for

the class of real-time systems based on COTS operating systems and middleware that we

are targeting. Increasing the number of tasks or decreasing the tasks’ periods will increase

the relative overhead of the broker, but when necessary, additional optimizations can be

applied. For example, one might configure the monitors with artificially large reporting

periods, at some cost to the broker’s ability to adapt allocations quickly.

4.5.2 Synthetic Applications

To test the broker’s ability to make correct CPU reservations, we used Hourglass [22]

to set up two experiments. Hourglass is a synthetic and configurable real-time application:

its purpose is to analyze the behavior of schedulers and scheduling systems such as the

CPU Broker.

Our first experiment tests the CPU Broker’s ability to track the demands of a periodic

Table 4.1. Average measured overhead of reports to the CPU Broker

Configuration Monitor+Broker Monitor Only
CPU Time (usec) Real Time (usec)

Two-way QuO delegate 1742 1587
One-way QuO delegate 1716 660
In-broker process advocate 400 400
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real-time task with a dynamically changing workload. The goal is for the reservations

over time to be both adequate (allowing the task to meet its deadlines) and accurate (so as

not to waste resources). We assume that the system designer does not know the shape

of the application’s workload over time, only that it goes through phases of increased

and decreased demand. In a typical case like this, a MaxDecay advocate is appropriate

for adapting to the task. There is no CPU contention in this experiment, so the policy is

unimportant: we arbitrarily chose to use the Strict policy.

To drive this experiment, we created a test program that uses the core of Hourglass in

a simple CORBA application. Our program’s main loop periodically invokes a colocated

CORBA object, which computes for a while and then returns to the main loop. The object’s

compute time can be fixed or variable in a configured pattern. We introduced a QuO

delegate between the main loop and the object in order to connect our application to the

CPU Broker. We configured our test application to have a period of 300 ms and to run a

time-varying workload. The task goes through phases of low, medium, and high demand

(with compute times of 100, 150, and 200 ms), and each phase lasts for 10 periods.

We ran our test application in conjunction with the CPU Broker, and the results are

shown in Figure 4.4. The graph illustrates two points. First, the reservations made by

the CPU Broker accurately track the demand of the application over time. Second, the

MaxDecay advocate operates as intended, predicting future CPU demand based on the

greatest recent demand of the task. This prevents the broker from adapting too quickly

to periods of reduced demand, which is appropriate for tasks that have occasional but

unpredictable periods of low activity.4 If more accurate tracking were required, a designer

would configure the advocate to observe fewer recent reports or replace the advocate

altogether with a better predictor (as we do in Section 4.5.3).

The second synthetic experiment tests the CPU Broker’s ability to dynamically arbitrate

CPU resources between competing tasks. There are two kinds of dynamic events that

require updates to the broker’s reservations: changes in the requests from tasks, and

changes to the policy. Because the previous experiment concerned adaptation to tasks, we

chose to focus this experiment on changes to the policy.

We set up three instances of the (unmodified) Hourglass application, each connected to

the CPU Broker with a “continuous rate” advocate that makes a single report describing

4This behavior in turn makes resource allocations more stable in multi-task systems. When there are several
applications competing for resources, it is often undesirable to adjust resource allocations too frequently.
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Figure 4.4. Actual compute time and reserved compute time for a task with a time-varying
workload. The broker is configured to adapt to increased demands immediately, and to
reduced demands only after several periods of reduced need. The MaxDecay task advocate
used in this experiment can be configured to track the actual demand more or less closely.
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its task’s desired reservation. The compute times of the tasks were set to 95, 125, and 40 ms

per 250 ms period. The broker was configured with a Strict (importance-based) policy;

further, the policy was set to reserve at most 75% of the CPU to all tasks.

We then ran the three Hourglass processes and used cbhey to change the importances

of the three tasks dynamically. The results of this experiment are shown in Figure 4.5.

At the beginning of the time shown, the importance values of the three tasks are 10, 5,

and 1, respectively. The Strict policy correctly satisfies the demand of task 1, because it is

most important, and this task meets its deadlines. The remaining available time is given to

task 2, but this reservation is insufficient and the task generally misses its deadlines, as

does task 3. (These tasks can use unreserved CPU on a best-effort basis to occasionally

meet their deadlines.) At time 16.6, we raise the importance of task 3 to 7, making it more

important than task 2. In response, the broker reallocates CPU resources from task 2 to

task 3, and task 3 begins to meet is deadlines. At time 22.5, we lower the importance of

task 3 back to 1, and the broker again recomputes its reservations.
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Figure 4.5. Dynamically changing reservations in response to changing task importances.
Task 1 requires 95 ms every 250 ms; tasks 2 and 3 require 125 ms and 40 ms with the same
period. The lines show the compute time reserved for each task. When task importances
change, the broker policy updates reservations according to the Strict policy. Marks on the
lines show the ends of task cycles that met (•) and did not meet (×) their deadlines.
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This experiment highlights three key points. First, the configured broker policy works

correctly and allocates resources to the most important tasks. As described previously, the

broker implements and is open to other policies that arbitrate in different styles. Second,

the broker properly and quickly adjusts reservations in response to changes to the policy

configuration. In a real system, these kinds of changes could be made by an automated

QoS management system or by a human operator. Third, the total utilization of the system

is constantly high. In other words, the broker allocates all of the CPU time that it is allowed

to assign, and the sum of the three reservations is always equal to that amount. The broker

enables a system designer to keep utilization high while choosing how to divide resources

in the face of contention.

4.5.3 The UAV Application

A primary goal of the CPU Broker is to provide flexible CPU control in real-time

and embedded systems that are developed atop COTS middleware and that operate in

highly dynamic environments. To demonstrate the benefits of the broker to these kinds of

applications, we incorporated our broker into a CORBA-based DRE military simulation

called the Unmanned Aerial Vehicle (UAV) Open Experimentation Platform [14]. This

software simulates a system of one or more UAVs that fly over a battlefield in order to find

military targets. The UAVs send images to one or more ground stations, which forward

the images to endpoints such as automatic target recognition (ATR) systems. When an

ATR process identifies a target, it sends an alert back to the originating UAV.

We applied our CPU Broker to the ATR stage to ensure that the ATR could reliably

keep up with the flow of images coming from a UAV. The ATR task is a Java program that

receives images at a rate of two frames per second. Because the ATR is CORBA-based, we

used a QuO delegate to monitor the ATR and report to the CPU Broker after each image

is processed. Inserting the delegate required simply adding a few lines of code to the

application’s main class. This change was introduced noninvasively by running the ATR

with a modified class path. The Java process contains many threads, but the details of

how these threads are managed by Java are unimportant to the CPU Broker. Managing

the ATR relies on the broker’s ability to measure the aggregate CPU consumption of all

threads within a process and make a reservation that is shared by all those threads. (See

Section 4.4.1.)

Because the ATR is a Java process, it periodically needs to garbage collect (GC). During
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these periods, the CPU demand of the ATR is much greater than its demand during

normal periods. This kind of situation is not uncommon in software that was not carefully

designed for predictable behavior. We could have dealt with this problem by configuring

the CPU Broker with a MaxDecay advocate which keeps the ATR’s reservation high in

anticipation of future GC cycles, but this would have been unnecessarily wasteful. Instead,

we implemented a custom advocate that predicts when the ATR will GC and requests an

increased CPU reservation only in those cases—a proactive, rather than a reactive advocate.

The behavior of the ATR and our custom advocate are shown in Figure 4.6. The graph

shows the periodic demand of the ATR and the predictions made for the ATR by our

advocate. These lines often match closely, but our advocate is not a perfect predictor. Still,

the forecast from our custom advocate is better than we could achieve with MaxDecay,

which would consistently over-allocate or be slow to react to spikes.

We then ran the UAV software with and without the CPU Broker to test the broker’s

ability to improve the run-time behavior of the system under CPU load. We used three

machines running one UAV process, one distributor, and one ATR process, respectively.
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Figure 4.6. Comparison of the actual compute time and reserved compute time for the
ATR. The ATR’s demand has regular spikes that correspond to garbage collections. The
custom advocate predicts and adapts to this behavior.



109

The third machine also ran a simple process that receives images from the distributor and

sends them to the ATR. We ran this simulation in three configurations, for 220 seconds

each time, and collected data about the reliability of the system.

The results of our tests are shown in Table 4.2. We first ran the UAV software without

introducing the CPU Broker or any competing CPU loads in order to obtain baseline

measures. The table shows the rate of image processing (measured at the receiver over

3-second windows), the latency of alerts (delay seen by the UAV between its sending of a

target image and its receipt of the corresponding alert from the ATR), and the total numbers

of images and alerts processed by the system. We then added a competing real-time task

on the ATR host—an Hourglass task with a reservation for 90 ms every 100 ms—and ran

the simulation again. The results in the second column show that the system behaves

unreliably: many images and alerts are lost. Finally, we used the CPU Broker on the

ATR host in order to prioritize the receiver and ATR processes above Hourglass. The

third column shows that image handling in the broker-managed UAV system is similar

to that in the system without load. Similarly, no alerts are lost, but their latencies are

increased for two reasons. First, our advocate occasionally mispredicts GC cycles: we

could use a different advocate to improve reliability, at a cost in overall system utility.

Second, although the ATR receives its reservation, the RTOS may spread the compute time

over the full period (500 ms), thus increasing alert latency. We could address this problem

in the future by adding deadline information to our CPU Broker interfaces. In sum, our

experience showed that the broker can noninvasively integrate with a CORBA-based DRE

system and improve that system’s reliability in the face of CPU contention.

Table 4.2. Performance of the UAV simulation

Metric Unloaded, CPU Load CPU Load,
Baseline With Broker

Frames processed 432 320 432
Avg. frames per second 1.84 1.32 1.81
Min. frames per second 1.67 0.45 1.11
Max. frames per second 2.00 2.01 1.99
Std. Dev. 0.09 0.34 0.09
Alerts received 76 50 76
Avg. latency (ms) 127.67 1560.44 325.72
Min. latency (ms) 101.00 362.00 145.00
Max. latency (ms) 193.00 3478.00 933.00
Std. Dev. 33.46 961.62 153.60
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4.6 Conclusion
Embedded and real-time systems are increasingly dependent on the use of COTS

infrastructure and the reuse of software parts—even entire applications. Furthermore,

systems are increasingly deployed in environments that have changing sets of computing

resources and software with dynamically changing requirements. We have presented

the design and implementation of our CPU Broker that addresses the needs of these

systems in an open and extensible fashion. Our architecture supports adaptive, feedback-

driven CPU reservations and explicitly separates per-task and global adaptation strategies.

Our implementation atop a commercial RTOS effectively determines and adapts CPU

reservations to the dynamic requirements of its managed tasks, with low overhead. Finally,

the broker effectively modularizes the strategy for allocation and adaptation, and connects

to both middleware-based and other applications in a nonintrusive manner. In conclusion,

we believe that the broker approach can provide important benefits toward achieving

understandable, predictable, and reliable real-time behavior in a growing and important

class of real-time and embedded software systems.

4.7 Availability
The CPU Broker is open-source software. Complete source code and documentation

for the CPU Broker are available at http://www.cs.utah.edu/flux/alchemy/.
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INFLUENCE AND CONCLUSION



CHAPTER 5

INFLUENCE

The work presented in Chapters 2 through 4 was published in three papers and

presented at peer-reviewed conferences. This chapter summarizes the apparent influence

of those publications on subsequent related efforts. Its purpose is to illustrate how the

novel realization of variability mechanisms, implemented so as to improve the run-time

performance of software, continues to be relevant to the field of software engineering. This

chapter focuses on, but is not limited to, published work that references the conference

papers that are reprinted in Chapters 2 through 4.

5.1 Flexible and Optimizing IDL Compilation
Flick incorporated techniques from traditional programming-language compilers to

bring flexibility and optimization, at the same time, to the domain of IDL compilation.

Whereas ordinary IDL compilers were designed to implement a single IDL mapping for a

single message-transport system, Flick was implemented as a “kit” of components that

supported multiple IDLs, IDL mappings, and message transports. Whereas ordinary IDL

compilers did little to produce optimized stubs, Flick used a family of intermediate code

representations that admitted compile-time optimizations for stub performance. These

two aspects made it possible for Flick to generate specialized and optimized RMI code

for Fluke [37], an experimental microkernel developed by the Flux Research Group at the

University of Utah, in addition to the other standards that Flick supported.

Flick was influential in all of these areas. Flick affected subsequent research and

development efforts toward flexible IDL compilers, which generally sought to produce

stubs and middleware runtime libraries that were customized to the needs of selected

applications. Flick also influenced efforts toward IDL compilers and middleware that

optimize for run-time performance. Finally, Flick was a catalyst for a series of IDL

compilers that produce RPC code for the L4 microkernel family. The L4 work is notable for

seeking an IDL compiler that produces extremely efficient stubs, but which also supports
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easy modification of the IDL compiler to accommodate continual changes to L4.

The following sections organize Flick-related work into these areas: work toward

flexible compilation (Section 5.1.1), work that targets run-time optimizations (Section 5.1.2),

and work in the development of IDL compilers for L4 (Section 5.1.3). The literature

survey in these sections suggests that, while flexibility and optimization have continued

to be pursued individually, Flick remains unique in its use of rich intermediate code

representations that allow an IDL compiler to address flexibility and optimization goals

simultaneously.

5.1.1 Flexible IDL Compilation

Chapter 2 describes how Flick can be extended to support nonstandard mappings from

the constructs of an IDL to the constructs of a programming language such as C. The

actual Flick implementation described in Chapter 2, however, provided only the standard

translations from CORBA IDL, ONC RPC IDL, and MIG IDL onto C. Eide et al. [24,

25] subsequently demonstrated Flick’s ability to support nonstandard translations by

implementing a new mapping from CORBA IDL onto “decomposed” client and server

stubs, which were designed to support applications that needed finer-grain control over

communication events.

Using the normal presentation style, Flick maps IDL interfaces onto client stubs and

server skeletons that encapsulate many steps of RPC or RMI communication. For example,

each client stub encapsulates the steps of marshaling a request, sending the request, waiting

for the reply, and unmarshaling the response. In the decomposed presentation style, Flick

creates individual stubs for each of these steps. As Eide et al. describe [25, page 280],

the decomposed presentation style consists of “marshaling stubs, to encode request and

reply messages; unmarshaling stubs, to decode request and replay messages; send stubs,

to transmit marshaled messages to other nodes; server work functions, to handle received

requests; client work functions, to handle received replies; and continuation stubs, to postpone

the processing of messages.” Eide and his colleagues modified a distributed application

based on asynchronous message passing so that it used the decomposed stubs. The custom

mapping made it possible for the application’s interfaces to be defined by CORBA IDL, and

the Flick-generated stubs replaced the application’s previously hand-coded communication

substrate.

Eide et al. observed that the decomposed stubs supported communication patterns that
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could not have been accommodated by the standard CORBA IDL mapping. In particular,

it allowed a server to premarshal common responses, and it allowed a distributed set

of servers to make multiple replies to a single request.1 Eide also noted that in the

decomposed style, local-object optimizations became the responsibility of the application:

a client should invoke a marshaling stub only when the target object is remote. To move

local-object optimizations back into the middleware, Eide and his colleagues suggested that

decomposed stubs could postpone actual request-message marshaling until the request is

sent to a remote object.

To significantly change the data types and functions output by Flick, a developer must

implement a new presentation generator—a nontrivial task, but one that is eased by Flick’s

substantial libraries. Auerbach et al. [11] explored a different approach to the flexible

creation of stubs. Their Mockingbird tool creates stubs from pairs of interface declarations

that define the endpoints of an RPC channel. A programmer provides the datatypes and

function signatures that he or she wants to use at the client and server, and Mockingbird

produces code that implements the connection. This declarative style provides obvious

advantages: it is easy for users to understand, it requires little specification effort from

users, and it allows Mockingbird to produce stubs that refer to existing datatypes in the

client and server programs.

Mockingbird works by deriving a structural correspondence between the two interfaces.

It translates each of the endpoint definitions into an internal representation, called Mtypes,

and then applies rules to find a unique isomorphism between the endpoints’ Mtypes.

The success of this search may depend on type annotations that express constraints: for

example, there are annotations for stating that a field is non-null, that fields do not alias,

that one field gives the length of another, and that a generic container is constrained to

hold instances of a particular type. Mockingbird provides a GUI that allows users to

annotate types as necessary and produce stubs.

Mockingbird allows a user to control RPC-endpoint interfaces in a direct, lightweight,

and flexible manner. Its approach is not incompatible with Flick’s: indeed, Mockingbird’s

Mtypes and annotations are comparable to Flick’s MINT and PRES C intermediate

representations, and one can imagine a Flick presentation generator that would input the

(annotated) signatures of the stubs that a user desires. Because Mockingbird and Flick have

1The application viewed each reply message as a partial response to its original request. The application
had to inform the middleware ORB that it was expecting multiple replies.



117

comparable internal representations, it seems that it would be possible for Mockingbird to

apply Flick-like code optimizations to the stubs that it creates. (Auerbach et al. described

stub-code optimizations in Mockingbird as future work [11].)

It would be challenging, however, to adopt stub signatures as the only means of RPC

specification for large systems. Even for a small IDL specification, an IDL compiler may

produce quite a lot of code, and not all of it is directly related to RPC. More significantly,

IDL specifications control certain details of messaging, such as the order in which the

parameters of an operation are marshaled. A shared IDL specification thus ensures

compatibility between many clients and servers, whereas Mockingbird only addresses

compatibility between two endpoints.

Perhaps for these reasons, a more popular approach to flexible IDL compilation is

through extensible compilers. A common thread in much of this work is that the extension

interface allows a developer to add or tailor a compiler pass that walks over an abstract

syntax tree (AST) that represents an input IDL specification. The AST is the primary

internal representation used by the compiler, and the extension is tasked with producing

code as it walks over the AST. Although this approach can and has been used to tailor the

code produced by IDL compilers, Flick avoided it because ASTs are poor bases on which

to implement the program analyses and optimizations described in Section 2.3.

The omniidl compiler exemplifies the AST-based approach to customizable IDL trans-

lation. It is the IDL compiler included with omniORB [50], a popular and open-source

implementation of the CORBA middleware standard. As described in its manual [49],

omniidl allows developers to write a custom back ends for the compiler. A back end is

expected to walk over the AST representation of an IDL specification, using the Visitor

design pattern [39], and produce output. The omniidl manual describes utility libraries

that make it easier for back ends to manage streams and produce output based on code

templates. It does not, however, make any mention of support for any kind of code

optimization, and indeed, the C++ back end provided with omniidl does not implement

stub-code optimizations like those found in Flick.

Even without optimizations in the generated code, it can be useful to tailor an IDL

compiler to the requirements of particular applications. Welling and Ott describe their

experience in implementing a configurable, template-driven IDL compiler and applying

it to create tailored stubs and skeletons [102]. Similar to omniidl, their compiler was

implemented in two parts: (1) a front end that parses CORBA IDL and produces an
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abstract syntax tree, and (2) a back end that inputs the AST and a set of templates, and

from those produces and stubs and skeletons. Using their new compiler’s extensibility,

they implemented a special back end to produce C++ code for HEIDI, a large and

existing application for testing multimedia software. The back end produced stubs that

incorporated HEIDI’s existing datatypes, and internally, the stubs utilized HEIDI’s library

for inter-object messaging. They suggest that template-driven IDL compilers can be useful

in general, whenever it is beneficial to adapt middleware to particular applications, as

opposed to adapting the applications to standard middleware interfaces. Welling and

Ott also suggest that the strengths of their approach are complementary to those of

Flick, because while their templates do not easily support optimizations during code

generation, it is easier for a developer to write a template than a new Flick component.

They suggest [102, page 412]: “A good strategy may be to utilize the template approach

when code-generation flexibility is desired, but resort to writing a custom Flick back-end

for incorporating sophisticated optimizations.”

IDLflex is another compiler that achieves code-generation flexibility through a template-

driven back end [83]. Implemented by Reiser et al. for use in the AspectIX middleware

system [53], IDLflex is structurally similar to the two compilers discussed above. The

front end, which is not designed for extensibility, parses a CORBA IDL specification

into an internal AST. Subsequently, the back end processes a template to translate the

AST representation into stubs and skeletons. Reiser and his colleagues state that this

architecture made it simple for them to experiment with code generation for AspectIX.

In comparison to Flick, “which urges the programmer to write C++ code for complex

mapping changes” [83, page 8], Reiser et al. state that changing the output of IDLflex

is an easy and rapid process. The IDLflex template language is a custom, XML-based

programming language designed for producing text; it is not well suited to performing

code optimizations like those that Flick performs.2

Swint et al. implemented another flexible IDL compiler that relies on XML: the Infopipe

Stub Generator (ISG), which was built using the “Clearwater approach” to code generation.

The dual foundations of the Clearwater approach are, first, to use XML as the basis of a

compiler’s intermediate representations, and second, to use XSLT (Extensible Stylesheet

2Subsequent to the work described in Chapter 2, Tim Stack implemented an XML-based and template-
driven code-generation system for Flick [35]. The template-driven system was used to produce “boilerplate”
code, primarily for the CORBA C++ language mapping. It complemented the CAST-based output system,
described in Chapter 2, which was used to produce optimized stubs and skeletons.
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Language Transformations) to implement the compiler’s passes. Unlike IDLflex, which

transforms an XML template into target code in a single pass, the output of a Clearwater

pass is generally an XML document with target code embedded: i.e., annotated or “marked

up” code. The XML markup identifies semantically meaningful points in the generated

code. Because a Clearwater compiler pass both consumes and outputs an XML document, it

is straightforward to implement a complete compiler as a pipeline of XML transformations.

The last stage of the pipeline removes all remaining XML markup, leaving only the final,

generated code.

Swint and his colleagues identified the advantages their XML-based approach. First,

it supports extensibility. Because XML is generic, it is suitable as an intermediate

representation for compilers of many languages (not just IDL compilers, for example).

XML’s genericity also makes it trivial for a compiler author to define the XML tags

that he or she needs to implement any particular compiler. Second, XML and XSLT

support flexibility. XSLT and its related languages, including XPath, allow programmers

to write transformations are that robust in the face of many structural changes to the XML

formats on which they operate. Thus, compiler developers can often make changes to the

intermediate representations of programs without needing to make compensatory changes

in their XSLT-defined compiler passes. Third, Clearwater supports modularity. Separate

code-generation steps can be easily organized as separate compiler passes. To the extent

that separate passes operate on different parts of an XML tree, they can be independent.

In addition, the pipeline approach allows a developer to insert new passes—perhaps

application-specific transformations—into an existing compiler in a modular way.

The Infopipe Stub Generator is implemented using the Clearwater approach. From an

Infopipe specification (written in XIP, and XML-based language), ISG produces C and C++

implementations of the stubs needed to implement the Infopipe, and well as Makefiles for

directing compilation. Beyond leveraging the Clearwater framework itself, ISG exposes

Clearwater’s flexibility to users by supporting stub customization through aspect-oriented

programming [28]. The ISG code-generation process leaves XML tags in its output; these

tags identify meaningful “join points” in the generated code. A pass called the AXpect

weaver then runs to apply user-directed transformations to the code. Swint et al. state

that they found this to be an effective way to manage quality-of-service concerns in the

generated code. After the AXpect weaver runs, the last stage of the compiler removes

remaining XML markup.
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In comparing the Clearwater approach to Flick, Swint et al. state that their code gener-

ator “adopts an intermediate format for flexibility like gcc [the GNU Compiler Collection]

and Flick” [96, page 152]. Although it is true that the intermediate representations of

Clearwater and Flick are both designed to support flexibility, they are quite different in

their details. Clearwater’s use of XML achieves independence from the concrete input and

output languages that it processes; indeed, the Clearwater approach is not even specific

to IDL compilation (although any compiler pass implemented atop Clearwater would be

necessarily specific to some aspects of the intermediate representation that it processes).

In contrast, Flick’s intermediate representations were designed to provide flexibility only

within the domain of IDL compilation. An advantage of Flick’s intermediate representations

is that they are designed to support stub-code optimization. Clearwater’s intermediate

representations and transformation passes are essentially template-based, and as discussed

previously, template processing is not well suited to the kinds of optimizations that Flick

performs. In discussing run-time performance, Swint et al. state that “our Clearwater

architecture poses no inherent limit on the generated code when compared to a traditional

generation tool like rpcgen” [96, page 151]. As explained in Section 2.4, Flick-generated

stubs have significantly greater marshal throughput than those produced by rpcgen.

The Infopipe Stub Generator supports flexible code generation through aspect-oriented

programming: an ISG user controls the set of aspects that should be “woven” into the

code produced by the stub compiler. Zhang and Jacobsen explored a similar approach

to flexibility [106]. They performed an aspect-oriented refactorization of ORBacus, an

open-source implementation of CORBA, to make it possible for an application developer

to tailor ORBacus to the needs of the application: not just tuning the code produced by

ORBacus’ IDL compiler, but also the code within the middleware runtime. They identified

three significant features of the CORBA middleware and modularized these into aspects,

using the AspectJ programming language. They also made the IDL compiler aspect-aware

by implementing two features. The first, called API splitting, allowed a user to state

that certain parts of an input IDL interface should be implemented by an AspectJ aspect.

In effect, this allowed a user to flexibly subset the translation of an IDL interface. The

second IDL compiler feature was an option to exclude local-object optimizations from the

generated stubs. Both features were implemented as aspects that are applied to the IDL

compiler itself.

The flexibility provided by Zhang and Jacobsen’s approach is essentially feature
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subsetting. This is useful but different from the type of flexibility enabled by Flick:

Flick’s intermediate representations are designed to support multiple IDLs, presentation

styles, and message transport systems, not just the subsetting of a single “base” mapping

from IDL to stubs. Flick is also designed to support optimization of the generated code.

Feature subsetting can lead to performance improvements in principle, but the aspects

implemented by Zhang and Jacobsen do not relate to message marshaling, and their

measurements show that their aspects have little or no effect on the run-time performance

of their generated stubs and skeletons [106]. Nevertheless, their aspect-oriented approach

seeks to tailor both the IDL-generated code and the middleware runtime library. Flick, on

the other hand, does not address flexible configuration of the middleware runtime. Zhang

and Jacobsen also used aspect-oriented programming to introduce features into their IDL

compiler—a relatively lightweight approach to extensions.3 Flick, conversely, is designed

for heavier-weight extensions. To extend Flick, a compiler developer is expected to write a

new module, albeit atop Flick’s significant libraries.

The Abacus system by Zhang et al. was a more complete aspect-oriented refactoring of

ORBacus [105], with more middleware features and modularized within aspects. Abacus’

configuration system, called Arachne, included an expanded version of their compiler

described previously. Compared to their previous work, a major improvement in Abacus

and Arachne was the largely automatic handling of application-required features and

those features’ dependencies. Experimental results showed that Abacus could synthesize

middleware that met applications’ requirements and that the synthesized middleware

was superior to uncustomized middleware in terms of static code size and dynamic

memory use. The optimization of these metrics is unaddressed by Flick’s existing

components, and as previously noted, Zhang’s techniques customize the middleware

runtime library whereas Flick does not. Experimental results [105, 107] also showed that

Abacus’ approach to synthesis—feature subsetting—continued to have little to no effect on

the time required to perform client-server RMI. In summary, Abacus and Flick address

different but complementary goals, both in terms of middleware flexibility and middleware

optimization.

3Zhang and Jacobsen do not, however, provide evidence that the IDL compiler they used was designed
with aspect-oriented extension in mind. They used the IDL compiler from JacORB, another open-source
implementation of CORBA, in their study.
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5.1.2 Stub and Skeleton Optimization

The work described in the preceding section focuses on flexible or extensible IDL

compilation. Flick also influenced work in optimizing compilation, i.e., techniques for

producing stubs and skeletons that execute quickly at run time.

For example, Gokhale and Schmidt [46, 47] cite Flick as an influence in their efforts to

create an optimizing IDL compiler for TAO, a popular and open-source implementation

of CORBA. The TAO IDL compiler generates stubs and skeletons that use an IIOP

marshaling library, which Gokhale and Schmidt optimized according to seven optimization

principle patterns [47, page 1678]: “1) optimizing for the common case; 2) eliminating

gratuitous waste; 3) replacing general-purpose methods with efficient special-purpose

ones; 4) precomputing values, if possible; 5) storing redundant state to speed up expensive

operations; 6) passing information between [layers]; 7) optimizing for processor cache

affinity.” Whereas Gokhale and Schmidt implemented these optimizations by hand in

their IIOP library, Flick implements most of them as part of the compile-time analyses it

performs. For example, Gokhale and Schmidt optimize for the common case by inlining

method calls. Flick performs inlining as part of code generation (Section 2.3.3). Similarly,

optimizations 2 through 4 are immediate consequences of the fact that Flick produces

specialized marshaling code in every stub, as opposed to producing stubs that rely on a

message-marshaling library. Optimization 5 refers to keeping state in TAO’s IIOP library,

such as the marshaled sizes of structures; Flick determines such values at compile time.

Flick also performs optimization 6 at compile time. A Flick back end deals with the entire

process of marshaling or unmarshaling a message and, in so doing, performs inter-layer

optimizations.

Only optimization 7, careful cache utilization, was addressed by Gokhale and Schmidt

and not by Flick. Gokhale and Schmidt improved instruction-cache behavior by manually

restructuring large functions in their IIOP engine into smaller functions and by generating

stubs that use interpretive rather than compiled marshaling. These optimizations are

particularly important on the embedded platforms that were the target of Gokhale and

Schmidt’s work [46, 47]. Flick’s existing back ends were not designed with embedded

targets in mind; its architecture, however, would allow a developer to implement a new

back end to create stubs tailored for embedded systems. This would allow Flick to address

the cache concerns that were addressed by the TAO IDL compiler. In the other direction,

Gokhale and Schmidt stated that their future work included extending the TAO IDL
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compiler to produce compiled stubs based on the optimizations provided by Flick [46, 47].

Gokhale and Schmidt achieved performance improvements by carefully engineering

the libraries used by IDL-derived code. Flick eschews clever runtime libraries and instead

implements domain-specific optimizations at compile time (Section 2.3). Muller et al.

explored a third approach to RPC performance optimization. They applied partial

evaluation—a general-purpose optimization technique, rather than a domain-specific

one—to the stubs produced by an IDL compiler and the runtime library used by those

stubs [71, 72].

Muller and his colleagues used the Tempo partial evaluator [15] to statically optimize

stubs and skeletons produced by rpcgen (the standard Sun RPC compiler) along with the

library code used by those stubs and skeletons. The structure of the standard Sun RPC

implementation consists of several thin layers: Tempo was able to track the propagation

of known values across these layers. By performing function inlining across layers and

context-specific specialization of the inlined function instances, Tempo was able to eliminate

numerous sources of run-time overhead and yield optimized Sun RPC stubs and skeletons.

Muller et al. summarize the benefits they obtained [71, page 240]: “In our experiment, the

optimized Sun RPC runs up to 1.5 times faster than the original Sun RPC. In addition, the

specialized marshaling process runs up to 3.75 times faster than the original one.”

A central advantage of partial specialization is that it is general: Muller et al. demon-

strated that it is possible to optimize IDL-derived code and RPC libraries automatically

and without incorporating an optimizer into the IDL compiler itself. On the other hand,

they noted that not all optimizations are within the reach of partial evaluation. They stated

that the structure of the Sun RPC stubs and libraries hid some optimization opportunities

from Tempo, and in some cases, Muller et al. modified Sun RPC code so that Tempo

could specialize it. Of Flick in particular, they stated [71, page 247]: “Due to its flexible

internal architecture, [Flick] can match the characteristics of the target machines and

implement aggressive optimizations that [go] beyond the scope of partial evaluation.”

Their experiment suggests that general-purpose techniques, such as partial evaluation, and

domain-specific techniques are both useful for optimizing IDL-derived code. Moreover,

each can address concerns that are outside the scope of the other. For example, an IDL

compiler can produce code in different styles to meet users’ requirements; in Flick’s case,

this includes flexible stub presentation styles. A partial evaluator can then optimize the

generated stubs and skeletons in conjunction with other program code, i.e., code that is
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outside the IDL compiler’s control and view.

Muller et al. used Tempo to optimize stubs and skeletons that were produced statically,

i.e., before the communicating client and server programs executed. Kono and Masuda

used Tempo to specialize stubs that were created dynamically [61]. Kono and Masuda

implemented an RMI framework in which senders encode messages in the native object

formats of the receivers. This is a potential performance optimization: in comparison

to systems such as CORBA and ONC RPC, in which the sender and receiver must each

convert between its native data format and a platform-neutral message format, Kono

and Masuda’s system avoids one time-consuming conversion step. For this to yield a

performance improvement, the sender’s marshaling code must be fast, even though the

receiver’s data format is not known until run time. Kono and Masuda address this problem

by using Tempo to optimize marshaling routines that the sender produces at run time,

after the receiver’s data format is known.4

In Kono and Masuda’s system, client-server interfaces are defined in an IDL. For each

IDL-defined data type, the IDL compiler produces a generic marshaling routine that takes

a layout description as a parameter: the stub marshals an instance of the data type into a

buffer according to the layout description. (Layout descriptions are defined in a language

that is similar to Flick’s MINT IR, with some annotations similar to those described by

Flick’s PRES C IR.) At run time, to initiate communication across an IDL-defined interface,

a client and server exchange layout descriptions: each tells the other about its native

representations of the data types relevant to the interface. Each then invokes Tempo to

produce optimized marshaling code: at each side, Tempo partially evaluates the generic

marshaling routines with respect to the other side’s layout description. The result is two

sets of dynamically compiled stubs, one in the client and one in the server, each side

specialized for communication with other side. Kono and Masuda report that in their

4Additional problems must be overcome in order for dynamically compiled stubs to yield performance
improvements in practice. Most notably, the cost of dynamic compilation is run-time overhead. For dynamic
compilation to yield an actual performance increase, the total benefit of the dynamically produced stubs must
be greater than the start-up cost of producing them; achieving this often means that the stubs must be invoked
many times so that the cost of dynamic compilation can be amortized over many stub invocations. Kono
and Masuda do not discuss this issue [61]. They also do not discuss the problems that stem from requiring
a sender to keep multiple versions of a single stub, one per receiver data format. They also do not discuss
the fact that sender-makes-right may not eliminate data copying at the receiver. Whereas Kono and Masuda
apparently focus on message data formats only, Flick’s analysis for eliminating data copying at the receiver is
based on the format of the encoded data and the presentation of that data, e.g., rules about the allocation and
life cycles of objects at the receiver (Section 2.3.1).
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experiments, the marshal throughput of their specialized stubs was 1.9 to 3.0 times greater

than the marshal throughput of equivalent stubs that use the Sun XDR library [61].

With respect to Flick, Kono and Masuda [61, page 315] asserted that Flick’s optimization

techniques “will be able to be accommodated to our generic serializers. The more efficient

a generic serializer is, the more efficient the specialized serializing routine is.” This restates

the claim made previously in this section that both general-purpose and domain-specific

techniques are useful for optimizing IDL-derived code: Flick-like compilers and partial

evaluators have complementary strengths.

There is ongoing interest in general-purpose middleware that is both flexible and

optimizing. Zalila et al., for example, described their efforts [104] to implement an

optimizing IDL compiler for PolyORB [101], a “schizophrenic” middleware platform for

Ada programs. PolyORB supports multiple application-development standards including

CORBA, DSA (the Distributed Systems Annex of Ada 95), and MOMA (Message-Oriented

Middleware for Ada); it also supports multiple protocol standards including GIOP and

SOAP. Moreover, PolyORB allows these front-end and back-end personalities to be paired

in different ways, and it supports interoperability between applications that are written

according to different standards. Such mix-and-match, run-time interoperability goes

beyond what Flick sought to provide.

PolyORB’s standard front and back ends communicate through a Neutral Core Mid-

dleware layer, in which data are encapsulated in self-describing units (the equivalent of

CORBA’s Any type). This results in high run-time overhead: in every round-tip RPC, there

are eight points at which data are converted to or from the neutral intermediate format.

Zalila implemented a new IDL compiler for PolyORB, called IAC, that avoids this overhead.

For CORBA-derived interfaces, IAC can produce stubs that target GIOP messaging directly.

IAC implements some optimizations that Flick does not; notably, it produces skeletons

that use perfect hashing to dispatch messages received by a server (a technique previously

implemented in TAO [45]). Conversely, Flick implements optimizations that IAC does not.

In their publication about IAC, for example, Zalila et al. stated that statically calculating

the size of the message buffer was ongoing work [104].

Although Zalila et al. criticize Flick’s architecture, the structure of IAC is similar to

Flick’s in several respects. Most interestingly, IAC includes multiple implementations of

the compilation step that translates an IDL-derived AST into constructs of Ada. These

tree converters implement different presentations of the IDL-defined interface. Whereas
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Flick uses different presentation generators to implement separate presentations (e.g.,

one for CORBA and another for ONC RPC), IAC uses them to implement parts of a

single presentation—in particular, different output Ada files. This reflects a difference

in the intended scopes of IAC and Flick. IAC was designed to be a “flexible and

easily maintainable” CORBA IDL compiler for Ada [104, page 24]; Flick on the other

hand was designed to support a broader range of input IDLs, presentation styles, and

message transport systems for C and C++. This difference is also seen in the intermediate

representations used by the two systems. Whereas IAC is driven by ASTs for CORBA IDL

and Ada, Flick uses not just AST-like structures but also other IRs (PRES C and MINT) to

communicate information flexibility between compiler stages.

With respect to this dissertation, PolyORB and the IAC compiler are notable because

they demonstrate ongoing interest in IDL compilers that, like Flick, combine flexibility

and optimization. Flick apparently remains unique, however, as a “kit” for building IDL

compilers that address flexibility and optimization goals at the same time.

5.1.3 Optimizing IDL Compilation for L4

Alongside its back ends for general-purpose middleware standards, Flick included

back ends to produce stubs and skeletons for two operating systems, Mach [4] and

Fluke [37]. These back ends were designed to be used the construction of microkernel-

based operating systems—i.e., to implement efficient, RPC-based communication between

the components of a microkernel architecture. Such optimized RPC has long been a

concern of microkernel implementers. Bershad et al. described a lightweight remote

procedure call implementation for Taos operating system more than twenty years ago [13],

and since then, many microkernel efforts have included an IDL compiler to implement

high-performance RPC atop the microkernel’s basic IPC mechanisms. Mach included MIG,

the Mach Interface Generator [73]; Fluke relied on Flick; Coyotos included the CapIDL

compiler [89]; the in-development Barrelfish operating system includes the Flounder

compiler [12]; and uniquely, the L4 microkernel family has utilized a series of different

IDL compilers over time. The design of IDL compilers for L4 has been a recurring research

topic, one driven by the desire for a compiler that is both flexible and extremely optimizing.

Flick directly influenced this work.

Indeed, Volkmar Uhlig created one of the first IDL compilers for L4 by extending Flick:

he implemented a new presentation generator and a new back end to create stubs and
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skeletons for use in multi-server operating systems built atop an L4 microkernel [97]. The

extension demonstrated that Flick could be extended by people other than the primary

Flick developers. However, Uhlig and his colleagues believed that their work was only

partially successful. The problem was the Flick-generated stubs were too slow.

They used an I/O microbenchmark to measure the performance of their multi-server

OS implementation, called SawMill Linux, against the performance of ordinary Linux.

They found that the measured I/O operation required approximately 500 more cycles in

SawMill Linux than it did in normal Linux—but they were expecting an overhead of only

200 cycles. Geffault et al. explained the cause of the unexpected overhead [43, page 114]:

To our surprise, an important part of the problem seems to be the generated
stub code. We expected cheap stubs since the Flick IDL compiler generates
C code such that all its operations are inline generated in the user program.
However, the code effectively generated by gcc [the C compiler] uses about
150 machine instructions for any client stub, mostly useless copies to and from
local variables. . . . [It] is clear that an improved code generation facility has to
be developed that generates near-optimal code which we found to be about
30 instructions.

In a subsequent publication by Haeberlen et al. [52, page 31], the SawMill project

researchers further described the inefficiency of Flick-created stubs for SawMill Linux:

[When] using the Flick IDL compiler for the SawMill Linux file system, we
found that the generated user-level stub code consumed about 260 instructions
per read request. When reading a 4K block from the file system, the stub
code adds an overhead of about 17% due to stub instructions. (The stub code
may also [generate] further indirect costs through side effects such as cache
pollution.) For an industrial system, such overheads can no longer be ignored.

Uhlig and his colleagues did not formally characterize the causes of the run-time

overhead in the Flick-generated stubs they produced. It is not clear, for example, how

much overhead might be attributable to missing features in the L4 back end (a back end

that Eide et al. did not implement), attributable to shortcomings in Flick’s analyses, or

due to missed code-optimization opportunities by the C compiler. All of these are likely

contributors. Aigner wrote, for example, that stubs produced by Flick’s L4 back end make

a run-time choice between “long IPC” and “short IPC,” which results in unoptimized

code for the short-IPC case [5, page 18]. The stubs presumably make this choice even

when Flick’s message-size analysis could have be used to distinguish between the two IPC

mechanisms at compile time. With respect to more general code optimization, as explained

in Section 2.3, Flick primarily implements domain-specific optimizations and expects the

target-language compiler to implement more general code optimizations. Haeberlen et al.
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suggested that this was an ineffective strategy in practice [52] because the code output by

Flick was too complicated.

What is clear from the quotes above is that run-time performance is a paramount

concern for many operating-system developers. Overhead is measured not in milliseconds

or microseconds, but in machine cycles and individual instructions. For an L4 IDL

compiler, meeting such demanding performance requirements requires detailed and

specialized knowledge of the target L4 environment, C compiler, and hardware platform.

The developers of L4-based platforms felt that adding this knowledge to Flick would be

difficult: Aigner estimated that the effort required to appropriately extend Flick for L4

would be similar to the effort required to implement a new IDL compiler [7, page 41].

The developers of L4-based systems therefore implemented a new generation of

optimizing IDL compilers, ones designed specifically for L4. Andreas Haeberlen developed

the IDL4 compiler at the University of Karlsruhe [63]. Ronald Aigner at the Dresden

University of Technology implemented DICE, the DROPS IDL Compiler [8], and Nicholas

FitzRoy-Dale at the University of New South Wales created Magpie [29].

Haeberlen’s IDL4 compiler was specifically designed to “exploit specific knowledge

of the microkernel, the hardware architecture, and the compiler that are being used, as

well as certain characteristics of the application code” [51, page 4] in order to produce

highly optimized RPC code for several versions of the L4 microkernel. Different versions

of L4 support different features for IPC; with its built-in knowledge of specific kernel

versions, the IDL4 compiler can tailor its output to make the best use of any supported

kernel. An example of architecture-specific optimization in IDL4 is its ability to inline

assembly-instruction sequences (x86) into the C code that it produces: it does this to

generate stubs that are more efficient than those that would be produced by the C compiler

in use. The IDL4 compiler uses knowledge of the target C compiler in other ways

as well. For example, IDL4 outputs compiler-specific annotations into C code (e.g., to

change the function-calling convention) and avoids constructs that IDL4 knows lead to

optimization problems in certain compilers. IDL4 also implements an especially clever

compiler-specific optimization called direct stack transfer [51, 52]. This optimization avoids

a message-marshaling step by copying the client stub function’s activation record (on the

client’s stack) to the server’s stack; the server then uses the copied activation record to

invoke its RPC service routine. The implementation of this optimization requires IDL4

to generate assembly code, not only because it must copy a stack frame but also because
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it must specially lay out the stack frame to support features such as out parameters and

register-based data transfer for small messages. Finally, IDL4 supports IDL-level attributes

that allow it to specialize generated code for particular uses. It provides attributes for

specifying the typical and maximum sizes of variable-size data, for example, as well as for

specifying caching policies for flexpages, which in L4 describe regions of virtual memory.

Haeberlen [51] compared IDL4-generated stubs against those produced by the L4

version of Flick described previously. Over a set of microbenchmarks, he found that

Flick-generated stubs contained between two and seven times more instructions than

the equivalent stubs generated by IDL4. The Flick-generated stubs were always slower,

too. Haeberlen reported [51, page 36]: “The IDL4 stubs we tested were 1.5–3 times

faster than the corresponding Flick stubs; for domain-local servers, we even observed

speedups of an order of magnitude. . . . [T]his improvement can only be explained by the

special platform-specific optimizations we applied in IDL4.” For an I/O benchmark atop

SawMill Linux, Haeberlen concluded that in comparison to Flick-generated stubs, the use

of IDL4-generated stubs improved the benchmark’s throughput by 13% [51, 52].

In comparison to Flick, IDL4 trades off certain kinds of flexibility in order to produce

stubs that have high run-time performance. It incorporates specialized knowledge of the

L4 toolchain—knowledge that Flick lacks—and thus can produce highly optimized code

for L4. This specialization also makes IDL4 rigid, however, and sensitive to changes in the

toolchain. Haeberlen et al. suggested that generalizing the techniques use by IDL4 would

be an “obvious next step” and than incorporating those techniques into Flick would be

“an ideal solution” [52, page 38].

Concurrent with Haeberlen’s work on IDL4, Ronald Aigner implemented DICE [6, 7],

another IDL compiler for the L4 microkernel family. DICE and IDL4 are similar in many

respects: they both process interface descriptions written in CORBA IDL and DCE IDL,

and they both produce stubs and skeletons with high run-time performance. They also

use detailed knowledge of L4 and several similar techniques produce fast code. For

example, both can inline (x86) assembly instructions into their generated stubs, and both

can marshal a stub’s parameter values in an order that differs from the order in which

they appear in the stub function’s signature. (Both compilers move fixed-size parameters

to the front of the message buffer.) DICE does not, however, implement the direct stack

transfer optimization that IDL4 implements.

Although DICE and IDL4 are similar, they are separate compilers with separate
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strengths, and their primary differences lie in two areas. The first is the particular

versions of L4 that each best supports. The second area is flexible presentation: DICE

supports annotations and stub styles that help users fit IDL-derived stubs into their existing

programs.

Aigner compared stubs produced by DICE and IDL4 in terms of their run-time

performance on two versions of L4 [7]. Using a set of performance benchmarks, he

identified ten RPC functions that were most commonly invoked in the benchmarks—and

thus most important to their overall performance. On the “Fiasco” version of L4, the

stubs produced by DICE were significantly faster than those produced by IDL4: for most

of the RPC functions, the average round-trip time of the DICE-produced stubs was less

than half that of the IDL4-produced stubs. Aigner also included Flick-derived stubs in

his experiment. He found that they significantly outperformed IDL4 stubs, but that they

were mostly (but not always) outperformed by DICE stubs. He explained the results of his

experiment [7, page 75]:

Analysis of this data reveals that IDL4 generated code is outperformed by all
other stubs. This can be due to the fact, that IDL4 originally targeted L4 version
X.0 [the “Hazelnut” version of L4]. The support for L4 version 2 [“Fiasco”]
and L4 version X.2 (or version 4) has been added later and not much effort
was spent on generating fast stubs. DICE generated code is faster than Flick
generated code for most functions and especially for register IPC. For these
functions its full optimization potential is recognizable.

On the “Hazelnut” version of L4, which is well supported by IDL4, the qualitative

results were significantly different. When Aigner ran his RPC benchmark on Hazelnut,

he found that IDL4 stubs were generally faster than those produced by DICE. He

explained that this was due to the direct stack transfer optimization implemented by

IDL4 for Hazelnut [7, page 77]: “The gain due to optimization is about 300 cycles,

which is 7%. This shows that architecture specific optimizations have a noticeable effect

on performance.” A more general lesson from Aigner’s experiments might be that

platform-specific optimizations in IDL compilers are brittle with respect to changes in

the underlying platform. This conclusion is suggested not only by the differing relative

performance of DICE- and IDL4-produced stubs across different versions of L4, but also

by the differing relative performance of IDL4- and Flick-produced stubs in Aigner’s and

Haeberlen’s work [7, 51]. The experiments performed by Aigner and Haeberlen are not

directly comparable, but their differing qualitative results for IDL4 and Flick are worthy of

future study.
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A second difference between IDL4 and DICE is that includes several features that

allow users to tailor IDL-derived stubs to their needs. For example, it allows users to

direct the compiler to use predefined data types—e.g., those already defined by a client or

server program—when it translates IDL definitions into C-language stubs and skeletons.5

When DICE-produced code must marshal or unmarshal an instance of a user-defined

type, it invokes a user-defined function to convert between the user-defined type and

its on-the-wire message representation (which the user must also specify). DICE also

supports message-passing stubs and a “decomposed” stub presentation style, similar

to the one implemented by Eide et al. for Flick [24, 25], in which message marshaling

and unmarshaling are separated from message transmission and receipt. Finally, it has a

number of convenience features including the ability to insert tracing code into stubs and

the ability to produce appropriate main loops for servers. Aigner states that DICE uses the

Abstract Factory design pattern [39] to support multiple code-generation back ends. This

is similar to Flick’s support for multiple back ends (although one might say that Flick’s

back-end extension mechanism is more akin to Strategy than Abstract Factory).

Flexibility and extensibility were major motivators of a third IDL compiler for L4: the

Magpie compiler [29], implemented by FitzRoy-Dale. In contrast to Flick, IDL4, and DICE,

which all construct their output using AST representations of C code, Magpie was driven

by code-generation templates.6 This strategy was chosen to address kernel-specificity

problems as described above: e.g., that DICE and IDL4 support a limited set of kernels,

and their optimizations are brittle with respect to changes in L4.

FitzRoy-Dale described the problems that motivated his work [30, page 43]:

. . . interface compilers for microkernels remain remarkably difficult to adapt
to changing interface requirements. There are three major reasons for the
difficulty: firstly, they tend to remain tightly-coupled to a small selection of
kernels; secondly, the core interface-generation routines tend to be difficult to
modify; and, finally, representation of target code is primitive compared with
that offered by source-to-binary compilers.

Magpie’s template system was intended to make it easy for L4 developers to maintain

the IDL compiler—e.g., to keep Magpie up to date with respect to continual changes in L4.

5The IDL4 compiler can import type declarations from a C++ header file, which it translates into IDL.
This is different from DICE’s support for user-defined types. DICE supports user-defined types through IDL
annotations on individual operation parameters and through user-defined type-conversion functions.

6FitzRoy-Dale [30] references the template-based code-generation system that was added to Flick by Tim
Stack [35], and notes that it is not used by most of Flick’s back ends.
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Moreover, the template system was intended to facilitate modifications by developers who

were not familiar with the internals of the Magpie compiler. FitzRoy-Dale reported that

the template system was only partially successful in meeting these goals [30, page 45]:

“Perhaps the best proof of both the success and failure of Magpie is the fact that after more

than a year of use, many different templates were successfully developed to accommodate

changing requirements, but the sole developer of new templates was the implementor of

Magpie [FitzRoy-Dale himself].”

Template-driven code generation can make it difficult for an IDL compiler to perform

optimizations on the code it generates, as described in Section 5.1.1. Magpie does

implement some important optimizations—notably, like DICE and IDL4, Magpie supports

multiple back ends for multiple target platforms, and it can output assembly instructions

into the C code that it generates. However, little to nothing has been published about

the run-time performance of Magpie-generated stubs to date. Aigner, for example, only

compared DICE to Magpie in terms of the amount of code in the compilers themselves—not

the output stubs’ performance [7]. Rather than focusing on optimization with the

context of a template-driven compiler, FitzRoy-Dale suggested replacing templates with

a transformation system based on logic programming [30]. (He characterized Flick’s

approach—the use of multiple intermediate representations for separating concerns—as

“inflexible” [30, page 46].) The new IDL compiler he proposed, Currawong, was not

implemented. Currawong subsequently became the name of FitzRoy-Dale’s tool for

“system software architecture optimization” [31, 32].

Flick was often cited by the creators of IDL4, DICE, and Magpie for its flexibility

and optimization features; in addition, Uhlig’s extension of Flick for L4 was used as a

benchmark for the evaluation of performance-optimized RPC code. Work in the area of

optimized RPC for microkernels is ongoing. This is exemplified by the Flounder IDL

compiler [12] for Barrelfish, a current operating system project at ETH Zurich. For the L4

microkernel family, recent work has included a proposal to obtain flexible and optimized

RPC code by abandoning IDL compilers altogether. Feske developed a dynamic RPC system

in which microkernel programmers write stub code by hand using C++ stream operators,

as illustrated in the following example [27, page 42]:

Ipc_client client(dst, &snd_buf, &rcv_buf);

int result;

client << OPCODE_FUNC1 << 1 << 2

<< IPC_CALL >> result;
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Feske argues that such code is easy for kernel developers to write, understand, and

maintain. He claims that in contrast the effort required to develop, validate, and maintain

an IDL compiler, the effort demanded by the C++ stream library is minimal. He points

out that although hand-written marshaling code admits the possibility of message-format

mismatches between clients and servers, such errors can be minimized by encapsulating

actual communication code in RPC stubs (as IDL compilers do) and then sharing the stubs’

function signatures across client and server programs.7

Feske presents results to show that the run-time performance of dynamic RPC stubs

can be better than the performance of equivalent DICE-generated stubs. He attributes

this result to the relative simplicity of dynamic RPC stubs and the ability of modern C++

compilers to perform sophisticated optimizations [27, page 45]: “The relatively rigid code

as generated by DICE leaves less potential for automated compiler optimization than

the high-level C++ stream code.” Aigner compared a similar experiment, comparing the

run-time performance of DICE-generated stubs and dynamic RPC stubs, and reached a

qualitatively different conclusion [7, page 75]. In Aigner’s experiment, DICE-generated

stubs consistently (but not always) outperformed dynamic RPC stubs.

Although the reported performance results are inconclusive, they suggest that the

complexity of IDL compilers may be unwarranted for microkernel development. As

Bershad et al. observed [13], the RPC interfaces in microkernels are generally simple; the

primary optimization problem lies not in handling complex data types but in fully utilizing

the microkernel’s features for IPC. A stream abstraction for RPC, combined with the

optimizations implemented by modern C++ compilers, may be sufficient for addressing

such issues. Flick’s optimizations generally operated at a higher level of abstraction: their

intent was to perform domain-specific optimizations that were outside the scope of the

target language compiler. This included analyses over whole messages and complex data

types, which are used in RPC-based systems in general but perhaps not commonly within

microkernels.

On the other hand, even if Flick’s complex optimizations are not often required, this is

not to say that IDL compilers for microkernels have no optimizations to offer. For example,

it is not apparent how the direct stack transfer optimization, implemented by IDL4, would

be easily achieved in Feske’s dynamic RPC system. The development of IDL compilers for

7Feske’s dynamic RPC work is thus similar in spirit Gokhale and Schmidt’s work in optimizing the
stream-based IIOP layer in TAO [46, 47], which was discussed in Section 5.1.2.
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operating system development is thus not yet over: in fact, Aigner’s [7] and Feske’s [27]

recently published results suggest that future research is warranted.

5.2 Novel Realizations of Design Patterns
Chapter 3 presents a novel technique for the realization of design patterns in software

systems, a technique that separates the static parts of a pattern from the dynamic parts.

The static pattern elements are realized as components or component interconnections that

are fixed at compile time, whereas the dynamic elements are realized as objects or object

references at run time. The static elements are specified in a component-definition and

linking language that is separate from the programming language used to implement the

software system’s parts. By making static elements explicit and obvious, this “two level”

pattern-realization approach can aid static analyses, enable the checking of design rules,

and promote compile-time optimizations that improve run-time performance. Chapter 3

demonstrates the approach using Knit [82], a component language for C, and the OSKit [36],

a set of components for building operating systems.

The work presented in Chapter 3 thus deals with three topics that are unusual in the

design-pattern literature. The first is the idea that a software developer might explicitly

choose between static and dynamic mechanisms for pattern elements, as opposed to

always using the mechanism prescribed by the conventional, object-oriented realization

of a pattern. The second is the application domain: i.e., using design patterns within

component-based operating systems. The third is the more general idea of implementing

object-oriented design patterns in C, which is not an object-oriented language. The

following sections describe work in these three areas.

5.2.1 Controlling Static and Dynamic Structure
The method described in Section 3.3.1 requires that a software architect (1) identify

the parts of a design pattern that correspond to static information about the software

system being developed, (2) “lift” that knowledge out of the implementations of the

system’s components, and then (3) encode that knowledge within component definitions

and connections, which are processed at compile time. This means that at the time the

pattern is applied—i.e., when the system is designed—each pattern element is classified

as either static or dynamic. Subsequent research has addressed the idea that, in some

situations, it is advantageous to defer the choice between static and dynamic realization of

software features. This deferment is enabled by new variability mechanisms that allow
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decisions about static and dynamic binding to be postponed until compile time. In modern

software platforms that support just-in-time compilation, compile time may be very late

indeed in the software deployment process.

Chakravarthy, Regehr, and Eide proposed edicts, a variability mechanism that makes

it possible for a developer to choose between compile-time and run-time bindings for

features within a software system. As described by the authors [14, page 109], the edict

approach “changes the binding time of a feature from being a design-time attribute of a

product line to being an assembly-time attribute of a product.” In other words, the person

who configures a particular software system from parts can decide, for each edict-based

connection, whether the connection should be implemented in a static fashion or a dynamic

fashion. The binding sites for an edict—i.e., the realization of the edict in code—is

implemented using a combination of design patterns and aspect-oriented programming;

Chakravarthy et al. reference the published version of Chapter 3 for describing how design

patterns may be used to implement decisions that are set at compile time.

The binding-time flexibility provided by edicts is useful for creating software product

lines in which different products have significantly different requirements for feature

binding. Chakravarthy and his colleagues demonstrated this flexibility by creating a

product line based on JacORB, an implementation of CORBA with many configurable

features. With edicts configured to support dynamic binding, one can create a full-featured

middleware platform appropriate for resource-rich computing environments. With edicts

configured to use static binding, Chakravarthy created a middleware platform more suited

to a resource-constrained environment, such as a smart phone. Static binding made it

possible for a compile-time analyzer—a tool called ProGuard [64]—to more effectively

optimize JacORB for an embedded environment and for a particular application.

As the authors explained [14, pages 115–116], “The use of design patterns and edicts

does not produce static optimizations by itself. Rather, as we show, our technique allows

static code optimizers to be much more effective.” They performed an experiment in

which they used ProGuard to optimize JacORB for use by a particular application: they

optimized both the original version of JacORB and the version of JacORB with edicts. The

application’s code explicitly selected particular JacORB features: in principle, a program

optimizer could use this information to optimize the original JacORB implementation, in

which features are selected dynamically. The experiment showed, however, that ProGuard

was unable to perform the required analysis. After optimization by ProGuard, the static
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code size of the edict-enabled JacORB was 32.2% less than that of JacORB without edicts.

Based on their results, Chakravarthy et al. concluded that “edicts help to ensure that

opportunities for static optimization are not lost” [14, page 119]. The design-pattern

approach described in Chapter 3 provides a similar potential benefit. Edicts, however,

provide the additional benefit of binding-time flexibility.

Subsequent to Chakravarthy’s publication on edicts, Rosenmüller et al. presented a

different variability mechanism for implementing features that require flexible binding

times [84, 85]. Their approach was based on FeatureC++ [10], an extension of the

C++ language for feature-oriented programming [81]. A feature in FeatureC++ contains a

set of C++ definitions as well as refinements that extend definitions from other features; a

refinement is a mixin that may introduce members to an existing class and extend existing

methods. A complete software product is represented as a stack of features, in the style

of mixin layers [92]. The bottom-most feature provides the base implementation of the

software, and every other feature in the stack implements an extension to the composition

of features below it.

Rosenmüller and his colleagues extended the FeatureC++ compiler to support both

the static and dynamic composition of features [85]. When a software developer requests

static binding for a feature, the compiler combines the code of the feature with the code of

the features that it extends; the composed feature is then compiled as a single unit. Such

combinations of statically combined features are called dynamic binding units [84]. When a

developer requests dynamic binding for a feature, the compiler generates code that will

invoke the feature at run time, if the feature is actually selected at run time. Every class

refinement in the dynamically bound feature becomes a decorator of the base class (in the

style of the Decorator design pattern [39]), and the FeatureC++ compiler transforms the

base class so that it invokes decorators at the appropriate times. The FeatureC++ compiler

supports binding-time choice on a per-feature basis.

Binding-time flexibility in FeatureC++ is thus similar to edicts: in each approach, a

single variability mechanism is designed to support both static and dynamic binding. As

Rosenmüller et al. point out, the edict and FeatureC++ approaches differ in that edicts

are based on hand-implemented patterns and aspects, whereas FeatureC++ implements

binding-time variation through different styles of compilation and code generation [85].

FeatureC++ also supports validation of configurations against feature models, which edicts

do not inherently support [84].
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Several modern languages for aspect-oriented programming, including AspectJ [60],

support aspect weaving at different points in the software-deployment process. Commonly,

they support the incorporation of aspects when the “base code” of the system is compiled,

and they support the incorporation of aspects when the base code is loaded just prior

to execution. This provides a style of binding-time flexibility—but one that is often not

exploited for improving the run-time performance of programs, which is the focus of this

dissertation. Support for multiple aspect weaving times tends to focus on who is able to

deploy aspects within a program—the original developers or “downstream” consumers—

not on the effects enabled by differing weaving times, such as static optimization for

performance and code size.

5.2.2 Realizing Design Patterns in Component-Based
Operating Systems

Chapter 3 demonstrates the novel realization of design patterns with two examples

based on the OSKit [36], a large collection of operating system components. OSKit

components are defined using Knit [82], a component definition and linking language

for systems software, and the functions within components are written in C. The design

of component-based operating systems has been a popular and recurring topic in the

systems research community; notable implementations include the OSKit, MMLite [54],

Pebble [38], Think [26], PECOS [44], BOTS [75], and CAmkES [62]. Knit and the OSKit are

commonly cited as related work in this field. However, it is uncommon for the designers

of component-based operating systems to describe the design or use of their component

collections in terms of design patterns.

The designers of TinyOS are a notable exception to this rule. TinyOS [65] is a component-

based operating system for wireless sensor network devices; its components are written

in nesC [42], a dialect of C with extensions for component-based programming in which

component assemblies are fixed at compile time (as in Knit). Gay et al. present a set of

eight design patterns that are commonly used in the implementation of TinyOS-based

systems [41]. The patterns descriptions follow the “Gang of Four” style developed

by Gamma et al. [39], and in fact, three of the eight patterns are based directly on

the object-oriented patterns presented by Gamma et al.: Adapter, Decorator, and Facade.

Gay and his colleagues describe the structures of TinyOS patterns using the facilities of

the nesC programming language. In particular, nesC components represent statically

defined participants, and nesC component interconnections represent statically defined
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relationships. This kind of pattern structure is similar to the realization of object-oriented

patterns described in Chapter 3. This is seen most clearly in the TinyOS versions of Adapter,

Decorator, and Facade: the TinyOS pattern structures are essentially identical to the results

of applying the method of Chapter 3 to the respective object-oriented patterns, and then

realizing the patterns with Knit. The intent of Gay et al. was to present a catalog of patterns

useful for TinyOS programming, so they do not discuss a general technique for expressing

object-oriented patterns at the level of components (unlike Chapter 3). Although some of

the patterns in the TinyOS catalog are essentially the same as the Knit-based realizations

of the corresponding object-oriented patterns, Gay et al. do not cite Knit or the published

version of Chapter 3 as related work.

SNACK [48] by Greenstein et al. is another component-based operating system for

wireless sensor network nodes. Like TinyOS, SNACK components are implemented in

nesC. Unlike TinyOS, SNACK-based applications are defined through a configuration

language that directly supports certain types of compositions based on common design

patterns. The SNACK composition language provides a transitive arrow connector, for exam-

ple, which allows Decorator-like interposition on inter-component connections. Greenstein

and his colleagues describe the realization of other design patterns in SNACK, which

they characterize as “program methodologies that can improve the behavior of sensor

applications” [48, page 73]. These are based on uses of the transitive arrow connector and

services, which are combinations of primitive components. In comparison to Knit, SNACK

compositions are expressed more abstractly: SNACK’s abstractions allow a programmer to

directly express certain composition styles, such as decoration, that require encoding using

Knit’s notion of explicitly defined component links. The method described in Chapter 3

can be thus been seen as a recipe for encoding relationships that, in some cases, SNACK

can realize more straightforwardly. Greenstein et al. cite Knit and the OSKit as related

work, but do not reference the published version of the work presented in Chapter 3.

A third notable system is Koala [99, 100], implemented by van Ommering et al.: Koala

is a component model and compiler tailored to the production of embedded software for

consumer electronics. Its notions of component definition and linking are similar to those

in Knit. As in Knit, the software within a Koala component is written in C. Also like Knit,

Koala provides a domain-specific language for defining component types and defining

assemblies of component instances.

Unlike Knit’s component-definition language, however, Koala’s language provides
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built-in support for product-line diversity through diversity interfaces and a design pattern

called a switch [100]. A diversity interface imports system-configuration values into a

component: e.g., compile-time constants that represent the selection or deselection of

crosscutting features. This information can be used to generate efficient code when an

assembly of components is compiled. A switch is a component that selects between two or

more components that provide different implementations of the same functionality—for

example, two components that implement control functions for two different pieces of

hardware. The switch’s job is to direct service requests (i.e., function calls) from a client

component to the appropriate service implementation. A switch also has a control interface

that directs the flow of requests through the switch: this is commonly a diversity interface,

which allows the switching decision to be made at compile time. When a switch decision is

set at compile time, Koala is able to perform optimizations such as automatically removing

unreachable components.8

Koala demonstrates the value of realizing certain design patterns at the level of

components and utilizing those patterns to obtain performance benefits at run time—the

benefits that are also the goal of the pattern technique presented in Chapter 3. By

supporting certain patterns in its configuration language, Koala helps to ensure that those

patterns do not become lost among all the component interconnections that are part of

a complete application—a potential problem with the technique described in Chapter 3.

On the other hand, unlike the presented technique, Koala does not address the idea of

realizing object-oriented patterns at the level of component compositions in general.

The Cake language by Stephen Kell also seeks to realize particular design patterns at the

level of components: in particular, the Cake compiler generates adapters for components

written in C [58]. Cake is a declarative, rule-based language for describing how two or

more component interfaces relate. A Cake programmer declares a set of correspondences

between the elements of two or more interfaces; from this specification, which can be

quite sophisticated, Cake creates the code for an adapter that allows components with

the described interfaces to interact. Knit and Koala both had limited inherent support for

interface adaptation through symbol renaming; Cake’s support for adaptation is obviously

8Koala switches are thus related to Chakravarthy’s variability mechanism based on edicts [14], discussed
in Section 5.2.1. A Koala switch modularizes a feature choice, is set by a control interface, and supports static
optimization when the switch is set at compile time. In Chakravarthy’s work, a design pattern modularizes a
feature choice, and the choice is controlled by an aspect (an edict). When the choice is set at compile time, the
pattern and edict promote compile-time optimization.
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much more significant. Chapter 3 describes the correspondence between the object-oriented

Adapter pattern and the design of adapter components, but the method presented there

does not relieve a Knit programmer from the task of actually implementing adaptation

logic. Cake addresses the latter problem. Kell writes that Cake was influenced by Knit,

but that Cake “radically extends [Knit’s] adaptation capabilities” [58, page 339]. Kell cites

the published version of Chapter 3 for arguing that component languages like Knit’s are

sometimes superior for expressing software composition [57, page 9]: “their simplicity

admits more automated reasoning and doesn’t introduced unnecessary dynamism.”

In contrast to the component systems described above, which provide special support

for only a few component-composition design patterns, the OpenCom model by Coul-

son et al. [16] seeks to be more general. As described by Coulson and his colleagues,

OpenCom was designed to be a general-purpose component model for systems program-

ming [16, page 1:3]:

OpenCom tries to maximize the genericity and abstraction potential of the
component based programming model while at the same time supporting a
principled approach to supporting the unique requirements of a wide range of
target domains and deployment environments. This is achieved by splitting
the programming model into a simple, efficient, minimal kernel, and then
providing on top of this a principled set of extension mechanisms that allow
the necessary tailoring.

The OpenCom kernel defines a minimal component model that supports dynamic

component loading, linking, and unloading. Atop this kernel, OpenCom allows a

programmer to define more specialized component frameworks. A component framework

does three things: it provides a set of components to address a focused area of concern, such

as operating-system programming; it defines a model for extending those components;

and it provides constraints on the ways in which components may be extended. A

component framework thus defines an environment for component-based programming

and has significant control over programs within that environment—essentially, it defines

an architectural style [40]. A component framework uses reflective metamodels, provided

by OpenCom, to examine and control the component-based programs defined within

the framework. Coulson and his colleagues report that OpenCom has been used to

implement several types of systems software including middleware, embedded systems, a

programmable networking [16].

The ability to define and enforce an architectural style is a powerful system-building

tool, and one can imagine this power being applied to styles based on component-
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based realizations of design patterns. Section 3.4.1 describes some of the analyses that

Knit provides that are useful for reasoning about the use of patterns within component

assemblies. One expects that OpenCom’s frameworks could provide similar and additional

support for reasoning about component-level patterns.

It is, however, apparent that the overall goals of OpenCom and Knit are somewhat

different. The method described in Chapter 3 identifies the static participants within a

pattern instance and realizes them so as to promote compile-time code optimization. In

comparing OpenCom to Knit, however, Coulson et al. write that Knit’s main shortcoming

is its compile-time component model [16, page 1:38]: “The main limitation of Knit is that

it addresses purely build-time concerns: the component model is not visible at runtime,

so there is no systematic support for dynamic component loading, still less managed

reconfiguration.” Such dynamism is inherent in OpenCom’s model of components. Even

if OpenCom might support reasoning over the use of design patterns among components,

its dynamic component model would hinder compile-time optimizations for performance—

optimizations that are the goal of the novel realizations of variability mechanisms presented

in this dissertation.

5.2.3 Realizing Object-Oriented Design Patterns in C

Chapter 3 shows how object-oriented design patterns can be realized in a dialect of

C with components, with particular focus on “lifting” static pattern participants to the

level of components. A few publications have described the realization of object-oriented

design patterns in plain C, as summarized below. In comparison to the vast literature on

implementing design patterns in object-oriented languages, however, published work on

implementing design patterns in C is quite limited.

To realize any design pattern within code, one must decide how the pattern participants

will be implemented. More particularly, when the C implementation of a pattern involves

run-time “objects,” a programmer must explicitly decide how to represent those objects

in C, because C is not an object-oriented language. A typical programming solution uses

struct types to represent classes: instances of the structure types represent objects at run

time, and function pointers within the structure instances encode dynamically dispatched

methods. This is not, however, the only possible encoding of classes and objects.

In his book about C-based design patterns for embedded systems [23], for example,

Douglass describes three different techniques for implementing classes. The first “is simply
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to use the file as the encapsulating boundary; public variables and functions can be made

visible in the header file, while the implementation file holds the function bodies and

private variables and functions” [23, page 10]. This approach is the plain C analogue of

using Knit component instances as pattern participants, one of the key ideas presented in

Chapter 3. Douglass’ second approach to implementing classes is through struct types: a

class is described by a header file that declares both (1) a structure type and (2) a set of

functions, where each function corresponds to a public method of the class. The functions

are defined in a corresponding implementation file, along with any functions that represent

private methods. Douglass’ third method extends the struct types with function-pointer

members—the typical programming solution already described—in order to support

dynamic method dispatch. The presentation of implementation choices in Douglass’ work,

as opposed to the presentation a single implementation recipe, supports the general claim

of Chapter 3: that it is useful to choose the realization of pattern participants, based on the

context of the pattern’s use, in order to obtain benefits such as performance optimization.

Prior to the publication of Douglass’ book, Petersen published a series of articles

about implementing well-known object-oriented design patterns in C. The first article in

the series presents a pattern for realizing classes: Petersen calls this the First-Class ADT

pattern [76], and it is the same as the second implementation technique presented by

Douglass. Using First-Class ADT, Petersen’s subsequent articles discuss C implementations

of the State [77], Strategy [78], Observer [79], and Reactor [80] patterns. These are largely

straightforward, and in each, pattern participants correspond to data-structure instances

that are created at run time. Unlike Douglass or the work presented in Chapter 3, Petersen

does not explore the idea that a pattern’s participants might be realized in different ways

across different uses of the pattern.

Although publications about design patterns in C are somewhat rare, people in the

design patterns community continue to stress that patterns are meant to be neither

language-specific nor rote. As Jason Smith wrote in his 2012 book about deconstructing

design patterns [93, page 11]:

Patterns are language-independent concepts; they take form and become
concrete solutions only when you implement them within a particular language
with a given set of language features and constructs.

Smith also points out that the application of a pattern is intended to be an activity in

which a programmer makes conscious decisions [93, page 9]:
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Patterns are intended to be mutated, to be warped and molded, to meet the
needs of the particular forces at play in the context of the problem, but all too
often, a developer simply copies and pastes the sample code from a patterns
text or site and declares the result a successful application of the pattern. This
is usually a recipe for failure instead of a recipe for producing a good design.

The pattern-realization technique presented in Chapter 3 is based on both of these

points: patterns as language-independent notions, and patterns as concepts that can be

realized in myriad ways. These points are also evident in Smith’s graphical notation for

describing patterns, called Pattern Instance Notation (PIN), which avoids the object-oriented

constructs of UML and instead describes patterns in terms of roles and hierarchy. The

pattern-realization component diagrams in Chapter 3 resemble PIN drawings to some

extent. Although this similarity is almost certainly due to independent invention—Smith

cites neither the published version of Chapter 3 nor previous work about the unit model

of components [33, 34]—it is a measure of evidence that the work presented in Chapter 3

addresses concerns that continue to be relevant to the software-engineering community.

5.3 Dynamic CPU Management
The CPU Broker, described in Chapter 4, is a novel variability mechanism for composing

real-time tasks within a larger software system. It mediates CPU-allocation requests

between a set of real-time tasks and the scheduling facilities of a real-time operating

system (RTOS). Using run-time feedback from the tasks that it manages, the CPU Broker

adjusts the tasks’ CPU allocations to ensure that the overall software system maintains

a high application-level quality of service (QoS), insofar as possible, even in the face

of dynamic changes to available resources, the set of managed tasks, and the relative

importances of tasks. Because the CPU Broker seeks to keep a system running even under

adverse circumstances, it can be seen as a building block for self-adaptive systems [86], a

field of study sometimes known as autonomic computing [59].

The CPU Broker has been regularly cited by researchers who build subsequent, related

infrastructure for managing CPU resources in a coordinated fashion across a set of real-time

tasks. The following sections summarize this related work and organize it into three areas.

The first includes broker-like systems that explore design and implementation choices

that differ from those made for the CPU Broker (Section 5.3.1). For example, whereas the

CPU Broker is implemented in middleware, other brokers have been implemented within

operating system kernels. The second area includes work toward improving the prediction
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of tasks’ future CPU needs (Section 5.3.2). The CPU Broker architecture includes advocates,

which make predictions on behalf of tasks, but leaves the details of accurate prediction

largely unexplored. The third area covers adaptive systems that manage multiple kinds of

resources simultaneously (Section 5.3.3). The CPU Broker was incorporated into one such

system and was included in dry runs of the capstone technology demonstration for the

DARPA-funded PCES program.

The literature summary below shows that resource brokering continues to be rele-

vant to the design of self-adaptive systems. Complex systems benefit from stabilizing

infrastructure, such as the CPU Broker, that acts at run time to optimize a system’s

utility. The ongoing series of publications that cite the CPU Broker indicate that the

design, implementation, and evaluation of such infrastructure are still concerns for

computer-systems research.

5.3.1 Broker-Like Systems for CPU Scheduling

The CPU Broker embodies a set of design and implementation decisions toward the

goal of managing CPU resources for a set of real-time tasks. Subsequent systems for CPU

management carried some of these elements forward while exploring different implemen-

tation strategies and addressing new concerns. As one may recall from Section 4.3 and

Section 4.4, the CPU Broker’s architecture includes advocate objects, which make CPU

requests on behalf of tasks, and policy objects, which manage the requests of multiple

tasks, resolve conflicts, and interact with the scheduling facility of an underlying RTOS.

These objects can generally be imposed upon the managed tasks in a noninvasive manner:

e.g., advocates can be inserted into middleware or implemented as separate processes that

monitor tasks. In either case, the architecture helps to decouple tasks’ “application logic”

from the implementation of tasks’ real-time behavior. This decoupling makes it possible for

a system designer to define real-time policies relatively late in the software life cycle: not

when individual tasks are implemented, but later, when an overall system is assembled or

executed. The central parts of CPU Broker are implemented in a CORBA middleware-based

server, which manages CPU reservations at run time. An important advantage of the

middleware-based implementation is that it is relatively easy for programmers to configure

and extend the CPU Broker with custom advocates and policies.

Several research efforts have explored broker-like systems that place their adaptation

strategies not in middleware, but in an operating system kernel. Prior to the development
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of the CPU Broker, Shenoy et al. explored the trade-offs between middleware-based and

OS-based support for scheduling multimedia applications [91]. Based on their experiments

with QLinux, an enhanced version of Linux, and TAO, an implementation of CORBA, they

concluded [91, page 32]:

Our results showed that although the run-time overheads of a middleware can
impact application performance, user-level resource management can, never-
theless, be just as effective as native OS mechanisms for certain applications.
We also found that kernel-based mechanisms can be more effective at providing
application isolation than a middleware system.

The CPU Broker represents a hybrid approach. It places the adaptive scheduling

components—advocates and policies—at user level, but relies on a real-time operating

system to actually perform CPU scheduling.

Abeni et al. developed a real-time scheduling system with similarities to the CPU Broker,

but which places all of the scheduling components inside an operating system [2].9 Like

the CPU Broker, Abeni’s scheduling system implements adaptive reservations [1]. Its

organization is also similar to that of the CPU Broker. Each task is associated with a

manager, and all task managers communicate with a central supervisor. A task manager

plays a dual role, like a CPU Broker advocate, in that it collects performance data from

its task and also issues predictions of future CPU requirements to the central supervisor.

The supervisor in Abeni’s system is akin to a CPU Broker policy, making global decisions

about how reservation requests should be adjusted.

The CPU Broker and the system by Abeni et al. differ in terms of their implementation

strategies, software architectures, and research focus. From an implementation perspective,

the primary difference between the CPU Broker and the system implemented by Abeni et al.

is that the former is implemented in user space and the latter is implemented within an

operating system. Abeni and his colleagues refer to the CPU Broker as an “interesting

proposal” at the middleware level and distinguish their work as implemented “for a general

purpose operating system by a minimally invasive set of modifications” [2, page 133]. In

terms of software architecture, the primary difference between the two systems lies in

how the entities within each system compose. The CPU Broker allows one to assemble

multiple advocates for a single task: by combining advocates in a Decorator-like fashion, a

9The journal article by Abeni et al. [2] is a revised version of an RTAS 2004 conference paper by the
same authors [22]. Coincidentally, the conference paper about the CPU Broker, reprinted in Chapter 4, also
appeared at RTAS 2004.
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programmer can create new advocating strategies by combining simpler ones (Section 4.3.1).

Similarly, the CPU Broker allows a programmer to compose multiple policies, which can

be useful when tasks are grouped into multiple scheduling classes (Section 4.3.2). The

system described by Abeni et al. supports multiple implementations different managers

and supervisors—providing different prediction and control policies—but does not directly

support the idea of implementing new ones through the composition of existing ones.

Finally, in terms of research focus, the presentations of the two systems differ in terms

of the concerns addressed. Each system is a realization of adaptive reservation-based

scheduling. The work presented in Chapter 4, however, has a particular focus on openness

and ease of extension by system designers. The research by Abeni et al., in contrast, has a

focus on developing prediction and control strategies that are informed by control theory.

This aspect of their work is discussed in Section 5.3.2, below.

Abeni’s coauthors continued to evolve their Linux-based scheduling system and the

result was AQuoSA, the Adaptive Quality of Service Architecture [74]. AQuoSA retains the

general architecture already described, i.e., task-specific managers communicating with

a central supervisor. The “minimally invasive” [2, page 133] implementation strategy is

also carried forward. Most of AQuoSA is implemented as Linux kernel modules, which

ultimately depend on a small patch to the standard Linux scheduler. Unlike the authors’

previous Linux-based work [2, 22], however, AQuoSA includes user-space libraries that

allow programmers to implement task managers and supervisors outside of the Linux

kernel. The authors of AQuoSA, Palopoli et al., also retained their research focus on

developing the theory of adaptive reservations: they present a model that “allows one

to build a theoretically well-founded adaptive control law, split across a predictor and

a controller, acting locally on each task, where control goals are formally specified, and

conditions for their achievement are formally identified” [74, page 4].

Because AQuoSA is similar to the previous work of Abeni et al. [2], the two systems

are similarly related to the CPU Broker and the work presented in Chapter 4. The

previously presented summary of software architecture and research focus applies to

a comparison of AQuoSA and the CPU Broker: the CPU Broker allows a programmer

to create new advocates and policies by composing existing ones, which AQuoSA does

not; AQuoSA provides adaptive scheduling components based on a mathematical control

theory, which the CPU Broker does not. (Palopoli et al. state that, in published paper about

the CPU Broker, “most of the work is on the architectural side” [74, page 4].) AQuoSA and
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the previous scheduler by Abeni et al. compare differently, however, to the CPU Broker in

terms of their supported implementation strategies for adaptive scheduling components.

The system by Abeni et al. supports adaptation components inside of a Linux kernel,

and the CPU Broker supports adaptation components outside the kernel, at user level.

AQuoSA supports components that reside at both levels, and in this respect, it improves

on both the CPU Broker and the scheduler by Abeni and his colleagues.

In contrast to the CPU Broker’s design, where adaptive scheduling components run at

user level, Abeni, Palopoli, and their colleagues explored operating system support for

feedback-driven, adaptive scheduling. Kalogeraki et al. explored a different point in the

design of adaptive scheduling systems. Whereas the CPU Broker manages adaptation for

tasks on a single device, Kalogeraki et al. implemented a resource manager that performs

adaptive, feedback-driven scheduling for distributed—i.e., multiple-device—real-time

object systems [56].

The architecture of Kalogeraki’s resource-management system includes distributed

Profiler and Scheduler entities—each node of the distributed system hosts one of each—that

communicate with a central Resource Manager. As the names of these objects suggest, a

Profiler collects data about the execution of tasks on a processor, a Resource Manager

makes resource-allocation and task-migration decisions in response to collected data,

and a Scheduler implements the current decisions by scheduling tasks on a processor.

A Scheduler performs least-laxity scheduling of tasks: each task is modeled as a graph

of method invocations on CORBA objects, and a Scheduler controls the middleware in

order to schedule tasks’ method invocations according to the estimated residual laxity of

the competing tasks. (The estimated residual laxity of a task is the difference between

the task’s deadline and the estimated time of the task’s completion.) As described by

Kalogeraki and her colleagues, their resource-management system as a whole is driven by

three feedback loops. The first and finest-grain loop measures elapsed time on a single

node in order to update the estimated residual laxity values of tasks. The second loop,

which runs much less frequently than the first, uses measured time values and other data

to refine the initial estimates of the laxities for tasks. These initial estimates are based on

past timings of method invocations on a node, the number of tasks currently running, and

information about inter-task dependencies. The third feedback loop is driven by measured

processor loads and task-laxity values collected across the distributed system: these values

are used by the central Resource Manager to decide how new objects will be allocated to
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processors and how existing objects will be migrated between processors in the distributed

system.

The architecture and implementation of Kalogeraki’s resource-management system is

similar to those of the CPU Broker in some respects, but in the traits that matter most,

the two systems are quite different. Kalogeraki’s system, like the CPU Broker, performs

adaptive, feedback-driven scheduling for soft real-time tasks. Furthermore, both systems

are designed to integrate with applications based on CORBA middleware, and both

systems use middleware to implement the components that make adaptation decisions.

The most notable difference between the two systems is that Kalogeraki’s system manages

scheduling for distributed systems, whereas the CPU Broker manages resources only for a

single processor. (Kalogeraki and her colleagues state [56, page 1159]: “Like our system,

the CPU Broker monitors resource usage and adjusts allocations in a non-intrusive manner,

but it does not address distributed scheduling.”) Two additional differences are also worth

noting. The first is that Kalogeraki’s resource-management system implements a scheduler,

whereas the CPU Broker does not: the CPU Broker performs mediation among tasks, but

relies on the facilities of an underlying operating system to actually perform scheduling.

This architectural difference represents a trade-off: for example, Kalogeraki’s system can

make finer-grain scheduling decisions, but the CPU Broker can mediate tasks that are

not middleware-based. The second notable difference lies in the two systems’ support

for extension by programmers. As presented by Kalogeraki and her colleagues, their

resource-management system is largely a closed and complete system. In contrast, and

as already described, a central feature of the CPU Broker is its support for user-custom

scheduling advocates and policies.

The architecture of the CPU Broker was designed to help separate “application logic”

from the implementation of real-time behavior, to modularize the implementation of

inter-application policies, and to make it possible for system designers to deploy policies

late in the software life cycle, when a system is assembled from separately developed tasks.

In his Ph.D. dissertation, Andrew Wils describes a different software architecture that

addresses these same concerns, but which takes a more holistic approach to the design of

timing-driven, self-adaptive systems [103].

Wils’ approach is component-based: an application is structured as an assembly

of components that communicate via messages. Separate from the components that

implement the application’s purpose, constraint monitors observe the flow and timing



149

of messages. Monitors report observations to decision makers, which determine when

adaptation is required; the decision makers in turn invoke adaptation actors, which can

change components’ configurations and reroute messages between components. Wils’

architecture is also hierarchical. Application instances are managed by application timing

managers, which communicate with an inter-application timing manager that makes decisions

and allocates resources across all the applications that are running on a device. Wils’ dis-

sertation describes how the timing managers communicate through resource contracts that

describe applications’ requirements and flexibility. Wils presents an implementation of his

model in a system called CRuMB—”Component Runtime support for a Monitoring based

Broker” [103, page 77]—and in addition, describes how his techniques for implementing

timing-driven adaptivity influence the software development process.

The CPU Broker is analogous to the inter-application timing manager in the architecture

summarized above. The interactions between Wils’ timing managers are based on resource

contracts [103, page 52], and Wils refers to the CPU Broker as an example of systems that

negotiate resource contracts between tasks [103, page 20]. Wils states that resource contracts

are “only part of the solution” [103, page 20] for building self-adaptive systems, however,

and this opinion is evidenced by the many features in Wils’ architectural approach that

go beyond the capabilities and scope of the CPU Broker. Most obviously, the CPU Broker

does not address how an application might be built to adapt its own behavior in response

to resource shortages. Other researchers have used the CPU Broker in combination with

other techniques for adapting applications’ quality of service; that work is summarized in

Section 5.3.3, below.

5.3.2 Improved Feedback-Driven Prediction

The architecture of the CPU Broker includes advocates, which predict the future

CPU requirements of individual tasks, and policies, which decide how to allocate CPU

resources among competing tasks. Section 4.4.3 presents an example set of general-purpose

advocates and policies, and Section 4.5.3 describes the construction of an application-

specific advocate. Beyond these examples, however, Chapter 4 does not provide details

about how one can design and implement “good” advocates and policies. Good advocates

are ones that make accurate predictions. Good policies lead to desirable system properties,

such as fast reconfiguration in response to changing environmental conditions and stable

configuration during of stable conditions.
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Subsequent to the work presented in Chapter 4, researchers continued to investigate

techniques for improved CPU prediction and response, and the rest of this section

summarizes this work in two general categories. The first includes efforts to make

better predictions through better data collection. The second includes research on adaptive,

real-time systems that are based on control theory.

Toward the goal of better data collection, Hoffmann et al. developed Application

Heartbeats [55], an application programming interface (API) that allows programs to

communicate their target and actual performance characteristics to a controller. At

initialization time (when an application begins), an application uses to the API to declare its

desired “heartbeat” rate, expressed as a number of heartbeats over an application-chosen

period of time. An application can also declare a desired latency between consecutive

heartbeats. Subsequently, at run time, the application calls the API to issue heartbeats,

which are signals of progress. A controller runs concurrently and invokes the API to

monitor the application’s “health,” determined by how well the application is meeting its

declared target heartbeat rate. Hoffmann and his colleagues describe both internal and

external controllers. An internal controller is integrated with the application itself; it can,

for example, direct its application to increase or decrease the quality of the application’s

output in order to meet the target heartbeat rate. An external controller is separate

from the application that it controls. An example is a system resource allocator, which

might grant or revoke resources from the controlled application so that it meets its target

heartbeat rate. Hoffmann et al. demonstrate that the Application Heartbeats API is useful

for adaptively controlling applications in isolation (to meet self-imposed rates of progress)

and in combination (when resources must be brokered).

The CPU Broker and the Application Heartbeats API solve similar problems, and

there are numerous parallels between the two systems. Both allow real-time applications

to communicate their needs to a controller. The CPU Broker elements communicate in

terms of CPU reservations; the Application Heartbeats API is also based on reservations

of a sort—heartbeats per period—although the CPU time required per heartbeat is left

unspecified. Both systems also attempt to be noninvasive. The CPU Broker uses delegates

and advocates to decouple monitoring from the core of an application; the Application

Heartbeats API is designed to require minimal instrumentation within applications.

There are two primary ways in which the CPU Broker and the Application Heart-

beats system differ. First, whereas the CPU Broker is generally focused on a single,
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central controller, the Application Heartbeats API is essentially a blackboard architecture.

Implementations of the API are simply databases of performance data; they support

multiple controllers as easily as they support one.10 The second difference lies in the

actions that controllers may take. In the CPU Broker, a policy interacts with an RTOS

to adjust the resources available to a controlled task. The notion of a controller in the

Application Heartbeats API is somewhat more general, encompassing both internal and

external adaptation as described above. In terms of the Application Heartbeats API,

the CPU Broker is an external controller only. The CPU Broker does not preclude

internally adaptive applications, but the architecture does not directly support them,

either. (Section 5.3.3 describes research that has combined the CPU Broker with other

quality-of-service mechanisms.)

Both of these differences suggest that the Application Heartbeats API can be more

general-purpose than the CPU Broker. However, the CPU Broker still has certain advan-

tages. Significantly, its architecture is more clearly centered on prediction rather than data

collection. An advocate in the CPU Broker can be driven not only by feedback but also by

application-specific knowledge of future CPU needs. Of course, when using Application

Heartbeats, a custom controller can also be driven by application-specific knowledge.

Unlike the CPU Broker, however, the Application Heartbeats architecture does not provide

abstractions (like advocates) that clearly correspond to this concern.

Cucinotta et al. also investigated the problem of collecting scheduling-relevant data for

legacy applications [17, 19]. In particular, they developed an approach for automatically

inferring the values needed to make good CPU reservations for periodic multimedia

applications, such as audio and video decoders and players. A CPU reservation can

be defined by two time values: a period (T) and an amount of CPU time (Q) that is

to be made available during each instance of the period. To infer T, Cucinotta and his

colleagues developed tools that trace the system calls made by an application. (The

2010 version of the system-call tracer [19] is more efficient than the version published in

2009 [17].) Each tracing tool makes a log of system-call events and the times at which

they occur. One then performs a frequency analysis of this log to estimate the period T

of the traced application. To infer Q, Cucinotta and his colleagues run the application

under a feedback scheduler that estimates the application’s actual CPU demand per period.

10The CPU Broker can support multiple policies within a single broker, but nevertheless, the policy objects
reside in a centralized controller.
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Cucinotta et al. present the results of experiments to demonstrate that their technique

can work and that it imposes minimal run-time overhead. They also present a theoretical

analysis to show the importance of determining applications’ periods correctly.

Cucinotta compare their self-tuning scheduler to the CPU Broker and point out that

their approach, based on system-call monitoring, is less invasive than the CPU Broker [19].

They do not mention that the CPU Broker supports process advocates that work with

unmodified legacy applications (Section 4.4.2), just as Cucinotta’s scheduler does.

A more central contribution of Cucinotta’s self-tuning scheduler is that it infers the

periods of legacy applications. In this aspect, the work of Cucinotta and his colleagues

is complementary to the work presented in Chapter 4. The CPU Broker requires that

applications, through their advocates, declare their periods as part of making reservation

requests. As described in Section 4.4.2, this information is obtained either through

delegates or outside knowledge. The approach of Cucinotta et al., which performs

frequency analysis on traces of events from unmodified periodic tasks, represents a third

alternative for determining an application’s period.

Historic performance information is another useful source of information for systems

that, like the CPU Broker, need to accurately predict the future CPU needs of real-time

tasks. To explore the use of historic performance measures for making CPU reserva-

tions, Anastasi et al. developed QoSDB [9], a repository that makes past performance

data available to an online task-scheduling system. A QoSDB instance is a persistent

database of performance measures. The measures for a given task are associated with

an operating mode, which describes the context or environment for an invocation of that

task. Anastasi et al. give an example: for a task that operates on image data, a useful

mode value might be the size of the (uncompressed) input image in bits. For each mode,

QoSDB stores a vector of performance samples and a vector of statistics, e.g., the task’s

average and maximum observed run times. The QoSDB interface provides functions

for adding samples to the database, updating statistics, and retrieving statistics. If one

requests statistics for a mode that has no historical data, QoSDB will generate and return

predictions based on the data stored for other modes.

Anastasi and his colleagues performed an experiment in which they used QoSDB to

create CPU reservations for tasks within a Web server. In their experimental server, the

reservation’s CPU time was predicted by QoSDB and the reservation’s period was set to

a fixed value. (The actual reservations were made by mod_reserve, a module that uses
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AQuoSA to make CPU reservations for tasks within the Apache Web server. AQuoSA was

described in Section 5.3.1.) The results showed that predictions based on historic data were

accurate and therefore useful for their test application. By setting reservations according

to the observed average run time of a task, Anastasi et al. could tune their system to make

CPU allocations with little waste—i.e., with little over-allocation of CPU time to tasks. By

setting reservations according to the maximum observed run time, the researchers could

tune their system to avoid deadline misses.

Anastasi et al. referenced the CPU Broker and stated that their work with QoSDB was

complementary to the kind of adaptive scheduling that the CPU Broker performs: “our

proposal can be used for supporting feedback scheduling by clearly separating the feedback

algorithm from the data management” [9, page 2]. This is correct, and the appropriate way

to introduce QoSDB-like historic knowledge into the CPU Broker architecture is through

advocates (Section 4.3.1).

The projects described above seek to improve adaptive, real-time scheduling through

improved data gathering. Other work is focused on improving adaptive scheduling

systems through the application of control theory. For example, Maggio and her colleagues

developed an adaptive CPU scheduling system for Linux based on a mathematically

modeled regulator [68, 69]. In their implementation, each real-time task (e.g., a multimedia

application) provides its target and actual performance characteristics to a monitor using

the Application Heartbeats API, described above. The monitor uses a dead-beat controller—a

kind of control loop—to decide how it should adjust the CPU allocation of the task in

order to drive it toward meeting its desired heartbeat rate. Maggio et al. implemented

their system for multicore computer systems, and their controller decides how many cores

to assign to a task during a given scheduling window. To change the heartbeat rate of a

task, the controller changes the number of cores assigned to the task. The magnitude of

the adjustment is based on the assumption that the performance of a task is proportional

to the square root of the number of CPU cores assigned to it.

Maggio and her colleagues evaluated their scheduler for controlling isolated tasks [69]

and for controlling multiple, concurrent tasks [68]. For isolated tasks, they performed

experiments with tasks that fit their control model (i.e., with performance proportional to

the square of the number of assigned cores), tasks that did not fit the model, and tasks

with time-varying workloads. For controlling multiple, concurrent tasks, Maggio et al.

discuss and evaluate five different strategies for dealing with overload—i.e., what the tasks’
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controllers should do when it is not possible to satisfy the CPU demands of all the tasks

simultaneously. They conclude that no single strategy is ideal in all circumstances [68,

page 1]:

Our suggestions and conclusions are that a priority based mechanism should
be used when real time guarantees are essential and it is possible not to accept
an incoming task or application to maintain the desired performance levels
(heart rates) for the other jobs present in the system. In the case of a less
strict constraint on performance levels and when one wants to accept all the
incoming requests, a centroid based solution may be preferable.

The main contribution of Maggio et al. is the design and evaluation of an adaptive,

feedback-driven scheduler based on control theory; this is complementary to the work

presented in Chapter 4, which is not based on formal control theory. The CPU Broker

would obviously support policies based on control theory, however. Moreover, a central

idea of the CPU Broker is that it supports user-chosen policies, including multiple policies

for dealing with overload, and it allows new policies to be created through composition.

The architecture of the CPU Broker thus addresses the concern expressed above, that no

single policy for resolving overload is best in all circumstances.

Like Maggio and her colleagues, Abeni et al. also apply control theory in their work on

feedback-driven, adaptive reservations [2]. The architectural similarities between Abeni’s

scheduling system and the CPU Broker were previously discussed in Section 5.3.1; the

point to remember here is that Abeni’s scheduling system associates each real-time task

with a manager. A manager implements a control loop that monitors the performance of

its task and manipulates the task’s CPU reservation in order to minimize the differences

between the task’s recurring, periodic deadlines and the “virtual finishing times” [3] of

the task’s jobs. A job is one execution of the recurring unit of work within a task, and the

difference between a job’s deadline and its virtual finishing time is called scheduling error.

Abeni and his colleagues present three control schemes for managers: invariant based control

seeks to keep scheduling error within a small region of values, stochastic dead-beat control

seeks to set the next scheduling error to zero, and cost-optimal control seeks to minimize a

cost function of the scheduling error and CPU bandwidth. (CPU bandwidth is the amount

of time available to the task within each period of a CPU reservation.) As previously

noted, Abeni et al. cite the CPU Broker as an “interesting proposal” at the middleware

level [2, page 133]: this is a reference to the architectures and implementations of their

scheduling system and the CPU Broker. Chapter 4 does not formally analyze control

schemes in the way that Abeni and his colleagues do in their publications [2, 22]. As
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already noted, however, the CPU Broker does provide a flexible framework for deploying

policies, including policies derived from control theory.

Cucinotta and his colleagues have continued to develop the theory of feedback-driven

scheduling systems based on adaptive reservations [18, 20, 21, 74], often citing the pub-

lished version of Chapter 4 as related work. A primary focus of these publications is their

development and analysis of control schemes that are based on formal theory. The ongoing

work in this area indicates that the problems addressed by the CPU Broker—and also the

software variability mechanisms that may be implemented by adaptive, feedback-driven,

reservation-based scheduling—continue to be relevant to the design of computing systems.

5.3.3 Managing Multiple Kinds of Resources

The CPU Broker also influenced research toward systems that manage multiple kinds

of resources simultaneously. In contrast to the CPU Broker, which manages only CPU time,

these systems coordinate the allocation of multiple computing resources to applications—

for example, CPU time, memory, disk access, and network access. The ability to manage

multiple resources in a coordinated manner is important because most tasks ultimately

depend on the availability of multiple resources in order to achieve quality of service.

Multi-resource managers are also suitable for coordinating system-level adaption—i.e.,

the provisioning of computing resources—with application-level adaption. Application-

specific qualities such as algorithm selection and output quality become resources that a

system-level manager can control, and trade off against other resource types or levels of

allocation, in order to maximize the QoS of a computing system as a whole. In addition, the

ability to control both computing and communication resources—e.g., CPU and network

access—is key for managers that seek to enable “end-to-end QoS” for distributed, real-time

systems.

The FRSH/FORB framework by Sojka et al. [95] is an example of systems that seek

to manage multiple kinds of resources for distributed, real-time applications. FRSH

is an application programming interface for obtaining computing resources: a client

makes a request for one or more resources in the form of a contract, and if the request

is granted, the client receives a set of virtual resources that correspond to reservations for

physical resources. FORB is a lightweight, CORBA-like middleware layer that Sojka and

his colleagues use to implement a contract broker, which implements the FRSH API. The

contract broker is a mediator between applications and resources: it receives multi-resource
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contract requests from applications, interacts with the resource-management services of

underlying operating systems, and implements policies for optimizing the overall QoS of

the set of applications that run within the distributed system. The broker is distributed,

implemented by a set of agents that run on all of the nodes within the distributed system.

The general architecture of Sojka’s FRSH/FORB framework is thus quite similar to that

of the CPU Broker. The FRSH/FORB contract broker is implemented atop middleware,

like the CPU Broker; both brokers act as mediators between applications and resources;

both obtain resources for applications by interacting with the facilities of an underlying

operating system; and both are based on resource reservations. Both brokers allocate CPU

reservations to applications. However, as Sojka et al. note in their discussion of related

work [95], the CPU Broker manages only CPU reservations. The FRSH/FORB framework,

in contrast, handles requests for multiple kinds of resources. The FRSH/FORB framework

is also distributed, unlike the CPU Broker, because it seeks to manage computation and

communication resources for distributed applications.

Sojka and his colleagues implemented controls for three kinds of resources within their

FRSH/FORB framework: CPU time, disk bandwidth, and wireless network bandwidth.

For CPU reservations they used AQuoSA, described previously in Section 5.3.1. For disk

reservations they used a proportional-share disk scheduler based on the budget fair queuing

algorithm [98], and for network reservations they implemented a custom medium-access

protocol called the FRSH Wireless Protocol (apparently also known as the FRESCOR WLAN

Protocol) [94]). Sojka et al. evaluated their framework by demonstrating its ability to

guarantee resources to a distributed video monitoring application, and thereby allow the

application to maintain quality of service in the face of competing CPU, disk, and network

workloads. Section 4.5.3 presents a similar experiment for the CPU Broker, for a competing

CPU workload only.

Sharma et al. [90] also developed a framework for managing multiple resources—a

framework that incorporated the CPU Broker directly. As described in Section 4.4.2, the

CPU Broker was implemented to connect to CORBA-based applications via QuO [108], a

framework for monitoring and controlling QoS in middleware-based programs. QuO was

chosen because, as stated in Section 4.2, “QuO provides an excellent basis for coordinating

multiple QoS management strategies in middleware-based systems, both for different

levels of adaptation and for different resource dimensions.” Indeed, at the time that the

work in Chapter 4 was published, the authors of QuO were already applying their system
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in combination with the CPU Broker and a network-reservation mechanism to show that

a distributed, real-time UAV simulation could be protected from competing CPU and

network loads (Section 4.2). This work continued after the publication of the CPU Broker

paper, yielding a new model for integrating multiple-resource QoS mechanisms into

middleware-based applications: a model that Sharma et al. refer to as qosket components.

Qosket components are a mechanism for integrating QoS monitoring points and

controls into component-based middleware applications. Both QuO and qosket compo-

nents are based on interposition that is transparent to the application being controlled.

However, whereas QuO delegates interpose on communication between the middleware

platform (i.e., the ORB) and individual middleware-defined objects, qosket components

interpose on communication between the middleware-defined components that make up

an application [90]. This difference means that, in comparison to QuO delegates, qosket

components are more readily deployed into component-based systems such as those

built atop the industry-standard CORBA Component Model (CCM). Sharma et al. stated

that their implementation of the qosket component framework includes components

for network management, data shaping, and CPU management. The last of these was

implemented atop the CPU Broker.

Manghwani et al. subsequently described a multi-layer architecture for “end-to-end

QoS management in DRE [distributed, real-time, embedded] systems” [70, page 1] that

they implemented through qosket components. End-to-end QoS refers to the fact that

any guarantee of performance for a distributed application must depend on coordinated

resource management across all of the devices that constitute the distributed system, from

the information producers to the information consumers. Coordination means not only

cooperation across individual computing devices, but also the appropriate allocation of

resources of different types. As Manghwani et al. stated [70, page 2]:

Eliminating a bottleneck by providing additional resources might simply expose
a different bottleneck elsewhere that must also be managed. For example,
allocating more bandwidth (e.g., using bandwidth reservation, differentiated
services, alternate paths, or reducing the other load on the network) might
simply expose that there isn’t enough available CPU at a node along the
end-to-end path to process the now plentiful data.

Manghwani et al. proposed a three-level, hierarchical software architecture for manag-

ing end-to-end QoS concerns within DRE systems. The most abstract layer, the system layer,

is driven by two models: first, a specification of the real-time system’s overall requirements,

and second, a description of the system’s participants and resources. From these, the
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system layer creates policies for system-wide resource allocation. The second architectural

layer is the local layer. Software agents at the local layer receive the policy created by the

system layer, and they translate that policy into QoS-related steps that are performed on

the individual parts of the distributed system. The third layer, the mechanism layer, contains

agents that implement QoS-relevant controls and monitoring. This includes mechanisms

for allocating resources to applications (e.g., CPU time) and also mechanisms for adapting

an application’s behavior to better suit available resources (e.g., output rate throttling).

Like all adaptive systems for resource management, Manghwani’s three-level architecture

is feedback-driven. Configuration data is passed down from the system layer to the local

layer, and from the local layer to the mechanism layer. In the opposite direction, run-time

monitoring and status data are passed upward between levels of the hierarchy.

Manghwani et al. showed how to realize their architecture via qosket components. The

basic technique is as described previously: by inserting qosket components at appropriate

points within the assembly of an application’s ordinary components, a system designer

integrates QoS controls into the application. Manghwani et al. build on this approach to

deploy qosket components that correspond to the levels of their architecture: a System

Resource Manager component, one Local Resource Manager component for each node of the

distributed system, and multiple QoS Mechanism components that either (1) monitor and

control node-local resources or (2) implement application-specific adaptive behaviors. The

CPU-management qosket component in their implementation is an encapsulation of the

CPU Broker, as previously described by Sharma et al. [90]. Manghwani’s contribution is

the addition of system-wide and local resource managers, which drive the CPU Broker in

cooperation with controllers for network resources and application output quality.

Schantz et al. [88] subsequently provided more detail about the implementation of

the QoS-management architecture described above. They evaluated the implementation

by performing an experiment in which fourteen simulated UAVs transmitted image

data to a set of simulated ground stations and control centers. The control centers ran

image-processing software to detect targets in received images, and each time a target was

recognized, the software issued an alert. (This experiment is therefore similar to, but more

complex than, the experiment described in Section 4.5.3.) The total amount of image data

in this experiment was sufficient to overload the network resources in the system and the

CPU resources available for target recognition.

To measure the impact of end-to-end QoS management, Schantz and his colleagues
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configured their QoS framework to attempt to sustain the performance of a particular

image pipeline—representing a case in which the data from a particular UAV is known

to be more important than the data from the other UAVs. Their QoS framework ensured

that the designated stream’s network traffic was prioritized over competing traffic; in

addition, the framework used the CPU Broker to reserve CPU time for processing the

designated stream’s images. As a result, the designated stream was able to perform well

in their experiment, as measured by the number of frames successfully received, the

latency of received images, and the number of targets detected. Schantz et al. concluded

that their “multi-layer middleware-mediated QoS framework that integrates resource

management mechanisms” [88, page 1204] allowed the critical portion of their multi-UAV

distributed system to achieve both higher performance and better predictability than it

would otherwise have achieved [88].

The capstone flight demonstration of the DARPA Program Composition for Embedded

Systems (PCES) program, which supported the development of the CPU Broker, was also

based on a multi-UAV surveillance and target-tracking scenario. Unlike the software

simulations described above and in Section 4.5.3, the capstone flight demonstration

involved actual UAVs and related military equipment. As described by Loyall et al. [66],

the PCES capstone demonstration was designed to exemplify the issues and challenges of

developing DRE applications that maintain high end-to-end QoS characteristics. It was also

designed to showcase PCES-supported technologies that address those challenges. Within

the overall demonstration, the CPU Broker was expected to provide CPU guarantees at

the ground station for the UAVs [66, page 91]:

The ground station will be extended with an extra processor that will be
running PCES developed software (C++) to do image processing and QoS
management. This ground station processor will also be running the TimeSys
Linux real-time OS, with a PCES-developed CPU Broker for CPU management
and Differentiated Services for network management. PCES developed QoS
management software will be retrieving the analog imagery from the ScanEagle
ground station receiver, digitizing it, and shaping it (e.g., changing its rate, size,
and resolution) to fit the need of the C2 node and the capacity of the network
and CPU resources available.

The CPU Broker’s role in the PCES demonstration was therefore similar to its role in

the experiment presented in Section 4.5.3.

Ultimately, the CPU Broker was utilized in dry runs of the demonstration but not in

the final event. Loyall and Schantz explained that TimeSys Linux, the operating system

that underlies the implementation of the CPU Broker, was not quite up to the task [67,



160

page 36-27]: “. . . stability problems in the underlying Timesys Linux RT operating system

caused us to omit the Timesys Linux RT CPU control capability for the final capstone

demonstration (although we used it for shorter dry runs) and revert to using the more

limited Linux OS priorities instead.” This was unfortunate, but apparently not due to

a problem with the CPU Broker. The CPU Broker’s role is to provide mediated access

to the CPU-reservation facilities of an underlying operating system—not to implement

reservation-based scheduling itself.

In addition to presenting the outcome of the PCES capstone demonstration, Loyall and

Schantz [67] summarize the development and application of end-to-end QoS-management

systems based on QuO and qosket components. Interested readers may wish to use this

summary as a guide to the other publications described previously in this section.

As described in Section 1.4.3, the CPU Broker is a software variability mechanism that

allows the tasks of a real-time system to be composed late in the software life cycle, after the

individual tasks have been implemented and delivered to a system designer. It supports

late composition through its ability to connect to managed tasks in a noninvasive fashion.

Schantz and Loyall state that these qualities are desirable for QoS-management systems

in general: they write that a well-designed, reusable, and maintainable QoS management

“dovetails with and reinforces extended software engineering practices” [87, page 151]

including separation of concerns, component-based designs, and service-oriented designs.

The CPU Broker and the qosket component architecture are both based on these principles.

Looking forward, Schantz and Loyall identify several issues that should be addressed in

future research and development efforts toward platforms that provide multiple-resource

and end-to-end QoS management for DRE systems [87]. These issues demand advances

throughout the software development life cycle: the continued evolution of methods that

combine and analyze multiple QoS aspects, i.e., multiple resources and adaption strategies;

libraries of reusable QoS mechanisms, management components, and policies; tools to

automate the design process and assist with the evaluation of controlled systems; and

conflict identification and resolution across QoS dimensions. The CPU Broker-related

work presented in this chapter has addressed some, but not all of these concerns. Resource

brokers like the CPU Broker are building blocks—and only building blocks—for the design

of self-adaptive systems. Schantz and Loyall are correct that additional research will

be necessary if the vision of autonomic computing [59] and self-adaptive systems [86],

assembled from “off the shelf” software parts, is to be more fully realized.



161

5.4 References

[1] Abeni, L., and Buttazzo, G. Adaptive bandwidth reservation for multimedia
computing. In Proceedings of the Sixth International Conference on Real-Time Computing
Systems and Applications (RTCSA ’99) (Hong Kong, China, Dec. 1999), pp. 70–77.

[2] Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., and Palopoli, L. QoS
management through adaptive reservations. Real-time Systems 29, 2–3 (Mar. 2005),
131–155.

[3] Abeni, L., Palopoli, L., Lipari, G., and Walpole, J. Analysis of a reservation-based
feedback scheduler. In Proceedings of the 23rd IEEE Real-Time Systems Symposium
(RTSS ’02) (Austin, TX, Dec. 2002), pp. 71–80.

[4] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and

Young, M. Mach: A new kernel foundation for UNIX development. In Proc. of the
Summer 1986 USENIX Conf. (June 1986), pp. 93–112.

[5] Aigner, R. Development of an IDL compiler. Grosser Beleg, Dresden University of
Technology, Jan. 2001.

[6] Aigner, R. Development of an IDL compiler for micro-kernel based components.
Master’s thesis, Dresden University of Technology, Sept. 2001.

[7] Aigner, R. Communication in Microkernel-Based Operating Systems. PhD thesis,
Technische Universität Dresden, July 2010.

[8] Aigner, R. DICE project homepage. http://www.inf.tu-dresden.de/index.php?
node_id=1432, Feb. 2010.

[9] Anastasi, G. F., Cucinotta, T., Lipari, G., and García-Valls, M. A QoS registry for
adaptive real-time service-oriented applications. In Proc. of the 2011 IEEE International
Conference on Service-Oriented Computing and Applications (SOCA) (Irvine, CA, Dec.
2011).

[10] Apel, S., Leich, T., Rosenmüller, M., and Saake, G. FeatureC++: On the symbiosis
of feature-oriented and aspect-oriented programming. In Generative Programming
and Component Engineering, R. Glück and M. Lowry, Eds., vol. 3676 of Lecture Notes
in Computer Science. Springer, 2005, pp. 125–140.

[11] Auerbach, J., Barton, C., Chu-Carroll, M., and Raghavachari, M. Mockingbird:
Flexible stub compilation from pairs of declarations. In Proc. of the 19th International
Conference on Distributed Computing Systems (ICDCS) (Austin, TX, May–June 1999),
pp. 393–402.

[12] Baumann, A. Inter-dispatcher communication in Barrelfish. Barrelfish Technical
Note 011, ETH Zurich, Dec. 2011.

[13] Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M. Lightweight
remote procedure call. ACM Transactions on Computer Systems 8, 1 (Feb. 1990), 37–55.



162

[14] Chakravarthy, V., Regehr, J., and Eide, E. Edicts: Implementing features with
flexible binding times. In Proc. of the 7th International Conference on Aspect-Oriented
Software Development (AOSD) (Brussels, Belgium, Mar.–Apr. 2008), pp. 108–119.

[15] Consel, C., Hornof, L., Marlet, R., Muller, G., Thibault, S., Volanschi, E.-N.,
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CHAPTER 6

CONCLUSION

Through the analysis of three examples, this dissertation provides strong support for

the claim that it is feasible and useful to realize variability mechanisms in novel ways to improve

the run-time performance of software systems. Each example is based on a well-known style of

modular software composition. Each implements a variability mechanism in a nonstandard

fashion, while maintaining implementation modularity, to address the performance issues

that are associated with stereotypical implementations of the mechanism.

The first example, presented in Chapter 2, demonstrates that remote procedure call

(RPC) and remote method invocation (RMI) mechanisms can be improved through a novel

approaches to interface definition language (IDL) compilation. The Flick IDL compiler kit

allows a software developer to compose the compiler to produce the RPC or RMI stubs that

are suited to a particular application. The use of appropriate intermediate representations

within Flick enables both flexibility and domain-specific performance optimizations during

code generation.

The second example, detailed in Chapter 3, is a novel approach to realizing design

patterns in software that is made from statically instantiated and connected components.

The approach separates the static parts of a software design from the dynamic parts of

the system’s behavior, allowing a designer to compose pattern participants at the level of

component assemblies. The separation makes a pattern-based software implementation

more amenable to analysis. This in turn can enable more effective and domain-specific

detection of system design errors, better prediction of run-time behavior, and more effective

optimization.

The third example details the run-time performance improvements obtained by a novel

implementation of task scheduling in multi-agent real-time systems. Chapter 4 presents the

design and evaluation of a new CPU Broker, which mediates between the CPU demands

of a set of real-time processes and the facilities of a real-time operating system. The broker

modularizes CPU-management and allows a system designer or configurer to compose the
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policy for a multi-agent system as a whole. As demonstrated in Chapter 4, the CPU Broker

can help a multi-agent system maintain quality of service in the face of events such as

changes in CPU availability or changes in the importances of the managed tasks.

Software developers should be encouraged by these examples. Their message is that

the general understanding of variability mechanisms is incomplete, and that the study of

variability mechanisms can yield significant benefits. Many important variability mecha-

nisms, such as code generation and design patterns, are underutilized in practice because

people confuse the concepts of the mechanisms with their stereotypical implementations.

The applicability and consequences of the implementations become confused with those of

the concepts in general. This dissertation shows that a nontraditional implementation of a

well-known variability mechanism can allow that mechanism to be applied in novel ways

to solve problems in the design and implementation of configurable software products.

A significant area of future research is the further development and evaluation of new

realizations for well-known variability mechanisms. The examples in this dissertation focus

on realizations that enhance the run-time performance of software. Alternative realizations

might also focus on performance, or they might focus on other different concerns such as

static analyzability (for the absence of configuration errors) or dynamic fault tolerance (for

the containment of configuration errors).

A second area of future research is the development of new variability mechanisms.

Such mechanisms may involve any of the artifacts of a software system’s implementation—

e.g., build scripts, compilers and similar tools, version-control repositories, operating

systems, and so on—not just a system’s basic source code. Because of this, the space

for new variability mechanisms is extremely broad. Within the wide space of potential

approaches, a particularly interesting and fruitful area for future research is based on

new programming-language constructs that can be used for variation management in

software product lines. Aspect-oriented programming is one example of recent language-

based research that has important application to software product lines. Feature-oriented

programming is another. Language-based or otherwise, the invention of new variability

mechanisms may help future software designers and implementers manage variation and

configuration is ways that are not possible or commonly practiced today.

Software systems today are increasingly made from configurable collections of software

parts; the implementations of the configuration choices are instances of variability mecha-

nisms. This dissertation has explained the benefits gained through novel realizations
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of three well-known mechanisms. As future software systems are made from ever

larger and more complex assemblies of parts and configuration choices, the need for

effective variability mechanisms will grow. The work presented in this dissertation can

be seen as initial research toward a deeper understanding of variability mechanisms,

an understanding that will be increasingly necessary for the design and construction of

software systems in the future.


