Today: How well does your data fit a line?
- Talk about linear in detail, look at some more complicated ones in R
- Eyeballing is just not rigorous enough

Basic model:
\[y_i = b_0 + b_1 x_i + e_i \]

- \(y_i \) is the prediction
- \(b_0 \) is the y-intercept
- \(b_1 \) is the slope
- \(x_i \) is the predictor
- \(e_i \) is the error

Which of these are random variables?
* A: All but \(x_i \), the \(bs \) are estimated from random variables, \(e \) is difference between random variables
* So, we can compute statistics on them

Two criteria for getting \(bs \)
- Zero total error
- Minimize SSE (sum of squared errors)
- Example of why one is not enough: two points, infinite lines with zero total error
- Squared errors always positive, so this criterion alone could overshoot or undershoot

Deriving \(b_0 \) is easy
- Solve for \(e_i \): \(y_i - (b_0 + b_1 x_i) \)
- Take the mean over all \(i \): \(\bar{x} = \bar{y} - b_0 - b_1 \bar{x} \)
- Set mean error to 0 to get \(b_0 = \bar{y} - b_1 \bar{x} \)
- Now we just need \(b_1 \)

Deriving \(b_1 \) is harder
- \(SSE = \) sum of errors squared over all \(i \)
- We want a minimum value for this
- It's a function with one local maximum
- So we can differentiate and look for zero
- \(s_y^2 = 2b_1s_{xy} + b_1^2s_x^2 \), then take derivative
- s_{xy} is correlation coefficient of x and y (see p. 181)
- In the end, gives us $b_1 = \frac{s_{xy}}{s_x^2}$
 * Correlation of x and y divided by variance of x
 * $\frac{\sum xy - n\bar{xy}}{\sum x^2 - n(x)^2}$

- SS*
 - SSE = Sum of squared errors
 - SST = total sum of squares (TSS): difference from mean
 - SSo = square \bar{y} n times
 - SSY = square of all y, so SST = SSY - SSo
 - SSR = Error explained by regression: SST - SSE

- Point of above: we can talk about two sources that explain variance: sum of squared difference from mean, and sum of errors
 - $R^2 = \frac{SSR}{SST}$
 - The ratio is the amount that was explained by the regression - close to 1 is good (1 is max possible)
 - If the regression sucks, SSR will be close to 0

- Remember, our error terms and bs are random variables
 - We can calculate stddev, etc. on them
 - Variance is $s_e^2 = \frac{SSE}{n-2}$ - MSE, mean squared error
 - Confidence intervals, too
 - What do confidence intervals tell us in this case?
 * A: Our confidence in how close to the true slope our estimate is
 * For example: How sure are we that two slopes are actually different
 - When would we want to show that the confidence interval for b_1 includes zero?

- Residuals
 - AKA error values
 - We can expect several things from them if our assumptions about regressions are correct
 - They will not show trends: why would this be a problem
 * Tells us that an assumption has been violated
 * If not randomly distributed for different x, tells us there is a systematic error at high or low values - error and predictor not independent
 - Q-Q plot of error distribution vs. normal distribution
 - Want the spread of stddev to be constant across range

- Switch to R
 - Show example of linear fitting (good fit)
 - Show example of linear fitting (bad fit)
 - Show example of polynomial fit (intercept and 3 coefficients)
• For next time
 – I won’t be here week after spring break
 – papers3 due Tuesday of spring break week
 – On Thursday, we will have some guest students talk about paper writing process
 – lab2 now due Friday after spring break
 * I want some more from you now, so be sure to update your fork
 * Mainly, I want to know how you will improve the graph you are reproducing, and to actually look a bit at the code you find