• Left over from last time
 – How are things going with reproducing Remy results?
• Overall goal of experiment design:
 – Learn as much as possible from as few experiments as possible
• Some terminology
 – Response variable: outcome
 * Why call it a variable?
 * Examples of non-performance variables?
 – Factors: things you change
 * Why call them predictor variables?
 – Primary / secondary factors
 * How to decide which ones to use?
 – Replication: How many reactions
• Important properties of experiment design
 – Every experiment should get you closer to answering one of the questions
 – You should be able to explain all behavior in the results—if not, you may need more experiments
 – Control all variables you can
 – Measure the variables you can’t control
• Interacting factors
 – Understand which of your factors interact, and which are independent
 – Saves you a lot of time not running experiments that don’t reveal more information
 – May take a few experiments to determine
 – If you know for sure they are independent, make sure to say so in the paper
• Sensitivity analysis
 – Is your system sensitive to processor speed? Disk speed? Bandwidth?
 – The world will change in the future (or even on other systems right now)
 – Understand what changes would, and would not, affect your system
 * What if disks get faster?
* Inevitable increases in bandwidth
* Greater parallelism
 – Obviously there are limits to what you can/should actually test
 – Usually just report in a sentence
 * Might seem unsatisfying to you, but it’s helpful to you readers

• Common mistakes
 – Ignoring variation in experimental error
 – Not controlling params
 – One factor at a time experiments
 – Not isolating effects
 – Too many experiments
 * Break into several sub-evals to answer questions, evaluate particular pieces of the SUT

• Method for determining if effects are significant
 – From chapter 20 in the book if you want to read it
 – Set up: you have a categorical variable, you want to understand what the affects of each choice are and whether they are significant
 – Basic idea: try to explain the numbers in terms of two components:
 * Actual effects
 * Experimental error (randomness)
 – See rcommands.txt

• For next time
 – lab1 due Friday at midnight
 – Note that papers3 was posted
 * Due Tuesday after spring break
 * One paper looks long but isn’t really
 – For Tuesday: stay tuned, will post tonight or tomorrow AM