• From last time
• Big idea for the day: all statements we make from evals are probabilistic
• Quick refresher - sample vs. population
 – Parameters of prob distribution vs. statistics of the sample
• The value of hypothesis testing
 – State your goal, test whether or not you achieved it
 – eg. a good thesis statement is a testable hypothesis
 – X is faster than Y
 – Z has negligible overhead
• We measure a sample mean, but it is really just an estimate of population mean
 – What is the full population here, and what is the sample?
 * Full populations: All possible executions of our experiment
 * Sample: The ones we actually run
 – We can get a confidence interval that helps us understand what we would get if we ran the experiment more times.
 – Book explanation of way to get confidence level
 * Get multiple samples (multiple trials per sample), compute stats on the means, treat that as a sample set and take confidence intervals
 – Again, iid comes up, and this is why you need to be careful in experiment design
 * When might you not meet identically distributed criteria? Caching, warmup, different conditions over time of day, etc.
 – Standard error — not to be confused with standard deviation or STDERR
 * Different samples drawn from the same population would have different means
 * The standard error of the sample mean is how close to that real mean you can expect to get
 * We are viewing the set of sample means as a distribution and basically looking at its variance
 * …using the normal distribution, thanks to cool properties of that distribution WRT iid variables
 – Don’t confuse with credible intervals
 * Probability of the true values
 * Requires a priori knowledge/estimation of distribution
• Confidence interval for sample mean
 - Lower: \(\bar{x} - \frac{z_{1-\alpha/2}s}{\sqrt{n}} \)
 - Upper: \(\bar{x} + \frac{z_{1-\alpha/2}s}{\sqrt{n}} \)
 - Why is this symmetric?
 * Because we’re modeling the sample means using the normal distribution
 - \(\bar{x} \) is sample mean
 - \(s \) is sample stddev
 - \(z_{1-\alpha/2} \) is \((1 - \alpha/2)\) quantile of unit normal dist \((\mu = 0 \text{ and } \sigma = 1)\) - note, you are picking \(\alpha \)
 - \(n \) is the sample size
 - So, what does this tell us?
 * We are \(x\% \) certain that the population mean is between \(x \) and \(y \)
 - What do we need to apply this result?
 * iid sample
 * Large samples (30 or greater)
 * Or sample itself is normally distributed
 - When is it not worth computing this?
 * When the means are extremely far apart
 - When is it important?
 * Close enough that it’s possible that means lie within each others’ confidence intervals
 - Testing for mean of particular value - does it lie within the CI?
 - When might you want your mean to be the same as another mean?
 * Showing insignificant overhead
 - Showing significance: Paired samples (eg. same benchmarks)
 - Take samples for two systems under the same workload
 - Compute statistics of the difference
 - Compute CI of mean of the difference
 - If CI contains zero, not statistically different: The hypothesis “the two systems are the same” is supported by the data
 - Showing significance: visual check
 - Draw both confidence intervals and means
 - If CIs don’t overlap, one is clearly better
 - If CIs do overlap, both means fall inside CI of the other: effectively the same
 - If the mean of one is in the CI of the other, but this is not true for both, t-test required
 - Showing significance: t-test (eg. truly random samples)
 - Best to leave the implementation of this up to someone else
 - Degrees of freedom: number of independent sources of data that go into the model: number of samples minus steps that go into the estimation
 - eg. R includes this as a module
- Fun fact: t-test invented as a way of measuring the quality of beer (Guinness Stout)

- Picking CIs
 - As discussed before, degree of confidence has to do with the gain/loss of being outside the range
 - Reiterate plane example, you don’t want to fly on a plane built with only 99% confidence intervals

- Picking a sample size
 - What should our goal be when picking a sample size?
 * Give us a high degree that our sample mean is close to the population mean
 * While taking a reasonable amount of time to run experiments
 - Data dependent - on variance, which is intuitive
 - Getting a good mean
 * Pick the confidence level we want (say, 95%)
 * Pick the accuracy level (how far on either side)
 * The accuracy equal to the confidence bounds, solve for n
 * $n = \left(\frac{100 \times z}{r \times x} \right)^2$
 * s is sample standard deviation
 * π is sample mean
 * z is as above ($z_{1-\frac{r}{2}}$, quantile of unit normal distribution (note, contains the confidence level))
 * r - accuracy in plus or minus $r\%$
 - Comparing two systems
 * Goal is to end up with non-overlapping intervals at some confidence level
 * For comparing two, upper edge of lower must be below lower edge of upper
 * Run some sample experiments to get an initial mean and stddev for each
 * Fill in all numbers for both confidence intervals except n
 * Set the upper bound of one to be lower than the lower bound of the other
 * Solve for n

- For next time
 - Bring your laptop
 - Sign up for GENI account
 - Read GENI paper posted on Canvas