Flux Research Group / School of Computing

On Studying CPU Performance of CloudLab Hardware

Dmitry Duplyakin, Alexandru Uta, Aleksander Maricq, and Robert Ricci

Proceedings of the Worksop on Midscale Education and Research Infrastructure and Tools (MERIT) 2019.

Software Testing


Empirical performance measurements of computer systems almost always exhibit variability and anomalies. Run-to-run and server-to-server variations are common for CPU, memory, disk, and network performance characteristics. In our previous work, we focused on taming performance variability for memory, disk, and network and established an interactive analysis service at: https://confirm.fyi/ to help users of the CloudLab testbed better plan and conduct their experiments. In this paper, we describe our analysis of CPU variability based on over 1.3M performance measurements from nearly 1,800 servers and present our initial findings. The focus of this work is on capturing hardware variability, which can make repeatable experiments more difficult and can impact conclusions; it it this important for systems researchers to understand. (We note that, though we do not study it in this work, in the cloud, multi-tenancy and resource sharing an exacerbate the problem.) Variability also inevitably impacts performance and operation of middleware and high-level applications, contributing to the straggler problems in many domains, including HPC, Big Data, and Machine Learning, and on many types of cyberinfrastructures. We analyze the data from the CloudLab servers allocated in an exclusive fashion, with no virtualization. While our analysis focuses on the testbed that aims to promote reproducible research, we believe our approach and the findings can be of value to people who manage, analyze, and utilize shared computing resources in supercomputers, clouds, and datacenters.