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Abstract
A common problem with disk-based cloud storage ser-

vices is that performance can vary greatly and become
highly unpredictable in a multi-tenant environment. A
fundamental reason is the interference between workloads
co-located on the same physical disk. We observe that dif-
ferent IO patterns interfere with each other significantly,
which makes the performance of different types of work-
loads unpredictable when they are executed concurrently.
Unpredictability implies that users may not get a fair share
of the system resources from the cloud services they are
using. At the same time, replication is commonly used in
cloud storage for high reliability. Connecting these two
facts, we propose a cloud storage system designed to min-
imize workload interference without increasing storage
costs or sacrificing the overall system throughput. Our
design leverages log-structured disk layout, chain repli-
cation and a workload-based replica selection strategy to
minimize interference, striking a balance between perfor-
mance and fairness. Our initial results suggest that this
approach is a promising way to improve the performance
and predictability of cloud storage.

1 Introduction
Infrastructure-as-a-Service (IaaS) cloud computing ser-
vices offer virtual machines (VMs) that provide elastic
computing, storage and network resources. Exemplified
by Amazon EC2, IaaS clouds are attractive because they
are cost-effective and simple to manage.

There are several types of storage service abstractions
in the cloud, including object stores (e.g. Amazon S3),
block stores (e.g. Amazon EBS), and databases (e.g.
Amazon RDS and Microsoft SQL Azure). Among these
options, block-level storage provides the most flexibility.
Because a block device is attached as a conventional disk
to a VM, applications do not need to be modified to “port”
them to the cloud. A block device can be mapped to a
partition of a local attached hard drive, a logical volume
from a Storage Area Network (SAN), or a customized
driver that leverages a storage cluster. For example, Ama-

zon EBS not only provides block storage, but also offers
high reliability by performing replication in the storage
cluster.

However, these cloud-based storage services introduce
a multi-tenant environment and the performance experi-
enced by the end-users in such an environment varies,
sometimes more than an order of magnitude, compared
with a dedicated cluster [2, 18]. For example, Shripad
and Radu pointed out that at different times of day, the
performance of Amazon EBS and S3 also varied signifi-
cantly [14]. Such performance fluctuations are a natural
consequence of sharing servers, networks, and storage
among many different users. Workloads from different
tenants compete for shared resources. For block storage,
when two or more tenants share the same physical disk,
they compete for the disk head position for I/O accesses.
For instance, random workloads from one tenant can de-
structively interfere with sequential workloads of another
tenant [7], and reads may conflict with writes [1]. Such
interference makes the performance experienced by appli-
cations highly unpredictable. Attackers may also use the
performance anomaly as a covert channel between VMs
to perform co-residence checks [16].

Ideally, when there are n similar workloads sharing the
storage system, the worst-case slowdown seen by each
workload should be a factor of n compared to the perfor-
mance obtained when running the workload in isolation.
However, the unpredictability problem makes this almost
impossible: as we will show in Section 2, when differ-
ent types of workloads are randomly mixed on the same
physical disk, the result is an unfair distribution of system
resources among tenants.

This paper focuses on improving the performance pre-
dictability of block storage in clouds, which naturally
leads to a storage service that provides a fair share of sys-
tem resources in a multi-tenant environment. To demon-
strate the problem, we first present some observations
and provide several design implications in Section 2. We
then present the proposed architecture of our block stor-
age system for the cloud, the FAST (Fair Assignment for



Storage Tenants) system. FAST provides a block-level
replicated storage service for reliability, while aiming to
minimize the interference between different tenants. By
default, each block device is replicated to three copies in
the storage cluster, using chain replication [20] to ensure
reliability and durability. FAST uses different disk layouts
on the replicas. In particular, we adopt log-structured
storage [17, 10] in one of the replicas. This converts all
write operations, whether they are sequential or random
from tenant’s perspective, into high throughput sequential
IOs to reduce interference and improve write performance.
We use the conventional layout with buffered-write stor-
age in the other replicas. FAST intelligently redirects read
operations to avoid co-locating random and sequential
reads and thus the unpredictable interference between
these types of workloads. Finally, we present initial sim-
ulation results that validate our hypothesis that FAST’s
design achieves a fair share of the storage service among
users in a multi-tenant cloud environment without sacri-
ficing the overall system throughput.

2 Observations and Design Implications

The design of the FAST system is motivated by our ob-
servations of undesirable interference between different
types of workloads when they are concurrently executed
on the same physical disk. We use the FIO tool [3] to
generate workloads directly at the block storage level.
For higher-level experiments, we use the TPC-H bench-
mark [19] to simulate real-world application scenarios.
Specifically, our objective is to evaluate the performance
interference between random and sequential workloads,
and between reads and writes.

2.1 Micro-benchmark with FIO

To investigate the performance interference between work-
loads, we looked into all types of workloads: random read
(RR), sequential read (SR), random write (RW), and se-
quential write (SW). Each workload is set to run for 120
seconds. The block size is set to be 4 KB and we used
direct I/O to bypass operating system caches and examine
disk behavior directly. The I/O queue depth is set to be 32.
We measure random workloads in terms of I/O operations
per second (IOPS), and use throughput to measure se-
quential workloads.1 We used a Seagate Cheetah 10,000
RPM 146 GB SCSI disk for our tests. The Product ID
is ST3146707LC. The SCSI storage controller in use is
LSI Logic/Symbios Logic 53c1030 PCI-X Fusion-MPT
Dual Ultra320 SCSI. Each workload writes to a different
10 GB physical region of the disk.

Co-locating similar workloads. Our first set of ex-
periments puts workloads of the same type on the same

1For random workloads, IOPS tells the seek interval directly while
for sequential workloads, the throughput is not sensitive to buffer size.
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Figure 1: Co-locating the same type of workloads.

disk, varying the number of workloads from one to eight.
We present the results for random read and sequential
write workloads in Figure 1; trends for the other two
types (not shown) are similar. As we can see, fair share in
performance (hence, the system resources) is preserved:
for each experiment, all workloads see similar IOPS or
throughput.2

ä Observation 1: When co-locating the same type of
workloads, each workload gets a fair share in performance
and system resources.

Co-locating different types of workloads. The de-
structive interference from co-locating different types of
workloads are presented in Figure 2. Figure 2(a) shows
the IOPS achieved by an RR workload (denoted as the
base workload) co-located with one instance of the four
types of workloads. The ideal case for predictability and
fair-sharing would be for the base workload to achieve
approximately 50% of single-tenant performance. The
‘1/2’ bar shows this ideal case for reference. Figures 2(b),
(c) and (d) represent the same results for similar experi-
ments when we change the base workload from RR to SR,
RW, and SW respectively. These figures reveal several
interesting findings.

ä Observation 2: A random write workload is de-
structive for all other types of workloads: for all base
workloads, the RW bar is the lowest. This holds even for
the RW workload itself.

ä Observation 3: Sequential write workloads are
seriously impacted by workloads of a different type. The
SW bar in Figure 2(d) is the highest, indicating that a
sequential workload gets its maximum performance only
when it co-locates with another workload of the same
type. In fact, the SW bars in all figures are the highest,
i.e. all workloads increase their performance by unfairly
“stealing” performance from the SW workload.

ä Observation 4: When co-locating two SW work-
loads, the aggregated throughput is actually larger than the
throughput when running a single such workload alone.
We further verified that this holds for up to 8 concurrent
SW workloads (not shown).

ä Observation 5: It is not worth co-locating the two
types of read workloads: RR and SR. Doing so brings

2A minor exception is that for all types of workloads, when we ran
two workloads of the same type concurrently, one workload always gets
a slightly worse performance; we believe this to be an artifact of disk
geometry.
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Figure 2: Interference between different types of workloads
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Figure 3: Performance interference in TPC-H.

little improvement in IOPS for RR workloads, but the
drop in throughput for SR workloads is more significant.
This drop is shown by the difference between RR and SR
bars in Figure 2(b).

2.2 Real-world applications

Previous results have demonstrated the interference be-
tween workloads at the block storage level. Such interfer-
ence can be propagated to the application layer. To mea-
sure this effect, we used the 21 queries provided with TPC-
H as a random workload3, and 9 queries doing in-order
scans of database tables as a sequential workload. We
populated a database at the scale factor of 1 (other scale
factors were also tested but the results were quite simi-
lar). We ran these two workloads against this database,
either in isolation or concurrently. We compare the total
execution time for each workload, averaged across three
runs. The results are presented in Figure 3. The random
workload is labeled ‘R’, while the sequential workload is
labeled ‘S.’ ‘C1’ bars show the execution time when each
workload runs in isolation. while ‘C2’ bars show the time
taken by each workload when the sequential and random
benchmarks are run concurrently on the same disk.

Running the two workloads concurrently on the same
disk increases the runtime of the random workload by
only 10%: when run by itself, it takes 212 seconds, and
when co-located with the sequential workload, it takes
233 seconds. However, co-location increases the runtime
of the sequential workload more substantially, from 19
seconds to 51, an increase of 168%. This clearly demon-

3TPC-H query 18 was removed because it took too long to finish.

strates that random workloads do interfere with sequential
workloads for real-world applications.

3 System Design
The FAST system offers block-level storage abstraction
to VMs. Each device is presented as a virtual disk, or a
virtual volume, to the VM. The OS in the VM expects
the volume have the same semantics of a raw disk, and
have similar performance characteristics. In particular,
sequential IOs in the linear address space of a volume
should have much higher throughput than random IOs.

3.1 Assumptions

In designing a block storage system with predictable per-
formance, we make the following assumptions.

• The system is built from many inexpensive com-
modity components that often fail. Replication is
necessary to offer high availability and durability.

• Virtual volume sizes may range from 1GB to 1TB.
The number of physical disks available in the cloud
is much less than the total number of requested block
devices from all tenants.

• A block device can only be attached to at most one
VM at a given time as the exclusive reader and writer.
Live VM migration between hosts is rare so that
block device handoff does not need to be optimized.
These assumptions make our system design different
from many existing storage systems that have to
make difficult tradeoff in design between consistency
and performance.

• No assumption is made on the storage workload
from VMs. The workload may be database queries
made of many small random reads, or map-reduce
jobs with mostly sequential IOs and some random
IOs.

• All nodes in the cloud are within a single data center,
interconnected by high speed Ethernet with enough
bi-section bandwidth.

3.2 Architecture

There are three types of roles in our system architecture
as shown Figure 4: compute nodes, name nodes, and data
nodes. Each of these runs a commodity Linux machine.

A compute node runs a Xen hypervisor [4] that hosts
VMs, and runs our block device driver in Domain-0 as the
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Figure 4: Overall System Architecture

Figure 5: Chain Replication

client of the storage service (the FAST client). All disk
IO requests within the VM in Domain-U is redirected to
the driver.

A data node stores the data of the virtual volumes.
We partition every three data nodes into a replication
group, in which data is replicated on every data node
for reliability and availability. Volumes are divided into
fixed-size chunks. Each chunk is stored in one replication
group. A chunk is also lazily allocated when the first
write request within the chunk range is issued. Neither
the driver nor the data node caches volume data. Caches
offer little benefit because the application and OS inside
the VM already maintains them. The FAST clients do
cache metadata, however.

Finally, a name node provides a metadata service. It
manages the mappings from tenants and chunk IDs to
the corresponding replication groups, replication group
memberships, access control information, and leases from
clients. It is also responsible for detecting failed data
nodes via heartbeat messages. The name node is also in
charge of allocating chunks and deciding where to place
them. We choose to have a single name node to favor
simple design with the same argument made in GFS [6],
and leave more sophisticated architecture (e.g. Paxos
based replication [13]) as future work.

When a volume is attached to a compute node, the
driver first contacts the name node to establish a lease on
the volume, then prefetches the chunk IDs of the volume
and the addresses of the related replication groups. All
these information is kept in memory. The lease will be

periodically refreshed until the volume is detached. After
initial setup, the driver starts to serve IO requests from
the VM. If a write request is received, and the chunk
has not been allocated, the client will ask the name node
to allocate the chunk in a replication group. Otherwise
the chunk location is available from the local lookup
table. Once the chunk location is determined, the data is
sent to the replica group in a chained fashion shown in
Figure 5. If a read request is received, and the chunk has
not been allocated, a zero-filled buffer is returned directly.
Otherwise, we find the replication group of the chunk,
and use our read algorithm in Section 3.3 to pick one
data node out of three to retrieve the data, and then return
to the VM. Any node in the replication group is able to
handle it without inconsistency. This is different from
the chain replication used in object storage [20] where
multiple readers and writers are present. As the exclusive
reader and writer, the device driver keeps track of pending
write byte ranges and responds to the read requests only
after pending overlapping writes finish.

3.3 Layout and Strategy

Each data node may use either conventional disk layout
such that a chunk is stored in contiguous physical disk sec-
tors, or a log-structured disk layout (log layout in short),
in the same spirit of a log-structured file system [17]. In
the log layout, data from different tenants are interleaved
in the order of the time the data is written. A B-tree
index is used to maintain a table to lookup data during
read given a tuple specified by chunk ID, offset in chunk
and length. Compared to the conventional layout (i.e.,
buffered write), the log layout effectively converts all
chunk write requests, including both random and sequen-
tial, into sequential operations due to the append-only
log structure. As a result, random writes from one tenant
will not disruptively interfere sequential writes of another
tenant who share the same physical disk.

For the three data nodes in a replication group, we
designate the tail node of the replication chain to use
the log layout, and the head and middle node to use the
conventional layout. During replication, we only write
data to the disk buffer cache on the first two nodes, but
make sure to flush all data to the disk on the tail node
before a write succeed reply is sent to the compute node.
The write strategy guarantees that the data is replicated
on all three nodes, and is persistent on the tail node at
least. The probability of all data corruption on three
nodes at the same time due to power loss, server crash, or
malfunctioning disk hardware is very low.

We choose not to flush buffer cache on the head and
middle data node immediately after write requests for two
reasons. First, write requests from one tenant may collide
with read requests from another tenant. Having the option
to delay writes without sacrificing much durability due to
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replication gives us the opportunity to address the read-
write conflict. Second, because we use the conventional
layout on those two nodes, flushing each write request
would cause write-write interference among tenants.

For each read request, we use a default-with-steal strat-
egy to select the data node for read. By default, the device
driver always sends random read requests to the head
node, and sequential read request to the middle node. As
such, the read workload is always competing with the
same type of workload, thus receiving its fair share. How-
ever, we also allow a data node to steal read requests
from others, if it is currently idling or very lightly loaded
compared to others, to maximize the disk utilization. For
example, if the tail node is not doing any writes, or the
middle node is not doing any sequential reads, they may
steal random read requests from the head node queue to
improve performance. Note that the device driver itself
cannot make the decision because it is only aware of the
workload of its own tenant.

4 Initial Results
We use simulation to demonstrate the advantage of our
design. We compare FAST with a traditional approach
called Baseline. In Baseline, chunks are also replicated
in the replication group three times, but every data node
uses the conventional disk layout. The IO scheduler is not
workload type aware. Instead it binds a tenant to a replica
for read in a round-robin fashion for load balancing.

In the simulation, we study one replication group with 3
disks and 30 tenants. Each has exactly one chunk assigned
in the group, and all start workloads at the same time. The
workloads consist of 10 random read of 16 MB each (RR),
10 sequential reads of 19 MB each (SR) , 5 random writes
of 20 MB (RW), and 5 sequential writes of 20 MB (SW).
For Baseline, 4 RRs and 3 SRs are assigned to the head
node, 3 RRs and 4 SRs to the middle node, and 3 RRs and
3 SRs to the tail node. In FAST, 10 RRs are assigned to
the head node, and 10 SRs to the middle node. All SWs
and RWs are performed on the head and middle node
as buffered writes, and on the tail node as direct write.
However, note that in FAST the 5 RWs and the 5 SWs
will be converted to one single SW workload on the tail
node (the one with the log structure).

We used the same disks and tools described in Section 2
to simulate the behavior of FAST and Baseline. We mea-
sured the elapsed time for each workload and present the
results in Figure 6. Each bar represents the performance
for one workload. The bars marked as D1, D2 and D3 are
workload performance in Baseline scheduled on the head,
middle and tail node respectively. We observe that (1) for
the same type of workload, FAST gives consistent and fair
performance regardless of the tenancy. Baseline yields
highly variable performance depending on which node the
tenant is associated with; (2) for sequential read and write
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Figure 6: FAST vs. Baseline for different workloads

workloads, FAST outperforms Baseline because there is
no disk seek caused by random workloads for disruption;
(3) for random write requests, because FAST adopts the
log layout, it significantly outputs Baseline; (4) random
read workloads take longer to execute in FAST than in
Baseline. This is because those workloads are fixed on the
head node in our simulation for FAST. The middle node
and the tail node have been idle since 20 seconds and 4
seconds respectively. We expect the performance of ran-
dom read in FAST to improve greatly once we implement
the steal strategy (Section 3.3) for load balancing so that
the two nodes can share the workload of the head node
once they are idle. But more importantly, FAST achieves
a fair share of system resource with strong and consistent
predictability while Baseline fails to do so.

5 Related Work
There are many related work on providing QoS-based
resource allocation for storage, such as Stonehenge [11],
Argon [21], and Aqua [12]. The goal of these algorithms
is to allocate throughput or bandwidth in proportion to
the pre-specified weights of the clients. Further proposals
provide additional support for latency-sensitive applica-
tions (SMART [15], BVT [5], pClock [8]). Furthermore,
mClock [9] borrows the concept of reservation and limit
from CPU and memory scheduling to storage in addi-
tional to the proportional weight based allocation. These
work typically abstract the storage device to a single block
device, such as a physical disk, a LUN or a RAID device.
They rely on the lower layer to deal with replications and
do not try to change the I/O behavior of the guest VMs
or clients. In contrast, we propose to leverage the replica-
tion information during scheduling to optimize the perfor-
mance while maintaining fairness, and use log-structured
storage on selected replicas to avoid write workload con-
flict.

6 Conclusion and Ongoing Work
In this position paper, we reveal the performance interfer-
ence problem among different tenants when co-locating
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different types of workloads in the cloud. Then we pro-
pose the design of a block storage system FAST which
provides a much better fair-sharing and a higher or at least
comparable performance for different workloads. Our ini-
tial results showed that the new design is effective and
promising.

We are still at the early stage of the design and imple-
mentation of FAST. There are many interesting challenges
we have not investigated. First, in our initial evaluations,
we assume that all workloads belonging to one type have
similar I/O request characteristics. We plan to investi-
gate effects of co-locating same type of workloads but
with different I/O request characteristics (e.g., in term of
block size and request frequency) and build models for
them. Second, we need to deal with failures, including
data and name node crashes and disk corruption. Be-
cause of different disk layouts and roles, the recovery
procedures for data nodes might be different. Third, for
load-balancing purpose, we need to design an allocation
and placement algorithm on name node to efficiently use
physical resources. We might also need to consider live
chunk migration across replication groups to reduce hot
spot. Forth, we need to study the tradeoff of chunk size
selection with realistic workload. If the size is too small,
then sequential workloads will be affected. But if the size
is too large, it is likely to cause hot spot in a replica group.
Finally, we are in the process of building the system. We
expect the interaction of the network layer and the vir-
tualization layer with the storage layer will also impose
research challenges such as performance anomalies.
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