
Appeared in Proceedings of the 3rd Workshop on Cyber Security Experimentation and Test (CSET),
Washington, DC, August 2010.

Trusted Disk Loading in the Emulab Network Testbed

Cody Cutler Mike Hibler Eric Eide Robert Ricci

University of Utah, School of Computing
{ccutler, mike, eeide, ricci}@cs.utah.edu www.emulab.net

Abstract
Network testbeds like Emulab allocate physical comput-
ers to users for the duration of an experiment. During
an experiment, a user has nearly unfettered access to the
devices under his or her control. Thus, at the end of an
experiment, an allocated computer can be in an arbitrary
state. A testbed must reclaim devices and ensure they are
properly configured for future experiments. This is par-
ticularly important for security-related experiments: for
example, a testbed must ensure that malware cannot per-
sist on a device from one experiment to another.

This paper presents the prototype trusted disk-loading
system (TDLS) that we have implemented for Emulab.
When Emulab allocates a PC to an experiment, the TDLS
ensures that if experiment set-up succeeds, the PC is con-
figured to boot the operating system specified by the user.
The TDLS uses the Trusted Platform Module (TPM) of
an allocated PC to securely communicate with Emulab’s
control infrastructure and attest about the PC’s config-
uration. The TDLS prevents state from surviving from
one experiment to another, and it prevents devices in the
testbed from impersonating one another. The TDLS ad-
dresses the challenges of providing a scalable and flexi-
ble service, which allows large testbeds to support a wide
range of systems research. We describe these challenges,
detail our TDLS for Emulab, and present the lessons we
have learned from its construction.

1 Introduction
Network testbeds are generally designed to help users
create test environments that are realistic. That is, in or-
der to produce practically useful results, experimenters
often want to create test environments that are like true
deployment environments with respect to the properties
of interest to a test. In addition, for systems-level re-
search, testbed users often need a great deal of free-
dom within the environments they create. A systems re-
searcher may need to install custom operating systems,
use nonstandard network protocols, or perform other
administrator-like tasks.

To support both realism and freedom, testbeds like
Emulab are designed to allocate actual physical devices

as well as virtual devices to users [15]. For the duration
of an experiment, a user has exclusive and essentially
complete control over the devices that are allocated to
him or her. At the end of an experiment, the user re-
leases the devices back to the testbed, and the testbed
must reclaim them. Virtual devices are straightforward:
they can simply be destroyed by the testbed. Physical
devices, however, must be recovered so that they can be
usefully and safely allocated to another user in the future.

In this paper, we describe how Emulab securely recov-
ers and “reconditions” physical devices that support se-
cure remote attestation. This includes most modern PCs,
which contain Trusted Platform Module (TPM) hard-
ware [14]. Emulab regains control over these devices
in a trustworthy manner through a protocol rooted in the
TPM of each device. Once a node is brought under Emu-
lab’s control, Emulab prepares the node for a new exper-
iment by loading the node’s disk with contents chosen by
the experiment’s creator. Emulab’s trusted disk-loading
system (TDLS) is responsible for both of these steps. In
addition to preventing unwanted state from persisting on
a device from one experiment to the next, the TDLS pro-
tects Emulab against other attacks that would misconfig-
ure of the devices allocated to an experiment.

Emulab’s TDLS addresses several challenges in pro-
viding a secure node-configuration service for a large
testbed that supports systems-level experiments on phys-
ical devices. The first is merely to regain control over
physical nodes as they are released from experiments.
An experiment may leave a device in an arbitrary—
or even dangerous—state. The TDLS regains control
through a combination of power control, remote attes-
tation, and cryptographically secure network protocols.
A second challenge comes from the size and diversity of
the testbed. The Utah Emulab site contains hundreds of
PCs. In addition, the site provides dozens of standard
disk images that may be loaded onto those nodes, and
users are free to create their own. The TDLS is therefore
designed to require little or no administrator action when
new devices or disk images are added to a testbed. A
third challenge is to repel network-based attacks against
the TDLS. This includes preventing a device from pre-
tending to be Emulab’s trusted control server, and pre-
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venting devices in untrusted states from initiating or re-
joining the trusted disk-loading protocol. These issues
are addressed through the design of the TDLS protocol
and careful handling of the TPM.

When Emulab creates an experiment environment for
a user, the TDLS ensures that the allocated PCs are con-
figured to boot the user-specified disk images. The TDLS
does not guarantee that the software within a disk im-
age is “secure” by any standard, nor does it protect a PC
from attacks during the execution of an experiment. In-
deed, testbed users often want to install and study inse-
cure software! The only job of the TDLS is to set the
initial states—disk contents and boot data—of the PCs
allocated to an experiment as specified by the experi-
ment’s creator. If the PCs cannot be so configured, the
TDLS will cause the creation of the experiment to fail.

The main contribution of this paper is that it details the
design and implementation of the trusted disk-loading
system we have created for Emulab. The TDLS is impor-
tant for containing the effects of experiments, and thus
important for a testbed that seeks to provide isolated,
reliable, and secure services to its users. Our current
TDLS is a prototype, soon to be deployed for produc-
tion use in Utah’s Emulab site. In addition, this paper
summarizes the “lessons learned” from the development
of our TDLS. Our TDLS design can inform the creation
of node-configuration services for network testbeds and
other, similarly managed networks. Although our TDLS
was built for Emulab, we believe our implementation
could be adapted for use in other testbeds that provide
users with unmediated access to TPM-enabled devices.

2 Disk-Loading Challenges

Emulab [15] is a well-known network and distributed-
systems testbed that emphasizes realistic experimenta-
tion by providing its users with physical hardware. Users
do not have physical access to the testbed; instead, users
communicate with Emulab and its resources remotely via
the Web, SSH, and other Internet protocols. The testbed
is managed by a trusted control server, called boss.

When a user creates an experiment, Emulab allocates
physical resources—real PCs running real OSes and con-
nected by physical switching infrastructure—to the ex-
periment. When a machine (node) is allocated to an ex-
periment, the creator of the experiment controls all as-
pects of that node: e.g., what operating system is run-
ning, what applications are installed, and how the nodes
are interconnected with each other. This control extends
beyond experiment set-up. Because a user has “root” ac-
cess to his or her nodes, he or she can install and remove
software at any time during an experiment.

Emulab is also a shared facility. Its physical cluster
is space-shared: at any given time, multiple independent

experiments may be taking place, each in its own alloca-
tion of physical resources. Emulab isolates experiments
so that they cannot observe or interfere with each other.
Emulab’s resources are also time-shared. A node that is
allocated to one user’s experiment at a particular point
in time will be dedicated to a different user’s experiment
for an entirely different purpose at a future time.

Because devices are time-shared, Emulab must
“wash” every physical device between the time it is re-
leased by one experiment and the time it is allocated to
another. When a device is released from an experiment,
however, it can be in a nearly arbitrary state. That state
might contain malware that was the subject of the just-
completed experiment, for example, and which must not
be transferred to subsequent experiments. More egre-
giously, a malicious user might leave a device in a state
that attempts to subvert Emulab’s ability to recondition
the node for subsequent uses. Consider a user who wants
to transfer malware to subsequent experiments, or who
wants to spy on future experiments. Such a user might in-
stall software that participates in Emulab’s disk-loading
protocol, but which does not actually reload the disk—
thus allowing the malware or spyware to persist.

Because the testbed is space-shared, other experiments
will be running while Emulab prepares nodes for a new
experiment. These can also threaten Emulab’s ability to
recondition devices as they pass from use in one experi-
ment to use in another. Malware within an experiment
may try to migrate onto a reloading node, or a mali-
cious user might try to hijack the disk-reloading process
to propagate malware or spyware.

Emulab must ensure that the node-reloading process
happens completely and correctly, without interference
from (1) software on the node being reloaded or (2) any
current experiments running on the testbed. Below, we
describe Emulab’s standard node re-imaging mechanism
and how it addresses—or falls short of addressing—the
threats outlined above. In Section 3, we describe how
our new trusted disk-loading system addresses the short-
comings of the current, standard mechanism.

2.1 Standard Disk Loading

Emulab’s standard disk-loading process involves two de-
vices: the device being reloaded and Emulab’s boss con-
trol server. As detailed below, the reloading device is
expected to contact various services running on boss to
obtain the data that it needs to configure itself for use
in a new experiment. Testbed devices communicate with
boss through a dedicated control network. At Utah’s Em-
ulab site, the control network connects all the PCs in the
testbed to Emulab’s central servers, including boss.

All PCs in Emulab are connected to power controllers
(accessible to boss) and configured to boot only from the
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Figure 1: The Emulab node-imaging state machine.

control network. These are the primary elements that en-
sure that Emulab can always gain control of a node, re-
gardless of the state it is in. The boss server can power-
cycle a node, and the node will then load a known first-
stage boot program that allows boss to manage the node.
Typically, boss directs the node to boot from its hard
drive or to reload its hard drive.

Emulab uses a set of state machines [10] to track the
states of nodes under its control. Events, including some
that are “self-reported” by the monitored nodes, cause
nodes to transition between states, which are tracked by
boss. Trigger actions can be invoked when nodes enter
states, and timeouts associated with each state allow cor-
rective actions to be performed when a node misbehaves.

Figure 1 shows the state machine that controls disk
imaging. In the first part (the upper shaded region), Em-
ulab regains control of the node and boots it into an en-
vironment from which the node can be re-imaged.

The node is placed in the SHUTDOWN state and Emu-
lab uses its power-cycling capability to force the node
to reboot. The system or network card BIOS on the
power-cycled node ensures that the control network in-
terface will perform a PXE [7] boot. The PXE BIOS uses
DHCP to obtain IP information for the node along with
the name of the next-stage bootloader, which it down-
loads via TFTP and then executes. The DHCP request to
boss causes a state transition to PXEBOOTING.

The next-stage loader is pxeboot, a custom Emulab
boot program. The pxeboot loader talks to the Emulab
bootinfo service to determine what the node should do
next: boot from a partition on disk, or download an OS
kernel and memory-based filesystem image (collectively

known as an MFS) via TFTP. In the node re-imaging
case, boss tells the node to download the disk-loading
MFS. The bootinfo request to boss causes the second
state transition into BOOTING.

After downloading the MFS, pxeboot hands off to the
MFS kernel. A successful boot of the MFS is marked
by the node explicitly reporting the RELOADSETUP state
to boss via Emulab’s tmcd service. This causes the third
state transition and marks the start of the second stage
of re-imaging (the lower shaded box): downloading and
installing a disk image.

The node contacts tmcd to learn what image to load
onto its disk and where to get that image. The node
then reports its state as RELOADING, causing the fourth
transition, and starts the frisbee disk-imaging client [6].
On successful completion of the reload, the node reports
RELOADDONE, making the fifth state transition. Emulab
reboots the node into a WAITING state for the next exper-
iment and moves the node to a different state machine.

Notice that there are no explicit failure reports during
any of the steps. Instead, each state has an associated
timeout value. If the node fails to transition from the
state in a timely manner, Emulab makes a timeout (TO)
transition for the node—resulting in the node being re-
booted and starting the process over again.

These mechanisms provide a robust process for re-
booting and re-imaging nodes, but rely on certain proper-
ties of Emulab’s infrastructure and assume a certain level
of trust to function correctly. A breach of that trust during
re-imaging could result in information leakage between
experiments, or worse, propagation of malware.

2.2 Threats

Emulab’s re-imaging system can potentially be sub-
verted, leading to a node that is not re-imaged correctly.
Consider, for example, the following threats to the first
part of the process. These threats would prevent the node
from booting the disk-loading MFS.

1. Avoiding the network boot. Because Emulab pro-
vides “raw” access to nodes, the preceding experiment
may have done anything to a node. A malicious experi-
ment may have modified the BIOS configuration, for ex-
ample, and arranged for the node to boot from its hard
drive, not from the network. When Emulab power-cycles
the node, the node will boot from disk. Software on the
disk can then emulate a network boot, performing the
necessary actions to force the state transitions shown in
Figure 1. Emulab will believe it is talking to a trusted
disk-imaging environment, when in fact it is not.

2. Hijacking the network boot. Even without BIOS
modifications, a malicious node may still spoof Emulab.
Emulab places all nodes being re-imaged in a common
VLAN, to take advantage of the disk imager’s multicast
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features. Unless all nodes in this VLAN are rebooted
simultaneously, a lagging node could use a man-in-the-
middle attack to interpose itself between boss and an-
other node, and thereby subvert the imaging of that node.
While a hijack is unlikely once a node starts using au-
thenticated communication with boss,1 the initial stages
(DHCP, TFTP, and bootinfo) are vulnerable, offering a
window of opportunity to infect a node before it resumes
communicating with boss.

3. Aborting the network boot. Even without a hi-
jack, a malicious node might be able to interfere with the
network-boot process of another device, so that the other
device falls back to booting from its hard drive.

Even if a node successfully boots into the disk-loading
MFS, there are attacks against the Emulab disk-imaging
subsystem during the second part of the process (the
lower portion of Figure 1). These attacks are detailed
in earlier work [11] and are summarized below.

4. Modifying the transferred image. Because fris-
bee uses an unauthenticated, IP-based multicast protocol
to distribute disk images, an adversary could transpar-
ently replace portions of an image: e.g., replace a section
that contains the password file.

5. Corrupting the transferred image. Even if an ad-
versary lacks knowledge about the content of an image,
he or she can still inject data into the transfer, corrupting
the resulting disk and preventing it from being used.

6. Observing the transferred image. IP multicast
does not have any built-in limitations on group member-
ship. Thus, any node may join a frisbee group and obtain
a copy of an image being loaded by another user, which
may contain sensitive data.

Emulab currently uses a variety of techniques to miti-
gate, but in most cases not eliminate, these threats. When
a node enters the re-imaging path, all access to that node
by previous users is revoked. This includes access via
the serial console and network, so interactive attacks are
eliminated. To help ensure that nodes reach the disk-
loading MFS, Emulab site operators typically password-
protect the BIOS of their testbed PCs. Emulab’s soft-
ware enforces timeouts on a node’s state as it transi-
tions to the reloading MFS. Coupled with a method for
client and server authentication, and judicious use of per-
experiment infrastructure and firewalls, these strategies
have proven adequate to protect Emulab sites from the
actions of non-malicious users.

However, the overall strategy is ad hoc and provides
insufficient guarantees for many types of security exper-
imentation. It also does not take advantage of advances
in technology—in particular, the increasing availability
of TPM-enabled platforms.

1A node can verify boss’ identity using a certificate found in the
node’s boot image. For space, we omit further details of node authen-
tication from our description of the standard disk-loading process.

3 Trusted Disk Loading
In this section, we describe how we make use of TPM
technology to implement a new, trusted disk-loading sys-
tem (TDLS) for Emulab.

3.1 The Trusted Platform Module

A TPM [14] is a tamper-resistant microcontroller that is a
standard component of many current desktop and server
machines. The TPM can perform a variety of crypto-
graphic functions and securely store a small amount of
data. The specific capabilities we rely on are (1) its abil-
ity to provide secure key storage and (2) its ability to
securely attest to the measurements of software.

Every TPM contains a Storage Root Key (SRK) that is
created before the TPM can be used and never leaves the
chip. A TPM can generate other symmetric and asym-
metric keys, and encrypt them with the SRK, so that they
can only be used by the TPM that generated them. The
encrypted keys are then exported from the TPM and can
be stored anywhere. A TPM also includes some num-
ber of Platform Configuration Registers (PCRs). A PCR
cannot be written with arbitrary values; instead, a PCR
can only be extended, an operation that stores a SHA-1
hash of the current PCR value concatenated with a new
value. A PCR value is called a measurement and is a
secure hash of some piece of state on the machine.

An attested boot of a machine causes each stage of the
boot process, starting with the BIOS, to measure the next
stage of the boot chain into a PCR. The effect is that, at
any stage of the bootstrap, there is a unique set of PCR
values that attest to the current state of the machine. By
remotely comparing this set of values against a precom-
puted set of correct values, one can be assured that the
machine is in a particular state.

To securely transfer a set of PCR values to a remote
machine, the TPM supports a quote operation. A quote
requires a TPM-created Attestation Identity Key (AIK),
the indices of the PCR registers whose values are wanted,
and a nonce. The TPM creates a list of the desired PCR
values along with the nonce, and signs it with the AIK.
The quote is then returned to the remote machine, which
verifies the signature and checks the PCR values.

TPM-supported remote attestation in no way prevents
tampering with the boot path: it only makes it possible
for an outside party (Emulab) to reliably detect any tam-
pering that does occur. As such, it is just one element of
providing the TDLS.

3.2 Using the TPM to Verify Node Boot

To support a secure boot path, we added the notion of se-
cure states to Emulab’s state-machine mechanism. Cer-
tain operations, such as fetching image-decryption keys,
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Figure 2: The Emulab TDLS state machine.

are allowed only while a node is in an appropriate se-
cure state. A secure state can only be entered by pro-
viding a TPM-attested quote to Emulab’s boss server, as
described below. If the quote is incorrect, or if a timeout
period passes, the offending node is placed into a special
SECVIOLATION state.2 When a node enters this state, an
email notification is sent to the testbed operators and the
node is powered off. Thus, any node that strays from the
trusted boot path will be handled by the operators, and
the amount of damage it can do is limited.

Figure 2 shows the state machine that drives the new
TDLS. It is similar to the state machine shown in
Figure 1, but has two additional states (described below)
and has several states replaced by new, secure states (in-
dicated by double ellipses). Note that a timeout or error
from any state results in a security violation.

3.2.1 Step 1: BIOS Boot

The first stage in the boot process is the BIOS boot. At
power-on, the TPM itself measures the BIOS and its con-
figuration parameters. The BIOS then measures the next
stage of the bootloader, which in Emulab is PXE-based.

To support trusted booting, we modified the way that
Emulab uses PXE. PXE typically is loaded from ROM
on a host’s network interface. However, current imple-
mentations do not allow the measurement of this ROM
by the BIOS, and we cannot modify the ROM to measure

2In the TDLS prototype, there is a single SECVIOLATION state. We
expect to implement multiple violation states before the TDLS is put
into production. This will help operators distinguish between certain
security violations (bad quotes) and potential ones (timeouts).

the next boot stage. This creates a break in the secure
boot chain. To avoid this problem, rather than use the
NIC’s PXE ROM, we perform the first-level boot from
a write-protected USB flash device, which the BIOS can
measure. That code then performs the PXE boot.

The previous user of a machine may still modify
the BIOS (Section 2.2, Threat 1) or otherwise interfere
(Threat 3) so that the machine does not boot from the
USB device. In these cases, the BIOS and first-level
bootloader measurements will be incorrect. Emulab’s
boss server will detect this when the node attempts to
check in, or when a timeout period has passed.

3.2.2 Step 2: Attested Emulab Network Boot

The flash device contains a modified version of the
gPXE [2] bootloader. Our version of gPXE is TPM-
aware and can establish TLS sessions with network-
based services. We can thus use gPXE to perform a mea-
sured network boot as described below.

An important design point is that the gPXE flash de-
vice contains no node-specific data, and is thus amenable
to large-scale duplication. This is essential for manag-
ing a large set of machines. Every time the operators of
the testbed change the version of gPXE in use, the flash
devices must be physically replaced and new, known-
good measurements of it must be taken. However, by
design, the functionality of gPXE is limited. We expect
that modifications to it will be extremely infrequent.

gPXE uses the PXE and DHCP protocols to acquire
an IP address from the Emulab boss server. It then uses
TFTP to download the next stage as specified in the
DHCP information. The downloaded next stage is mea-
sured, and the result extended into a PCR. There is no
assurance at this point that the DHCP and TFTP packets
are not spoofed or tampered with (Threat 2). If they are,
however, this will be discovered in the next step.

After measuring the next boot stage, gPXE attempts to
perform the first secure state transition (to GPXEBOOT-
ING). This involves the node sending a TPM-attested
quote to boss. To make this quote, the node requests from
boss its AIK, the PCRs to return, and a nonce. Using the
AIK and nonce, gPXE requests a quote from the TPM.
The resulting quote is unforgeable, and the nonce pre-
vents replay of previously generated quotes (Threat 2).

To ensure that the node is talking to the real boss (i.e.,
that it was boss that responded to the initial DHCP re-
quest), this request is sent via a TLS session. The boss
server is authenticated via a CA certificate embedded in
the boot image—in this case, gPXE. Because the certifi-
cate is part of the gPXE image measured by the BIOS,
we can be assured that any tampering with the certificate
will be discovered. Note that boss needs no strong au-
thentication of the reloading node during this exchange,
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since the AIK being returned is only usable by the node
that generated it.

Emulab’s boss server verifies the quote, comparing the
returned PCR values with a set of measurements that
have been precomputed and stored in Emulab’s database.
The precomputed measurements describe a correct boot
of a particular node, through the BIOS and gPXE, and
having measured gPXE’s next stage. A correct quote al-
lows the node to continue booting. An incorrect quote
causes Emulab to place the node into the SECVIOLATION
state and power it off.

3.2.3 Step 3: Booting the Disk-Loading MFS

gPXE downloads and executes a version of the GRUB 2
bootloader [3] that we have enhanced to support com-
munication with Emulab’s boss and the TPM. (In the
secure boot path, GRUB replaces pxeboot.) Similar to
the standard boot path, GRUB makes DHCP and boot-
info requests, triggering transitions to the PXEBOOTING
and BOOTING states. Unlike the standard path, a failure
or timeout results in a transition to SECVIOLATION.

GRUB proceeds to download and measure the secure
disk-loading MFS: a minimal Linux system that we have
configured to disable all network listeners. The mea-
surement is extended into a PCR, but not immediately
reported to boss. Reporting at this stage would have re-
quired us to make additional and extensive changes to
GRUB. After measuring and extending, GRUB transfers
control to the Linux kernel in the MFS.

Before starting the disk-loading subsystem, the secure
disk-loading MFS produces another quote for boss to
check. This includes the updated PCR values that cover
GRUB’s measurement of the MFS. The quote process is
identical to that performed by gPXE previously. It causes
a secure state transition to RELOADSETUP if successful,
or SECVIOLATION otherwise (Threat 2).

3.2.4 Step 4: Securely Reloading the Disk

Once a node has performed an attested boot into the disk-
imaging MFS, we make use of prior work [11] that ex-
tends the Emulab disk-imaging system [6] to provide
confidentiality, integrity protection, and authentication
for images and their distribution (Threats 4, 5, and 6).

In our new TDLS, we improve upon that previous
work by providing a trusted platform on which to run
the disk-imaging client. The TDLS also uses the TPM to
implement cleaner ways of (1) assuring node identities
to the server and (2) distributing image-decryption keys.

To provide better node identification, for every node,
we create a per-node certificate that is associated with a
key pair created by each node’s TPM. The certificate (in-
cluding the public key) and TPM-encrypted private key

are stored in the database on boss. When a node is run-
ning in secure disk-loading MFS, it acquires the certifi-
cate and encrypted key over an insecure channel. The
key is loaded into the TPM, and whenever a TLS session
is started with boss, the client certificate associated with
the key is given to boss during the handshake.

This authenticated channel is used to pass the image-
decryption key from boss to the node. It is important that
this key not be released to a node until we are certain that
(1) the node is the one it claims to be and (2) that it is run-
ning in a trusted environment. We now have both those
assurances. At this point the node enters the RELOADING
state and invokes frisbee to obtain the actual disk image.

3.2.5 Step 5: Signing Off

After the disk has been loaded but before handing off to
the OS on the disk (RELOADDONE), the TDLS “inval-
idates” the PCR state so that the soon-to-be-booted OS
cannot produce a quote using the state of those registers.
This prevents the loaded OS, which is not trusted, from
participating in the TDLS protocol.

The TDLS makes an explicit hand-off using PCR 15
and a mandatory final quote to Emulab’s boss server.
This PCR is set to zero by a reboot (and only by a re-
boot), and the TDLS includes its value in all quotes to
boss. A zero in PCR 15 is the boss-visible indicator that
the node is executing the trusted disk-loading protocol.

To invalidate the PCR state, the secure disk-loading
MFS extends a known value into PCR 15, which sets the
PCR to a non-zero value. The MFS then produces and
transmits a final quote, including this non-zero measure-
ment, to signal that the trusted image load has completed
(TPMSIGNOFF).3

3.2.6 Epilogue: Booting the Loaded Disk

The secure disk-loading protocol ends when the disk-
loading MFS signs off. It still remains, however, to boot
the node from the downloaded disk.

After sending its final quote, the MFS immediately re-
boots its node. This re-engages the BIOS boot (§3.2.1),
which runs our modified gPXE (§3.2.2), which securely
downloads our modified GRUB (§3.2.3), which securely
contacts the bootinfo service. In the TDLS protocol,
bootinfo would tell the node to download the disk-
loading MFS. Now, however, bootinfo tells the node
to boot from its local disk—i.e., the image that was just
downloaded. GRUB immediately invalidates the node’s
PCR state, transmits the “sign-off” quote to boss, and
proceeds to boot the on-disk OS.

3Conceivably, the final quote could include a measurement of the
final disk contents, as further protection against disk failures and mali-
cious activity. We consider this impractical, due to the time needed to
hash entire—and potentially very large—disks.
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Because disk loading and disk booting are separate, an
attacker might try to subvert correct booting by modify-
ing the node between these steps. We believe that such
attacks are infeasible without physical access to the PC
or compromising the Emulab software. Even when not in
the TDLS, TPM-enabled nodes use the secure boot pro-
cedure up to the GRUB stage, which mutually authenti-
cates the node and the true Emulab boss. Failure to boot
through the secure path will be discovered through an in-
correct quote or timeout.

3.3 Establishment and Maintenance

Because of the size and dynamic nature of Emulab, it
is essential to consider the tasks required to set up and
maintain the TDLS.

The most labor-intensive one-time task is installing
USB flash devices on all machines. Because the USB-
based gPXE image contains no node-specific informa-
tion, this is reduced to a task of physical replication.

Another task is the creation of the two per-node TPM-
encrypted keys: the AIK used to produce quotes, and the
TLS key (and certificate) used to authenticate a node to
boss. These steps must be performed on the nodes them-
selves, when they are in a secure state. This can likely
be automated, running a script in the gPXE environment
and taking advantage of its ability to securely identify
and communicate with boss.

Likewise, the correct values of the PCRs used in
quotes must be produced for each node and stored in
Emulab’s database. The initial values covering the BIOS
measurements must be computed on the TPM of every
node, and must be harvested in the same way as the per-
node keys. Additional values covering gPXE and later
stages can be computed offline by using the SHA-1 algo-
rithm used by the TPM standard.

Changes to the TDLS, or the addition of other trusted
boot paths, require the collection of additional PCR val-
ues. As long as all are based on booting through gPXE,
we can compute these values offline.

4 Applicability

To recap, Emulab needs a trusted disk-loading system
because (1) users have “root” access to physical PCs;
(2) Emulab serially reuses PCs over time for many exper-
iments and users; and (3) Emulab reconditions PCs for
experiments using a network server (boss). The primary
threats to conditioning a PC for a new experiment arise
from (1) software left on the PC by a prior experiment
and (2) network communication that attempts to hijack
or abort the network-booting protocol. The design of the
TDLS is shaped by the Emulab environment, in which
(1) the central boss server is trusted; (2) users access de-

vices remotely; (3) users can create arbitrary disk im-
ages; and (4) testbed scale necessitates full automation.
Emulab’s TDLS uses TPM technology to address the se-
curity challenges of configuring newly allocated PCs ac-
cording to users’ specifications in this environment.

Because many of above qualities are shared by Emu-
lab and other environments, we believe our TDLS design
could be the basis for similar services in other testbeds or
clusters. The xCAT 2 toolkit [16], for example, supports
user-provisioning of physical PCs in clusters. Although
many cloud and grid platforms allow users to allocate
virtual machines only, our TDLS could nevertheless be
useful to the providers of cloud and grid services who
must manage the underlying physical resources.

5 Lessons Learned

Our trusted disk-loading system for Emulab is not yet in
production use. However, in designing and implement-
ing our prototype, we identified two principles that we
believe are general. We believe these “lessons learned”
could be usefully applied to similar, trustworthy node-
configuration systems for security-conscious testbeds.

Check in frequently to minimize damage. While it
would be possible to check boot state only at the end of
the device “reconditioning” process, the timeout in some
states may be very long. If attestation is performed only
at the end of the node-configuration process, it is not pos-
sible for a testbed to detect nodes that have left the trusted
boot path until all timeouts have expired. Performing at-
testations frequently, at a number of boot stages, helps to
minimize the window of opportunity for attackers.

Make an explicit transition to untrusted code. The
TDLS relies on a trusted boot path and disk loader to
load and boot untrusted user code. TPM-based attesta-
tion can make the transition point visible (§3.2.5, §3.2.6)
and prevent user code from impersonating trusted code.

6 Related Work

Emulab’s TDLS establishes only the initial condition of
a physical PC that has been allocated to an experiment.
This purpose distinguishes our TDLS from prior work
that uses the TPM to implement secure bootloading, in-
tegrity guarantees, and execution services.

Emulab’s TDLS is not “just” a secure bootloader; it
is a large system that embeds a secure bootloader to im-
plement a particular, staged, disk-loading protocol. The
goal of a typical secure bootloader is to ensure proper-
ties of the “user-visible” OS being booted. In contrast,
the task of the TDLS is only to ensure that a machine
is ready to boot the user-visible OS, and is independent
of the properties of that OS. The security (or insecurity)
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of the OS contained within an Emulab disk image is ex-
plicitly up to the experimenter. This is necessarily so:
for security-related experiments, users must be allowed
to install whatever OSes they choose.

This difference in purpose leads to differences in de-
sign. TrustedGRUB [12], for instance, uses the TPM to
measure not only the binary of the kernel being loaded,
but also individual files that are important to the system.
In contrast, Emulab’s TDLS is designed to load entire
disk images, so measuring the kernel or individual files
within a disk image is unnecessary.

Our TDLS uses a static root of trust for measurement
(SRTM): i.e., measurement of a system’s BIOS at boot
time. The OSLO bootloader by Kauer [8] establishes a
dynamic root of trust by using the “late launch” features
of recent AMD processors. This technique removes the
BIOS from the trusted computing base, which is useful
in principle and practice. We chose to use the SRTM in
our TDLS. Unlike OSLO, TDLS incorporates an agent
(boss) that can be trusted to demand quotes, verify them,
and take corrective actions.

There is much work that aims to provide integrity
guarantees to running operating systems. Examples in-
clude SecVisor [13], a hypervisor that protects a kernel
against code-injection attacks; Livewire [5], an intrusion-
detection system based on VM introspection; Terra [4], a
trusted virtual machine monitor that protects virtual ma-
chines from each other and from the underlying platform;
and rootkit-resistant disks [1], which prevent system files
from being modified on a node’s persistent store. Unlike
these systems, our TDLS guarantees only the initial state
of a user-chosen operating system. Our TDLS provides
integrity at the start of a testbed-based experiment, not
within a running experiment. Also, because Emulab pro-
vides users with unmediated access to physical devices,
our TDLS avoids hypervisor- and VM-based approaches
to ensuring the integrity of nodes.

Flicker [9] uses TPM and late-launch features to cre-
ate trustworthy environments for code execution. Flicker
allows code to be executed securely at essentially any
time, whereas our TDLS is concerned with executing
code only at node-configuration time. A possible future
project would be to use Flicker to allow a testbed to se-
curely monitor experiments over their full lifetimes.

7 Conclusion

We have presented a new trusted disk-loading system for
Emulab. The task of the TDLS is to gain control over
a physical PC, which may be in a nearly arbitrary state,
and set its state as directed by Emulab. In particular, the
TDLS is responsible for establishing the initial condition
of a PC that has been allocated to an experiment. We
have identified ways in which Emulab’s standard disk-

loading system can be subverted by an attacker, thus
causing initial conditioning to fail. Using the TPM of
modern PCs, our TDLS addresses these threats to reli-
able disk loading. We believe our system is practical to
deploy and maintain at the scale of hundreds of physical
PCs, and in the face of constant testbed evolution.

Acknowledgments
We thank Ryan Jackson for his assistance with gPXE and
the secure disk-loading MFS. We also thank the anony-
mous CSET reviewers for their constructive comments.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0709427.

References
[1] K. R. B. Butler et al. Rootkit-resistant disks. In Proc.

CCS, pages 403–415, Oct. 2008.
[2] Etherboot Project. Etherboot/gPXE Wiki. http://

etherboot.org/.
[3] Free Software Foundation, Inc. GNU GRUB. http://

www.gnu.org/software/grub/.
[4] T. Garfinkel et al. Terra: A virtual machine-based plat-

form for trusted computing. In Proc. SOSP, pages 193–
206, Oct. 2003.

[5] T. Garfinkel and M. Rosenblum. A virtual machine in-
trospection based architecture for intrusion detection. In
Proc. NDSS, Feb. 2003.

[6] M. Hibler et al. Fast, scalable disk imaging with Frisbee.
In Proc. USENIX ATC, pages 283–296, June 2003.

[7] Intel Corporation. Preboot execution environ-
ment (PXE) specification version 2.1, Sept. 1999.
http://download.intel.com/design/archives/

wfm/downloads/pxespec.pdf.
[8] B. Kauer. OSLO: Improving the security of trusted com-

puting. In Proc. USENIX Sec., Aug. 2007.
[9] J. M. McCune et al. Flicker: An execution infrastructure

for TCB minimization. In Proc. EuroSys, pages 315–328,
Apr. 2008.

[10] M. G. Newbold. Reliability and state machines in an ad-
vanced network testbed. Master’s thesis, Utah, May 2005.

[11] R. Ricci and J. Duerig. Securing the Frisbee multicast
disk loader. In Proc. CSET, July 2008.
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