
Survivability through Customization and Adaptability:
The Cactus Approach

Matti A. Hiltunen, Richard D. Schlichting, Carlos A. Ugarte, and Gary T. Wong
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

E-mail: hiltunen/rick/cau/gary@cs.arizona.edu.

Abstract

Survivability, the ability of a system to tolerate inten-
tional attacks or accidental failures or errors, is becoming
increasingly important with the extended use of computer
systems in society. While techniques such as cryptographic
methods, intrusion detection, and traditional fault tolerance
are currently being used to improve the survivability of such
systems, new approaches are needed to help reach the levels
that will be required in the near future. This paper proposes
the use of fine-grain customization and dynamic adaptation
as key enabling technologies in a new approach designed to
achieve this goal. Customization not only supports software
diversity, but also allows customized tradeoffs to be made
between different QoS attributes including performance, se-
curity, reliability, and survivability. Dynamic adaptation
allows survivable services to change their behavior at run-
time as a reaction to anticipated or detected intrusions or
failures. The Cactus system provides support for both fine-
grain customization and dynamic adaptation, thereby offer-
ing a potential solution for building survivable software in
networked systems.

1. Introduction

A survivable system is one that is able to complete its
mission in a timely manner, even if significant portions are
incapacitated by attacks or accidents [3]. Systems con-
nected to large networks such as the Internet are faced with
additional challenges—they must prevent unauthorized use,
maintain confidentiality, and provide adequate service to
proper users [19]. While survivability builds on research
in security, reliability, fault-tolerance, safety, and availabil-
ity, it is more than just a combination of these—it is also
about the interaction of these different properties [61]. A
survivable system must be able to continue providing ser-

vice despite attacks or accidents. To do so, it must have
facilities to protect against such threats, detect threats when
they occur, and react to counteract threats and recover from
damage. Thus, building a survivable system architecture
requires not just exploiting techniques from security, fault-
tolerance, safety, and real time, but it also requires develop-
ing new techniques.

We contend thatfine-grain customizationanddynamic
adaptationare both key enabling technologies for surviv-
ability in networked systems. Fine-grain customization al-
lows a service behavior to be tailored in fine detail to the
requirements of the service user and the execution environ-
ment. Our approach to customization is based onconfig-
urability, which is the ability to easily construct customized
service variants out of a set of software modules. Dynamic
adaptation is the ability to change the behavior of a service
by modifying the service configuration quickly at runtime.
Such adaptation may involve, among other things, loading
new code modules dynamically. A system based around
these technologies can support customized survivability so-
lutions, as well as evolve these solutions in both the short
and long term to react to threats or to take advantage of new
techniques.

Specific advantages of using fine-grain customization
and dynamic adaptation in this context include the follow-
ing:

� Services can be configured from existing collections of
modules realizing different techniques for protection,
detection, and reaction, rather than built from scratch.

� Configuration choices can be made depending on the
perceived threats at a given time, with explicit control
over tradeoffs such as the cost of an intrusion detection
technique versus its coverage.

� Different survivability strategies for peer services can
be adopted depending on the system scale, e.g., a
closely-coupled strategy for collections of servers on



a LAN versus a highly decentralized strategy for a cor-
porate intranet.

� Multiple protection and detection techniques can be
used in combination within a single service to further
enhance survivability, e.g., successive authentication
layers to protect sensitive data.

� Multiple customized services can be used in combina-
tion to protect sensitive aspects of system operations.

� Artificial diversity can be achieved easily by making
different choices for a service configuration on differ-
ent machines.

� Systems and individual services can adapt dynami-
cally to respond to changing circumstances, such as
a detected threat or a heightened state of alert (e.g., a
wartime situation).

� New survivability techniques can be introduced dy-
namically into services as developed.

Done properly, a survivable system based on customization
and dynamic adaptation could be a unifying framework that
leverages both existing and future survivability techniques.

The Cactus Project at the University of Arizona is devel-
oping an infrastructure to support the fine-grain customiza-
tion and dynamic adaptation capabilities needed to con-
struct this type of survivable system. This paper introduces
the Cactus model for configurable and dynamically adap-
tive distributed services, describes Cactus services relevant
to survivability, and outlines potential future applications of
Cactus in the survivability context.

2. The Cactus approach

The Cactus system is a framework for constructing
highly customizable and dynamically adaptable middleware
services for networked systems. Cactus provides an inte-
grated approach that addresses a wide range of functional
properties, as well as quality of service (QoS) attributes
such as reliability, timeliness, performance, and security.
The fine-grain customization provided by the systems al-
lows application-specific control over these attributes and
their potential tradeoffs.

2.1. The Cactus model

The Cactus model provides tools for building highly con-
figurable distributed protocols and services. In Cactus, dif-
ferent properties and functions of a service are implemented
as software modules that interact using an event-driven ex-
ecution paradigm. A service in Cactus is implemented as
a composite protocol, with each semantic variant of a QoS

attribute or other functional component within the compos-
ite protocol implemented as amicro-protocol. A micro-
protocol is, in turn, structured as a collection ofevent han-
dlers, which are procedure-like segments of code that are
executed when a specifiedeventoccurs. Events are used
to signify state changes of interest, such as “message ar-
rival from the network”. When such an event occurs, all
event handlers bound to that event are executed. Events can
be raised explicitly by micro-protocols or implicitly by the
Cactus runtime system. Event handling operations are im-
plemented by the Cactus runtime system that is linked with
the micro-protocols to form a composite protocol. The use
of events provides indirection between micro-protocols that
facilitates configurability and adaptability.

The model provides a number of operations for control-
ling events and handler execution. The two most important
are:

� bid = bind(event, handler, order, staticargs): Speci-
fies thathandleris to be executed wheneventoccurs.
order is a numeric value specifying the relative order
in which handlershould be executed relative to other
handlers bound to the same event. When the handler is
executed, the argumentsstatic argsare passed as part
of the handler arguments.

� raise(event, dynamicargs, mode, delay): Causesevent
to be raised afterdelay time units. If delay is 0, the
event is raised immediately. The occurrence of an
event causes handlers bound to the event to be exe-
cuted withdynamicargs(andstatic argspassed in the
bind operation) as arguments. Execution can either
block the invoker until the handlers have completed ex-
ecution (mode= SYNC) or allow the caller to continue
(mode= ASYNC).

Other operations are available for unbinding handlers from
events, creating and deleting events, halting event execu-
tion, and canceling a delayed event. Execution of handlers
is atomic with respect to concurrency, i.e., each handler is
executed to completion before the execution of the next han-
dler is started. The binding of handlers to events can be
changed at runtime.

In addition to a flexible event mechanism, Cactus sup-
ports two other features useful for configurable and adap-
tive service: service variables and the Cactus message ab-
straction. Service variables are variables and data structures
shared by all micro-protocols within a given composite pro-
tocol. Such variables can be used to store those portions of
the service state that need to be accessed by multiple micro-
protocols. For example, a communication service would
typically have a data structure storing messages that have
been transmitted, but cannot be discarded yet. The atomic
execution of event handlers makes it easy to use the service
variables since it eliminates most concurrency problems.



The Cactus message abstraction generalizes the typical
message format consisting of a message body and a header.
In particular, a Cactus message consists of a body and a dy-
namic set of named attributes that have scopes correspond-
ing to the composite protocol (local), the protocols on a sin-
gle machine (stack), and the peer protocols at the sender
and receiver (peer). The local attributes correspond to local
variables associated with the message and the peer attributes
correspond to normal header fields in a message. The stack
attributes allow controlled information sharing across pro-
tocol layers when necessary.

Micro-protocols can add, read, and delete message at-
tributes using operationssetAttr() , getAttr() , and
deleteAttr() . Two micro-protocols can share an at-
tribute if they agree on the name of the attribute. Apack()
operation adds any peer attributes to the message body,
while an analogousunpack() operation strips those at-
tributes from the body. The default pack operation includes
in the message body all the necessary information for un-
packing, including attribute names and lengths. However,
the pack and unpack operations are completely customiz-
able so if the message format is knowna priori by the
sender and receiver, this additional information can be omit-
ted. The custom packing and unpacking also makes it possi-
ble to create standard message formats in case a composite
protocol is interacting with a peer not implemented using
Cactus. Finally, this facility makes it possible to use other
header processing techniques such as header compression
transparently to the micro-protocols that use the attributes.

The Cactus message abstraction makes it easy to man-
age message headers for highly configurable services. Typ-
ically, each combination of micro-protocols would require
its own header format that includes those fields needed by
the chosen micro-protocols. The message abstraction elimi-
nates the need to explicitly construct the appropriate header
format since micro-protocols can simply add the needed at-
tributes to a message. This feature also makes it easy for the
message format to change under different operating modes
and to piggyback information on messages. In particular,
a micro-protocol that wants to piggyback information can
do so by adding a peer attribute with an appropriate at-
tribute name at the sender. At the receiver, the correspond-
ing micro-protocol can check if the information is piggy-
backed on a message simply by invokinggetAttr() with
the same attribute name as an argument. If the attribute is
not piggybacked on this particular message,getAttr()
returns an error indication. This flexibility also allows a
message to carry only those attributes—i.e., header fields—
that are required for that message.

The Cactus model promotes atwo-level compositionap-
proach to constructing subsystems: a service is constructed
out of micro-protocols and a subsystem is constructed out of
services. This approach is illustrated in Figure 1. This fig-

Hash tables
etc.

Messages

Message from net

Message from user

Message to user

Membership change

EventsMicro-Protocols

Causal Order

Reliability

Privacy

Shared service
variables

Composite Protocol

Composite/Traditional Protocol

Composite/Traditional Protocol

Figure 1. Composite protocol.

ure depicts a communication subsystem consisting of com-
posite and traditional protocols. In the middle is a com-
posite protocol, which contains shared service variables,
including a bag of messages, micro-protocols, and some
events. The boxes in the middle represent micro-protocols,
while to the right are events with binding between handlers
and events represented by arrows.

The Cactus model does not dictate the external interface
provided by a service implemented as a composite protocol.
For example, the service may export a CORBA object inter-
face with methods. In this example, the service is a commu-
nication protocol that resides in the protocol stack on top of
a lower level communication service such as UDP. In such
a case, interaction between protocols is either via a standard
Uniform Protocol Interface (UPI) such as that supported by
the x-kernel [35] or via a separate systemic interface that
supports vertical integration of support for Quality of Ser-
vice (QoS) requests and modifications.

Four major prototype implementations of Cactus are cur-
rently available or under development. One implementation
runs on OpenGroup/RI Mach MK 7.3 using C and CORDS,
a variant of thex-kernel [59]. A separate version of this im-
plementation called CactusRT supports construction of con-
figurable service with real-time constraints [34]. Another
version called Cactus++ is a C++ based implementation that
runs on Linux and Solaris. Finally, a Java implementation
of the model called Cactus/J runs on numerous operating
systems, including Windows NT, Linux, and Solaris. All re-
leased Cactus prototypes and services are available through



the Cactus home page http://www.cs.arizona.edu/cactus/.

2.2. Configurability in Cactus

All the mechanisms provided by the Cactus model are
designed to support configurability by promoting indepen-
dence between micro-protocols. For example, a micro-
protocol may bind an event handler to an event without
knowing which micro-protocol will raise the event, or raise
an event without knowing which micro-protocol, if any,
has handlers bound to this event. Similarly, the mes-
sage abstraction allows micro-protocols to add new mes-
sage attributes to a message without coordination with other
micro-protocols. As a result, micro-protocols typically do
not need to know about one another, which facilitates con-
struction of customized variants of a service by configuring
together the desired set of micro-protocols.

Our design approach to constructing highly-
customizable services is illustrated in Figure 2. First,
the useful abstract properties or execution guarantees
of a service are identified by exploring existing imple-
mentations of the service. Second, the useful abstract
properties are implemented as configurable modules. Note
that there may be multiple alternative implementations of
a property, where each implementation is optimized for
certain execution environment. The properties of a service,
as well as the modules that implement the properties, have
fundamental relations that dictate which combinations are
feasible. The goal of the implementation is not to introduce
any additional restrictions on configurability beyond those
found in these relationships [29].

Service Abstraction

Existing
Services

Properties
of Service

Micro-protocols

2. Implement1. Identify Properties

Configurable Service

Figure 2. Design of a configurable service

Cactus services with survivability features are discussed
below in section 4, but a number of other configurable ser-
vices have also been implemented. A group membership
service provides a range a customization options related
to event ordering, synchrony, partition handling, and fail-
ure detection [33]. A group remote procedure call service
allows customization of message ordering, call synchrony,

atomicity, and reply collation [8]. Finally, a real-time com-
munication service allows customization of message order-
ing, reliability, message deadlines, and the number and roles
of communication participants [34]. Other services under
development include a distributed shared memory service
and a distributed file service.

2.3. Adaptability in Cactus

In addition to fine-grain configurability, the Cactus
model offers features for supporting adaptive solutions. The
indirection provided by the Cactus mechanisms also makes
it easier to construct adaptive services that change their be-
havior as a result of changes in the execution environment
or in the service requirements. In particular, the event mech-
anism allows new micro-protocols to be activated by simply
binding their event handlers to the appropriate events or old
micro-protocols to be deactivated by unbinding their han-
dlers. Moreover, service variables make it easy to transfer
state from old to new micro-protocols, while the message
abstraction makes it trivial to modify the message header
format due to an adaptive change from one algorithm to an-
other.

The Cactus model supports different methods of adap-
tation, ranging from changing the execution parameters of
a micro-protocol to actually switching the set of micro-
protocols used to implement a service. Two approaches
are available for changing the set of micro-protocols: event-
handler rebinding and dynamic code loading. In the case of
rebinding, the composite protocol is compiled with the al-
ternate behaviors implemented as different micro-protocols,
and a mode switch only involves unbinding the old event
handlers of the deactivated micro-protocols and binding the
handlers of the activated micro-protocols. In the case of dy-
namic code loading, new micro-protocols are loaded into a
running composite protocol. After the new code is loaded,
it can be activated in the same manner as above. The Cac-
tus model makes such runtime code modification easier and
allows more coordination than simply loading procedures
into an ordinary running program because of the decoupling
between micro-protocols provided by the event-driven exe-
cution model. We have experimented with dynamic code
loading using dynamic libraries on Solaris, as well as using
Java facilities for class loading in Cactus/J.

The ability to change the behavior of a running pro-
gram is only the first step in adaptation. In particular, in
the case of networked systems, the more difficult problem
is often the coordination of the adaptation at the different
sites involved in the computation. To coordinate this pro-
cess, we have developed a three phase model for adaptations
consisting of change detection, agreement, and action [32].
The agreement phase, where the different sites decide if the
adaptation is necessary and what the adaptation should be,



can be relatively complicated. To simplify the implementa-
tion of this phase, we have developed a library of consen-
sus micro-protocols. The current set of consensus protocols
are fault-tolerant, but do not currently address other aspects
of survivability. However, new consensus micro-protocols
could easily be added with other features such as authenti-
cation or tolerance to Byzantine failures.

We are in the process of defining a Cactus-based soft-
ware architecture for constructing highly-adaptive config-
urable services [11]. In this architecture, a configurable
service consists of adaptive and static (non-adaptive) com-
ponents, where each component implements a QoS at-
tribute, property, or function of the service. The service
components interact using events and service variables.
Each adaptive component is implemented as a collection
of micro-protocols, including a number of adaptation-aware
micro-protocols (AAMPs) and a component adaptor micro-
protocol that coordinates adaptations between the AAMPs
(Figure 3). Each AAMP provides a different implemen-
tation of the component functionality, with the component
adaptor switching between the alternative AAMPs depend-
ing on the state of the execution environment and the ser-
vice requirements. For example, a component that pro-
vides communication security may switch between differ-
ent cryptographic micro-protocols depending on the level
of security provided by the underlying network. Since the
service components do not interact directly—e.g., by invok-
ing methods on one another—the AAMPs can be switched
without any effect on other system components.

The AAMPs are somewhat different than normal micro-
protocols. In particular, they export an adaptation inter-
face that consists of operations for evaluating the fitness
of the micro-protocol for the current execution environ-
ment, and operations for activating and deactivating the
micro-protocol. Adding this interface does not require any
changes in the Cactus model, however, since an adaptation
aware micro-protocol can simply be defined as a subclass
of an ordinary micro-protocol with the new adaptation op-
erations.

The software architecture for adaptive systems has two
major design goals: to minimize the overhead of adaptabil-
ity during normal operation and to minimize the impact of
the adaptive process itself on the application using the adap-
tive service. The event mechanism provides a natural so-
lution to the first goal. Since the new AAMP can simply
bind its event handlers to the appropriate events, no addi-
tional redirection is required. Thus, the only overhead dur-
ing normal operation is the system monitoring needed to de-
tect changes in the execution environment. The second goal
is achieved by allowing the adaptation to occur in phases,
where both the old and new AAMP are partially active dur-
ing certain phases. The Cactus model facilitates this ap-
proach, since any number of event handlers may be bound

Adaptive
component 1

Static
component m

Static
component 1

Component adaptor
micro-protocol

A
da

pt
at

io
n-

aw
ar

e
m

ic
ro

-p
ro

to
co

l 2

A
da

pt
at

io
n-

aw
ar

e
m

ic
ro

-p
ro

to
co

l k

component n
Adaptive. . .

. . .

Adaptive service

A
da

pt
at

io
n-

aw
ar

e
m

ic
ro

-p
ro

to
co

l 1

. .
 .

Adaptive component

Figure 3. The structure of an adaptive service.

to an event at the same time. Furthermore, the consensus
protocols execute in the background without halting normal
processing. As a result, an application using an adaptive
service should experience at most a slight temporary slow-
down in service during adaptation.

3. Survivability through customization and
adaptability

The fine-grain QoS customization and dynamic adapt-
ability supported by Cactus provide powerful mechanisms
for survivability. This section outlines how mechanisms
supported by Cactus can be utilized in the survivability con-
text.

3.1. Fault tolerance and security

Fault tolerance and security, two methods for increasing
survivability [39], are two of the QoS attributes provided by
many customizable Cactus services. Different fault-tolerant
micro-protocols can be developed to tolerate different types
of failures. Omission failures of the underlying communi-
cation network can be tolerated by using different types of
retransmission micro-protocols. Examples of such micro-
protocols include traditional positive and negative acknowl-
edgment based protocols, multiple transmission protocols,
and atomicity protocols for group communication where
the group members collectively ensure that if at least one
member receives a message, all members will eventually
receive it. Message corruption failures can be tolerated us-
ing either traditional message checksums or cryptographic
checksums. The latter have the ability to detect intentional
message modifications. Processor failures can be tolerated
by using micro-protocols that implement object or process



replication (active or passive) or message logging. Alterna-
tive micro-protocols can also be developed to tolerate dif-
ferent failure models ranging from crash to arbitrary failures
[30].

Similar to fault tolerance, different types of security
micro-protocols can be provided to deal with various sit-
uations. For communication security, security micro-
protocols can provide privacy, authenticity, and message
integrity using cryptographic techniques. Micro-protocols
can also protect from replay attacks by adding sequence
numbers, timestamps, or other unique nonces to messages.
Even non-repudiation can be provided by having a micro-
protocol log messages. Similar techniques can also be ap-
plied to realize other types of data security. For example,
files in a file system can be encrypted for privacy or pro-
tected from tampering by using cryptographic checksums.

Customization allows each user or system administrator
to determine how much security and fault tolerance is re-
quired at any given time. An increase in fault tolerance or
security requires more resources, and increases the response
time and reduces the throughput of a service. Thus, it is im-
portant that the levels of fault tolerance and security are set
based on the perceived threats at any given time, as well
as the requirements of the current applications and users.
For example, the security requirements for an email service
used by the military can differ based on whether the country
is currently involved in a conflict, what information is being
transmitted, and who is sending and receiving the informa-
tion.

Two different approaches can be used for providing fault
tolerance and security guarantees using Cactus: integrating
the code implementing the enhanced QoS with an existing
service or providing it as a separate fault tolerance or secu-
rity service. In the integrated approach, an existing Cactus
service such as RPC or group communication is enhanced to
provide additional fault tolerance or security by developing
new micro-protocols. For example, fault tolerance through
replication can be added to the RPC service as a micro-
protocol that sends each request to a collection of servers
instead of one. Similarly, security can be added to any com-
munication service by adding encryption, authentication, or
message integrity micro-protocols.

The second alternative implements fault tolerance and
security guarantees as a separate service. An example of
such a fault-tolerance service is the group membership de-
scribed in [33], while an example of a security service is
the secure communication service described in [31]. Such
specialized services provide customizable fault-tolerance or
security abstractions for higher level services and applica-
tions.

The choice between these alternatives is case specific.
The integrated approach allows fault tolerance and security
micro-protocols to be totally customized for the particular

service. For example, the security requirements may be
different for different message types used by the service.
However, since the integrated approach increases the num-
ber of micro-protocols, it makes the service more compli-
cated. The flexibility of the two-level composition model in
Cactus allows the use of the design alternative that best fits
the requirements.

3.2. Diversity

Diversity methods attempt to make it difficult for an in-
truder to exploit known security vulnerabilities by making
different instances of a program or an operating system dif-
ferent enough that one method of breaking the service might
not work on others [13, 14]. Diversity methods include
wrapper programs that filter inputs to a potentially buggy
program [60], inserting additional checks into programs,
and permutations of program code and data layout.

The configurability supported by Cactus provides a nat-
ural mechanism for constructing diverse programs and ser-
vices. Different configurations of Cactus services have
some degree of natural diversity given that users can cus-
tomize the service to their exact requirements and execu-
tion environment. Additional diversity can be provided by
implementing alternative micro-protocols for different ser-
vice properties and QoS attributes. For example, commu-
nication privacy can be provided using numerous different
encryption methods (e.g., DES, RSA, IDEA, Blowfish) or
combinations of encryption methods. If the intruder does
not know which method or combination of methods is used
for the encryption, it becomes more difficult to break the
encryption.

Similar diversity techniques can be applied to other secu-
rity services. For example, a configurable intrusion detec-
tion service [16] could be constructed using Cactus, where
new intrusion detection methods are added as new micro-
protocols and various combinations could be used together.
Similarly, the authentication service of an operating system
could be customized for each OS installation.

3.3. Adaptability

Adaptability has numerous current and future applica-
tions in survivability, including automated reaction to intru-
sions. For example, methods for stopping an intrusion after
it has been detected by terminating a suspected connection
or by preventing the intrusion from spreading to other com-
puters [9] can be viewed as adaptive behavior. Automatic
actions to restore the system state after an intrusion and to
prevent future exploitation of the same security holes can be
considered another type of adaptation. Traditional recovery
methods used for fault tolerance can often be utilized for
recovery of this type as well, although the additional prob-



lem of identifying data and programs that may have been
modified must also be solved. Moreover, most adaptations
related to intrusion tolerance are currently not even auto-
mated. For example, responses to CERT advisories must be
implemented manually, leading to delays and non-uniform
deployment.

Adaptability can also be used as a preventive mecha-
nism by allowing a service to change its behavior dynam-
ically based on user requirements and perceived or detected
threats. For example, if an intrusion detection service sus-
pects an intrusion, other services can adaptively increase
their security levels to prevent the intruder from gaining
more information or doing further damage. Such preventive
mechanisms must naturally be combined with corrective ac-
tions if damage was done before detection.

We are currently exploring adaptability related to a num-
ber of QoS attributes in the context of Cactus. Some of this
work focuses on performance adaptations, that is, changing
algorithms within a service to increase performance given
the current execution environment [11]. We have also ex-
plored using adaptability to implement fault tolerance, rang-
ing from considering failure repair as an adaptive action
[32] to considering algorithms that adapt to a change in
the failure models exhibited by the underlying system [10].
Future work will include adaptive security to accommo-
date changed user requirements and detected or perceived
threats, and adaptive real time to accommodate changes in
available resources and system workload.

Both adaptive security and adaptive real time are relevant
for survivability. The use of adaptation to increase security
when an intrusion is detected is obvious, but other types of
security adaptations can also be used to enhance survivabil-
ity. For example, if an intrusion reduces available resources,
a service may adaptively weaken its security guarantees to
reduce CPU resource requirements. The weakened security
can then be compensated for by frequently switching dif-
ferent low cost security mechanisms. Note that this type of
adaptation is an example of a trade off between two differ-
ent QoS attributes, security and performance.

Adaptive security introduces a number of challenges that
still need to be solved. For example, the consensus algo-
rithms used to determine if an adaptation is required and
which adaptation should be made must be made intrusion
tolerant using message authentication or Byzantine meth-
ods. It may also be important to disguise the adaptations
from the intruder to hide the original detection. Current re-
search is addressing these issues.

Adaptive real time is also important for survivability,
since a survivable system is often required to provide a
timely response in spite of failures and intrusions [3]. If
failures or intrusions reduce the available set of resources,
adaptive services must either reallocate resources or reduce
the resource usage of some of its constituent parts. The

adaptive functionality provided by Cactus supports this pro-
cess in several ways. One is by facilitating construction of
services that can provide a reduced level of service when
resources are reduced. Another is by making it easy to ef-
fect tradeoffs between different resources, e.g., by changing
to a compression algorithm that requires more CPU time in
order to reduce the network bandwidth required. Of course,
a primary challenge in this area is to design and implement
adaptive actions that can execute in bounded time in order
to meet the application’s real-time constraints.

3.4. Enhancing survivability transparently

It is often necessary to increase the survivability of exist-
ing legacy or off-the-shelf applications. This can be accom-
plished either by replacing underlying communication and
operating system services with survivable versions, or by
transparently inserting new middleware services between
the application and the underlying services.

We have experimented with the base functionality need
to realize the first approach for communication services on
both MK 7.3 and Linux. On MK 7.3 with CORDS, all or
part of a protocol stack to be inserted into the kernel, which
can be used to replace existing communication services pro-
vided by the operating system. On Linux, kernel loadable
modules can be used to achieve similar functionality. Cur-
rently we are experimenting with the use of loadable mod-
ules on Linux to simulate the characteristics of a wireless
network on top of a wired Ethernet, but similar techniques
could be used to insert survivable behavior into the kernel.

There are a number of options for replacing other op-
erating system services with Cactus equivalents depending
on the OS platform. One option is to modify the operat-
ing system kernel directly if the source code is available
(e.g., Linux). Other options include instrumented connec-
tors in NT [2] and, again, loadable kernel modules. While
kernel modifications are difficult for the intruder to circum-
vent, the other options may not provide 100 % protection
from intruder circumvention.

We are also exploring the transparent insertion of new
middleware services. In the context of CORBA, our goal is
to enhance the QoS for existing CORBA clients and servers
without modifying either their code or the underlying ORB.
We are working on accomplishing this goal on the Orbix
ORB by inserting composite protocols into smart proxies at
clients and filters at servers, and on the Visibroker ORB us-
ing smart stubs at clients and wrappers at servers. We are
also working on inserting new middleware services by in-
tercepting signals on Linux and Solaris. This approach is
being used in a distributed shared memory service in which
the shared memory abstraction is implemented by intercept-
ing segmentation fault signals related to access attempts.



4. Survivable Cactus Services

A number of configurable services built using Cactus
have important survivability features. This section dis-
cusses some existing services, and their current and planned
survivability features.

4.1. Secure communication service

SecComm, a secure communication service imple-
mented using Cactus, allows fine-grain customization of a
range of security attributes including privacy, authenticity,
message integrity, replay prevention, and non-repudiation
[31]. A secure connection created through SecComm is
customizable in the sense that only the required security at-
tributes are guaranteed. Furthermore, the strength of guar-
antee associated with each attribute can be customized at a
fine grain level. For example, the service offers the choice
of the cryptographic techniques and key lengths used to im-
plement each attribute, and each attribute can be guaranteed
using arbitrary combinations of security algorithms. Using
combinations of algorithms can make it harder for intrud-
ers to break system security because they do not know the
method that needs to be broken, although methods based
on diversity and secret methods such as this are not uni-
formly accepted by the security community. Nonetheless,
SecComm allows each user to choose between using proven
methods such as DES or RSA, using secret combinations of
secret methods, or using combinations of proven and secret
methods to further increase security.

SecComm exemplifies and extends a current trend in net-
work security design that allows customization of security
attributes for explicitly managing the cost/benefit tradeoff.
For example, IPSec [37], a collection of protocols being de-
veloped by the IETF to support secure packet exchange at
the IP layer, provides two security options. Theauthentica-
tion header(AH) option does not encrypt the data contents
of the packet, but provides optional authenticity, integrity,
and replay prevention by adding an AH that contains a cryp-
tographic message digest. Theencapsulating security pay-
load (ESP) option provides privacy by encrypting the data
contents of the packet and optional authenticity, integrity,
and replay prevention using a message digest. Naturally,
due to the enhanced support for configurability provided by
Cactus, SecComm provides more flexibility and extensibil-
ity than existing secure communication services.

Figure 4 illustrates the main micro-protocol classes and
their interactions through events in SecComm. Note that
each component in this figure represents a class of micro-
protocols, e.g., the privacy class includes DESPrivacy,
RSAPrivacy, and OneTimePadPrivacy micro-protocols.

In the current version, a custom secure communica-
tion session is created by selecting the desired set of

msgFromAbove

msgFromBelow

SecComm

securityAlert

keyMiss KeyDistribution

Privacy

Authenticity

Integrity

ReplayPrevention

Non-Repudiation

SecurityAudit

Figure 4. Micro-protocol classes and their in-
teractions.

micro-protocols. Future versions could include higher-
level configuration interfaces in which the user specifies
only the required level of assurance for each property.
The micro-protocol combination that satisfies these require-
ments would then be created automatically using informa-
tion on, for instance, relative strengths of different encryp-
tion methods.

Future work related to SecComm will focus on adding
adaptability features to the protocol. This type of adaptive
security service must be able to increase the level of security
when requested by the user or when an intrusion attempt is
detected, and it must be able to reduce the resource usage
of the service when performance is not satisfactory. An in-
teresting challenge will be determining if adaptation can be
inexpensive enough that reasonably high level of security
can be provided by switching frequently between different
inexpensive cryptographic methods. A special instance of
this type of protocol switch would be altering the crypto-
graphic key at runtime.

4.2. GroupRPC service

The GroupRPC service allows a client to execute a pro-
cedure call on one or more servers. Such facility can be
useful for a number of reasons, but the main survivability
aspect of such facility is that it can provide fault tolerance
through replication. Unfortunately, providing fault toler-
ance of this type can be expensive. One important factor
determining this cost is the type and number of server fail-
ures to be tolerated. Typically, the type of failures to be



tolerated is expressed in terms offailure modelsthat range
from relatively benign crash or omission failures to arbi-
trary (or Byzantine [41]) failures. In terms of the amount of
redundancy and execution time required, tolerating a pro-
cessor crash is much cheaper than tolerating Byzantine fail-
ures. Furthermore, the cost is determined not only by the
failure model, but also by the number or frequency of the
failures expected to occur. Any realistic system can in prin-
ciple exhibit failures in any of the failure models, but typi-
cally, failures in the more benign classes are more frequent
than severe failures. Thus, the choice of failure model for a
particular task should be based on the frequency of different
types of failures in the given execution environment, as well
as the criticality of the task. The tradeoff, of course, is that
making stronger assumptions about failures improves the
performance of the system, but lessens the degree of fault
coverage provided by the system and thus the reliability of
the task [48].

We have implemented a configurable GroupRPC service
that allows the failure model and number of failures to be
tolerated to be customized depending on the needs of the
application [30]. The service includes micro-protocols for
each failure model that implement the appropriate detec-
tion and membership algorithms. For example, if the ser-
vice is configured to tolerate Byzantine failures, the servers
run Byzantine agreement protocols to agree on the set of
requests to be processed, as well to agree as any member-
ship changes of the server group. Thus, any faulty or com-
promised server or client cannot cause the server group to
become inconsistent. In addition to the algorithms used,
the choice of failure model dictates how many failures can
be tolerated, that is, how many server replicas are required.
Thus, in order to tolerate M server failures, we need M+1
replicas for crash, send omission, and late timing failures,
2M+1 replicas for receive omission and early timing fail-
ures, and 2M+1 replicas for Byzantine failures assuming
message authentication [30].

Table 1 illustrates how the change in the failure model
affects the response time [30]. Each of the configurations
listed tolerates one failure of the given type for configu-
rations that guarantee atomicity and total ordering for the
calls. The large increase of response time in the Byzan-
tine case is due to slow RSA-based message authentication
and an agreement algorithm that operates in synchronous
rounds. This concrete example illustrates the need for cus-
tomization between reliability and performance, and thus,
survivability and performance.

4.3. System monitoring services

Two distributed system monitoring services have been
constructed using Cactus. One, implemented using Cac-
tus++, runs on Solaris, while the other, implemented us-

Failure Model Clients Servers Time

None 1 1 3.6
2 1 5.9

Crash 1 2 6.2
2 2 13.4

Send omission 1 2 6.6
and late timing 2 2 13.8
Receive omission 1 3 10.5
and early timing
Byzantine 1 3 18924

Table 1. Average response time (in ms)

ing Cactus/J, runs on numerous operating systems includ-
ing Linux and Windows NT. Both services are structured
as one centralized global monitor that provides the user a
GUI for monitoring and controlling the system and a num-
ber of local monitors executing on each of the machines
being monitored. In the current versions, the local monitors
are user processes that use standard operating system in-
terfaces to collect information about the system load, CPU
and memory usage of processes, current users, etc. Each
aspect of the system behavior is monitored and reported
by a separate micro-protocol, which makes it easy to con-
figure a service that monitors only the necessary informa-
tion. This structure also makes the service easily extensible
since new micro-protocols can be added to monitor other
aspects of the system behavior. The Cactus++ version is
extensible at configuration time, i.e., the monitoring service
must be recompiled and relinked to include any new micro-
protocols. The Cactus/J version, on the other hand, is adap-
tive, i.e., new micro-protocols can be added dynamically at
runtime. This functionality is implemented using a special-
ized micro-protocol class loader.

These monitoring services can easily be extended to pro-
vide monitoring oriented towards security and survivability.
For example, the tools can be used to detect denial of ser-
vice attacks by constructing micro-protocols that collect re-
source utilization information and produce warnings when
thresholds are exceeded. A resource being fully utilized—
such as CPU, memory or network buffers—might indicate
that a denial of service attack is underway.

Monitoring micro-protocols can also be used to oversee
other security-critical aspects of system operation. For ex-
ample, one can monitor the password file and report any
changes. Such a distributed monitoring architecture can
also make it more difficult for intruders to cover their tracks
by modifying log files, since the monitor can record any
changes in the log files and store them on the global moni-
tor. Although a considerable amount of useful information



can be collected by just monitoring the file system and using
operating system calls, more powerful survivability moni-
toring would require instrumenting existing code in the op-
erating system as well as services such as ftp, telnet, and
http.

Naturally, changes are also needed in the monitoring ser-
vice itself to make it survivable. For example, it must be im-
possible for an intruder to modify or replay messages sent
by a local monitor or to replace a genuine local monitor by
one that does not report any suspicious activity. Message
modification and replay can easily be prevented using au-
thentication and message integrity methods similar to those
used in SecComm, or the monitoring service could just be
built on top of SecComm. Local monitor replacement can
be prevented, or at least made very difficult, by having the
global monitor give the local monitor a private authenti-
cation key at startup. Similarly, the intruder must not be
able to impersonate the global monitor to the local moni-
tors. This would be particularly dangerous in the Cactus/J
version since it allows new micro-protocols to be loaded at
runtime. The natural solution is again authentication of all
messages sent by the global monitor. Note that the config-
urability provided by Cactus makes it easy for each instal-
lation to customize the type and strength of authentication
used.

5. Future Survivability Services

Cactus could be used as a framework to implement a
number of other survivability services with customizabil-
ity and adaptability features. In the following, we discuss
some potential survivability services and their implementa-
tion using Cactus.

5.1. Intrusion detection services

Research on intrusion detection has traditionally focused
on auditing system logs and more recently, on automated in-
trusion detection [16]. Intrusion detection systems analyze
audits provided by the computing environment to detect at-
tacks or misbehavior occurring in the environment. Two
major approaches can be identified. Themisuse-detection
approachdetects known signatures or symptoms of attacks,
while the anomaly-detection approachdetects deviations
from an assumed normal behavior of the system. Misuse-
detection is generally more accurate, but can only account
for known attacks. Tools such as statistics [43], expert sys-
tems [21], signature analysis [40], neural networks [15],
genetic algorithms, and model based reasoning [26] have
been used to implement detection of either approach. De-
tection may focus on analyzing information from one com-
puter (host-based), e.g., [28, 62], inspecting packets passed
through a network (network-based), e.g., [49, 53], or some

combination, e.g., [46]. Recently, research on intrusion de-
tection has focused on integrating existing intrusion detec-
tion systems by providing a Common Intrusion Detection
Framework (CIDF) that provides protocols for interaction
and collaboration [57].

The customization abilities provided by the Cactus
framework could be used as the basis for implementing a
highly-configurable intrusion detection service (IDS). The
micro-protocol approach would make the service easily ex-
tensible in the sense that new micro-protocols could be
added to collect information from new sources (e.g., log
files, operating system, other system components), to an-
alyze information, and to react to any suspected intrusions.
The new analysis micro-protocols could include ones de-
veloped for newly recognized misuse patterns. The analysis
could also use a combination of different methods (e.g., sig-
nature analysis, neural networks, model based reasoning)
and use voting or agreement to determine if an intrusion
should be suspected. The reaction micro-protocols could
range from ones that notify an operator to others that auto-
matically attempt to stop the intrusion.

A configurable IDS designed in this way has a number
of other advantages, such as allowing tradeoffs to be cus-
tomized. For example, it becomes possible to control the
tradeoff between the coverage of the detection and its per-
formance and resource utilization. It also allows customiza-
tion of detection coverage versus the number of false detec-
tions, and thus, the potential inconvenience caused to legit-
imate users. A configurable IDS could also be customized
depending on the perceived threat and the current mode of
operation. For example, the system could be designed to re-
act automatically to suspected intrusions that occur during
nighttime hours when system operators are not at work and
few real users are using the system. During daytime oper-
ation, the service could be more conservative in its actions
and pass responsibility for most reactions to the system op-
erators.

The detected or suspected intrusions detected by an IDS
are fundamental for initiating adaptation in other surviv-
ability services, but an IDS could also adapt itself. Quick
adaptations could occur at the time a threat is suspected, for
example, to add additional detection mechanisms focused
on the suspected activities. Furthermore, an IDS could
adapt in the long term in the sense of evolving to incor-
porate countermeasures to newly detected attack methods.
In particular, newly discovered intrusion signatures might
be added to detection micro-protocols, and new detection
micro-protocols could be introduced into the IDS at run-
time. The changes between different modes of operation
could also occur adaptively, rather than through reconfigu-
ration. For example, an IDS could adapt by increasing its
sensitivity when system administrators suspect that an in-
trusion might occur.



The primary goal of developing a Cactus-based IDS
would not be to develop new intrusion detection methods,
but rather to leverage existing and future methods into a
configurable adaptive framework. That is, individual in-
trusion detection methods could be implemented as micro-
protocols, which would allow different variants of the ser-
vice to be created by configuring chosen subsets of the
methods. Any coordination required between the different
detection methods, such as weighted voting, could easily be
implemented as a separate coordinator micro-protocol that
is designed to handle any detection configuration.

5.2. Survivable data storage services

Survivability can be very important for data storage ser-
vices such as file systems and database systems. A sur-
vivable data storage service (SDSS) must not only en-
sure confidentiality and integrity of data, but also provide
data availability in spite of, and after, failures and intru-
sions. Techniques such as data fragmentation and replica-
tion can be used to achieve both confidentiality and avail-
ability even if some of the computers are successfully com-
promised [17, 22, 38]. If the data cannot be physically
protected—that is, only authorized access is allowed in all
cases—confidentiality and integrity can be implemented us-
ing cryptographic techniques similar to those used for se-
cure communication. Furthermore, other techniques such
as checkpointing and logging of changes can be applied to
allow restoration of data after an intrusion. Finally, a part
of the information may be stored outside of the SDSS to
enhance survivability. For example, decryption keys or file
checksums may be stored on a smartcard that the user pro-
vides to the system on demand. Note that a SDSS can use
an existing underlying data storage service such as a file
system for actually storing the data. Thus, in the case of
a distributed file system such as NFS, the actual file server
does not need to be modified.

Configurability can be applied to an SDSS as easily as
it can be applied to the secure communication service—the
different options for service guarantees can be implemented
as separate micro-protocols. Note that one SDSS may store
data with different survivability requirements. This means
that the service must be configured with a set of micro-
protocols that is sufficient to satisfy all the guarantees for
all the data currently in the system. For each data item ac-
cessed, only the required micro-protocols will be activated.
The information of which micro-protocols are used for each
data item could be stored transparently in the SDSS itself,
or this information can be provided by the user when they
try to access a data item.

Adaptability can be used for SDSSs in the form of cor-
rective actions if an intrusion and data destruction or modi-
fication is detected. Changing the survivability methods on

the fly is more difficult for storage services since it could be
expensive, for example, to decrypt all files and then encrypt
them again using a new method.

5.3. Access control and authentication services

An authentication service (AS) is used to ensure the
identity of a principal (i.e., a user or a program operating
on a user’s behalf), and an access control service (ACS) is
used to determine for each file and other system resource
if a principal is allowed to use it in some specified manner.
Each operating system implements its own authentication
(e.g., password, one time password, smartcard, and physi-
cal characteristics) and access control methods (e.g., access
control lists, capabilities, and Unix-style permission bits).

The authentication and access control methods provided
by operating systems are relatively rigid and do not pro-
vide much support for survivability. In particular, intruders
that manages to pass the authentication test (e.g., guess root
password) are free to do any amount of damage. Thus, the
higher levels of customization provided by Cactus would be
a useful feature for survivable systems.

Allowing such services to be customizable would open a
range of possible solutions with better survivability charac-
teristics than traditional systems. For example, authentica-
tion could be customized to be one time only at login time,
periodic at fixed time intervals, or usage based depending
on what files and other resources the user attempts to ac-
cess and use. Such combinations of access control and au-
thentication could have many interesting applications. For
example, accessing some important system files might re-
quire that the user is executing as root and that they know
an additional password required to modify the file. Such ad-
ditional security boundaries could also be specified for di-
rectories, resulting in arbitrary sequences of successive se-
curity boundaries for accessing important system resources.
Another approach would be to specify a level of authentic-
ity required for accessing each system resource and execut-
ing additional authentication steps when a user attempt to
access something higher than the current level. The authen-
ticity level of a user could also reduce over time to at least
partially handle the problem of someone else using a ses-
sion left open by a legitimate user. Since authentication and
access control are typically services provided by the oper-
ating system, it is not easy to replace them using Cactus
equivalents. Some options described in section 3.4 could be
applied here depending on the platform.

Survivability adaptations useful for an access control ser-
vice include revoking all access rights from a compromised
user identity and increasing authentication requirements on
system resources if the system is attacked. Adaptations
in the case of an authentication service include reauthen-
ticating users that have used authentication challenges that



have been compromised, as well as replacing authentica-
tion methods that have been compromised. Furthermore,
the overall required authentication level of the whole sys-
tem may be increased, in which case all current users are
reauthenticated. The signal to perform for such adaptations
would typically come from other system components such
as the intrusion detection service.

6. Related work

6.1. Configurability

Configurability or extensibility has gained increased at-
tention during the last decade. In the area of communica-
tion protocols, notable examples arex-kernel [35], Adaptive
[56], Horus [51], and Ensemble [27]. Thex-kernel presents
a model for hierarchical composition of modules with iden-
tical uniform protocol interfaces (UPIs). The Horus and
Ensemble projects adopt the same hierarchical model, but
extend the UPI to include a larger set of operations. Adap-
tive uses a service specific back-end with slots for different
functions of the service, where each function can be imple-
mented using a range of alternative modules. Extensibil-
ity has also been used in operating systems, e.g. SPIN [6],
Scout [45], and Exokernel [20], and database systems, e.g.
RAID [7] and Genesis [4].

Customizability is beginning to gain greater attention in
the area of communication security. A number of Inter-
net standards under development include some customiza-
tion features, including IPSec [37], Secure Socket Layer
(SSL) [25], Transport Level Security (TLS) [18], Secure
HyperText Transfer Protocol (S-HTTP) [52], and Privacy-
Enhanced Mail (PEM) [42]. These protocols typically allow
a choice of privacy and message integrity methods, as well
as optional authentication methods. A number of research
projects have also addressed customizable security. For ex-
ample, thex-kernel model has been used to construct con-
figurable protocol stacks for secure communication [47].
Recently, TIS Labs has worked on composable, replaceable
security services [58], and the Ensemble project has added
a choice of customizable cryptographic techniques for data
communication [54].

Customizability is naturally very useful also in system
monitoring services, and most services offer some way of
modifying the service behaviors. For example, Pulsar [23]
supports extensibility by allowing new Tcl scripts to be
written for collecting additional information, satool [44]
uses Unix scripts, and CARD [1] uses Perl scripts. Some
monitoring tools, such as Rscan [55], have been designed
to detect security loopholes. Many intrusion detection tools
have similar type of extensibility features, including Emer-
ald [46]. In general, however, the use of configurability
in the survivability context has been limited and most ex-

amples have focused on secure communication and system
monitoring, including intrusion detection.

In contrast with service-specific frameworks that allow
some extensibility, Cactus is a general framework specifi-
cally designed for fine-grain configurability and extensibil-
ity. Thus, the possibilities for extensibility are much greater.
For example, it would be easy to add security and relia-
bility features into our system monitoring tool, whereas it
would probably be difficult to add such features to many
other monitoring tools where extensibility is limited.

6.2. Adaptability

Adaptability has been proven to be a useful feature
in particular for networking protocols. For example, the
Transmission Control Protocol (TCP) of the Internet pro-
tocol suite uses adaptive mechanisms for flow control, re-
transmission, and congestion control [36]. Other examples
include adaptive media access control, e.g. [12], adaptive
encoding and compression, e.g. [24], and adaptive routing
algorithms, e.g. [5]. However, adaptability in such proto-
cols is typically limited to changing some parameters that
control the execution the protocol, e.g., timeout values or
transmission windows, rather than switching the protocol.
To our knowledge, the only other work addressing runtime
algorithm switching is work done in Ensemble [27, 50]. In
contrast with our work that allows each protocol or service
component to adapt with minimal impact on other parts of
the system, Ensemble requires that a new protocol stack be
created with the new protocol. Message transmission must
then be interrupted while the adaptation is in progress.

7. Conclusions

This paper has outlined potential uses of the Cactus ap-
proach for implementing various aspects of survivability. In
particular, we claim that the fine-grain customizability and
dynamic adaptability supported by Cactus can have a sig-
nificant impact on the survivability of networked systems.
Fine-grain customization allows each user or system admin-
istrator to make individual survivability versus performance
tradeoffs, as well as provides a foundation for using artifi-
cial diversity for survivability. Adaptability allows services
to react to attacks and failures when they do occur, and facil-
itates their evolution when new attacks or countermeasures
become available.

References

[1] E. Anderson and D. Patterson. Extensible, scalable moni-
toring for clusters of computers. InProceedings of Eleventh
Systems Administration Conference (LISA ’97), pages 9–16,
San Diego, CA, Oct 1997.



[2] R. Balzer. Instrumented connectors for mediating archi-
tecture interactions. DARPA Windows NT Workshop,
Seattle, WA. http://www.dyncorp-is.com/darpa/meetings/-
win98aug/Balzerinstruments.html, Aug 1998.

[3] M. Barbacci. Survivability in the age of vulnerable systems.
IEEE Computer, 29(11):8, Nov 1996.

[4] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda,
B. Twichell, and T. Wise. GENESIS: An extensible database
management system.IEEE Transactions on Software Engi-
neering, SE-14(11):1711–1729, Nov 1988.

[5] P. Bell and K. Jabbour. Review of point-to-point net-
work routing algorithms.IEEE Communications Magazine,
24(1):34–38, 1986.

[6] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility,
safety, and performance in the SPIN operating system. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tems Principles, pages 267–284, Copper Mountain Resort,
CO, Dec 1995.

[7] B. Bhargava, K. Friesen, A. Helal, and J. Riedl. Adaptability
experiments in the RAID distributed database system. In
Proceedings of the 9th Symposium on Reliable Distributed
Systems, pages 76–85, 1990.

[8] N. Bhatti, M. Hiltunen, R. Schlichting, and W. Chiu. Coy-
ote: A system for constructing fine-grain configurable com-
munication services.ACM Transactions on Computer Sys-
tems, 16(4):321–366, Nov 1998.

[9] P. Brutch, T. Brutch, and U. Pooch. Electronic quarantine:
An automated intruder response tool. InProceedings of the
Information Survivability Workshop 1998, pages 23–27, Or-
lando, FL, Oct 1998.

[10] I. Chang, M. Hiltunen, and R. Schlichting. Affordable fault
tolerance through adaptation. In J. Rolin, editor,Parallel
and Distributed Processing, Lecture Notes in Computer Sci-
ence 1388, pages 585–603. Springer, Apr 1998.

[11] W.-K. Chen, M. Hiltunen, and R. Schlichting. Software ar-
chitecture for building adaptive software. Technical report,
Department of Computer Science, University of Arizona,
Tucson, AZ, 1999. In preparation.

[12] M. Choi and C. Krishna. An adaptive algorithm to ensure
differential service in a token-ring network.IEEE Transac-
tions on Computers, C-39(1):19–33, 1990.

[13] C. Cowan and C. Pu. Immunix: Survivability through spe-
cialization. InProceedings of the 1997 Information Surviv-
ability Workshop, Feb 1997.

[14] C. Cowan and C. Pu. Survivability from a Sow’s ear: The
retrofit security requirement. InProceedings of the Infor-
mation Survivability Workshop 1998, pages 43–47, Orlando,
FL, Oct 1998.

[15] H. Debar, M. Becker, and D. Siboni. A neural network com-
ponent for an intrusion detection system. InProceedings of
the IEEE Symposium on Research in Security and Privacy,
pages 1–11, Oakland, CA, 1992.

[16] D. Denning. An intrusion-detection model.IEEE Trans-
actions on Software Engineering, SE-13(2):222–232, Feb
1987.

[17] Y. Deswarte, J.-C. Fabre, J.-M. Fray, D. Powell, and P.-G.
Ranea. Saturne: A distributed computing system which tol-
erates faults and intrusions. InProceedings of the Workshop

on Future Trends of Distributed Computing Systems, pages
329–338, Hong Kong, Sep 1990.

[18] T. Dierks and C. Allen. The TLS protocol, version 1.0.
Request for Comments (Standards Track) RFC 2246, Cer-
ticom, Jan 1999.

[19] R. Ellison, D. Fisher, R. Linger, H. Lipson, T. Longstaff, and
N. Mead. Survivable network systems: An emerging disci-
pline. Technical Report CMU/SEI-97-TR-013, Nov 1997.

[20] D. Engler, M. Kaashoek, and J. O’Toole. Exokernel: An
operating system architecture for application-level resource
management. InProceedings of the 15th ACM Symposium
on Operating Systems Principles, pages 251–266, Copper
Mountain Resort, CO, Dec 1995.

[21] M. Esmaili, R. Safavi-Naini, and J. Pieprzyk. Computer in-
trusion detection: A comparative survey. Technical Report
Ref. 95-07, Center for Computer Security Research, Univer-
sity of Wollongong, Australia, May 1995.

[22] J.-C. Fabre, Y. Deswarte, and B. Randell. Designing secure
and reliable applications using fragmentation-redundancy-
scattering: an object-oriented approach. InProceedings of
the 1st European Dependable Computing Conference, pages
21–38, Berlin, Germany, Oct 1994.

[23] R. A. Finkel. Pulsar: An extensible tool for monitoring large
Unix sites.Software Practice and Experience, 27(10):1163–
1176, 1997.

[24] A. Fox, S. Gribble, E. Brewer, and E. Amir. Adapting to
network and client variation via on-demand, dynamic distil-
lation. In Proceedings of the 7th ASPLOS Conference, Oct
1996.

[25] A. Freier, P. Karlton, and P. Kocher. The SSL protocol,
version 3.0. Internet-draft, Netscape Communications, Nov
1996.

[26] T. Garvey and T. Lunt. Model-based intrusion detection. In
Proceedings of the 14th National Computer Security Con-
ference, Washington, DC, Oct 1991.

[27] M. Hayden. The Ensemble system. Technical Report TR98-
1662, Department of Computer Science, Cornell University,
Jan 1998.

[28] L. Heberlein, K. Levitt, and B. Mukherjee. A method to de-
tect intrusion activity in a networked environment. InPro-
ceedings of the 14th National Computer Security Confer-
ence, pages 362–371, 1991.

[29] M. Hiltunen. Configuration management for highly-
customizable software. IEE Proceedings: Software,
145(5):180–188, Oct 1998.

[30] M. Hiltunen, V. Immanuel, and R. Schlichting. Support-
ing customized failure models for distributed software.Dis-
tributed Systems Engineering, 1999. To appear.

[31] M. Hiltunen, S. Jaiprakash, and R. Schlichting. Exploiting
fine-grain configurability for secure communication. Tech-
nical Report 99-08, Department of Computer Science, Uni-
versity of Arizona, Tucson, AZ, Apr 1999.

[32] M. Hiltunen and R. Schlichting. Adaptive distributed and
fault-tolerant systems.Computer Systems Science and En-
gineering, 11(5):125–133, Sep 1996.

[33] M. Hiltunen and R. Schlichting. A configurable membership
service. IEEE Transactions on Computers, 47(5):573–586,
May 1998.



[34] M. Hiltunen, R. Schlichting, X. Han, M. Cardozo, and
R. Das. Real-time dependable channels: Customizing QoS
attributes for distributed systems.IEEE Transactions on
Parallel and Distributed Systems, 10(6):600–612, Jun 1999.

[35] N. Hutchinson and L. Peterson. Thex-kernel: An architec-
ture for implementing network protocols.IEEE Transac-
tions on Software Engineering, 17(1):64–76, Jan 1991.

[36] V. Jacobson. Congestion avoidance and control. InProceed-
ings of the SIGCOMM ’88 Symposium, pages 314–332, Aug
1988.

[37] S. Kent and R. Atkinson. Security architecture for the inter-
net protocol. Request for Comments (Standards Track) RFC
2401, BBN Corp, Home Network, Nov 1998.

[38] H. Kiliccote and P. Khosla. Borg: A scalable and secure dis-
tributed information system. InProceedings of the Informa-
tion Survivability Workshop 1998, pages 101–105, Orlando,
FL, Oct 1998.

[39] P. Krupp, J. Maurer, and B. Thuraisingham. Survivability is-
sues for evolvable real-time command and control systems.
In Proceedings of the 1997 Information Survivability Work-
shop, Feb 1997.

[40] S. Kumar and E. Spafford. A pattern matching model for
misuse intrusion detection. InProceedings of the 17th Na-
tional Computer Security Conference, pages 11–21, Oct
1994.

[41] L. Lamport, R. Shostak, and P. M. The Byzantine generals
problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401, Jul 1982.

[42] J. Linn. Privacy enhancement for internet electronic mail:
Part I: Message encryption and authentication procedures.
Request for Comments RFC 1421, Feb 1993.

[43] T. Lunt, R. Jagannathan, D. Anderson, C. Dodd, F. Gilham,
C. Jalali, H. Javitz, P. Neuman, A. Tamaru, and A. Valdez.
System design document: Next-generation intrusion detec-
tion expert system (NIDES). Technical report, SRI Interna-
tional, Mar 1993.

[44] T. Miller, C. Stirlen, and E. Nemeth. satool — A system
administrator’s cockpit, an implementation. InProceedings
of Seventh Systems Administration Conference (LISA ’93),
pages 119–129, Monterey, CA, Nov 1993.

[45] A. Montz, D. Mosberger, S. O’Malley, L. Peterson,
T. Proebsting, and J. Hartman. Scout: a communications-
oriented operating system. InProceedings of the 1st Sym-
posium on Operating Design and Implementation (OSDI),
page 200, Nov 1994.

[46] P. Neumann and P. Porras. Experience with EMERALD to
date. InProceedings of the 1st USENIX Workshop on Intru-
sion Detection and Network Monitoring, Santa Clara, CA,
Apr 1999.

[47] H. Orman, S. O’Malley, R. Schroeppel, and D. Schwartz.
Paving the road to network security or the value of small
cobblestones. Technical Report 94-16, Department of Com-
puter Science, University of Arizona, Tucson, AZ, May
1994.

[48] D. Powell. Failure mode assumptions and assumption cover-
age. InProceedings of the 22nd IEEE Symposium on Fault-
Tolerant Computing, pages 386–395, 1992.

[49] M. Puldy and M. Christensen. Lessons learned in the imple-
mentation of a multi-location network based real-time intru-
sion detection system. InProceedings of the 1st Interna-
tional Workshop on the Recent Advances on Intrusion De-
tection, Louvain-la-Neuve, Belgium, Sep 1998.

[50] R. v. Renesse, K. Birman, M. Hayden, A. Vaysburd, and
D. Karr. Building adaptive systems using Ensemble.Soft-
ware Practice and Experience, 28(9):963–979, Jul 1998.

[51] R. v. Renesse, K. Birman, and S. Maffeis. Horus, a flexible
group communication system.Communications of the ACM,
39(4):76–83, Apr 1996.

[52] E. Rescorla and A. Schiffman. The secure hypertext transfer
protocol. Internet-draft, Terisa Systems, Inc., Jun 1998.

[53] L. Ricciulli, S. De Capatini di Vimercati, P. Lincoln, and
P. Samarati. PNNI global routing infrastructure protection.
In Proceedings of the Information Survivability Workshop
1998, pages 123–126, Orlando, FL, Oct 1998.

[54] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev.
The architecture and performance of security protocols in
the Ensemble group communication system. Technical Re-
port TR98-1703, Department of Computer Science, Cornell
University, Dec 1998.

[55] N. Sammons. Multi-platform interrogation and reporting
with rscan. InProceedings of Ninth Systems Administration
Conference (LISA ’95), Monterey, CA, Sep 1995.

[56] D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A dynam-
ically assembled protocol transformation, integration, and
evaluation environment.Concurrency: Practice and Expe-
rience, 5(4):269–286, Jun 1993.

[57] S. Staniford-Chen, B. Tung, and D. Schnackenberg. The
common intrusion detection framework (CIDF). InProceed-
ings of the Information Survivability Workshop 1998, pages
139–143, Orlando, FL, Oct 1998.

[58] R. Thomas and R. Feiertag. Addressing survivability in
the composable replaceable security services infrastructure.
In Proceedings of the Information Survivability Workshop
1998, pages 159–162, Orlando, FL, Oct 1998.

[59] F. Travostino, E. Menze, and F. Reynolds. Paths: Pro-
gramming with system resources in support of real-time dis-
tributed applications. InProceedings of the IEEE Work-
shop on Object-Oriented Real-Time Dependable Systems,
Feb 1996.

[60] W. Venema. TCP WRAPPER: Network monitoring, access
control, and booby traps. InProceedings of the 3rd Usenix
UNIX Security Symposium, pages 85–92, Baltimore,MD,
Sep 1992.

[61] J. Voas, G. McGraw, and A. Ghosh. Reducing uncertainty
about survivability. InProceedings of the 1997 Information
Survivability Workshop, Feb 1997.

[62] A. Wespi, M. Dacier, H. Debar, and M. Nassehi. Audit trail
pattern analysis for detecting suspicious process behavior. In
Proceedings of the 1st International Workshop on the Recent
Advances on Intrusion Detection, Louvain-la-Neuve, Bel-
gium, Sep 1998.


