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Abstract— The ability to configure transport protocols from In this paper, we describe our experience building a config-
collections of smaller software modules allows the charaetistics yraple transport protocol, CTP, that allows protocol seman
of the protocol to be cus_tomized for a _SpeCiﬁC application tics to be tuned to specific application needs without the
or network technology. This paper describes a configurable . . . .
transport protocol system called CTP in which microprotocds engineering effort involved with new protocol development
implementing individual attributes of transport can be combined ~ With this approach, software modules that implement dsffier
into a composite protocol that realizes the desired overalfunc- service attributes or variants are written, and then a austo
tionality. In addition to describing the overall architecture of protocol is constructed by selecting appropriate modueset

CTP and its mlcroprotocols., this paper also present§ experiments on the needs of the higher levels that use the service or
on both local area and wide area platforms that illustrate the

flexibility of CTP and how its ability to more closely match on the .speC|f|c characteristics of the underlying r?etwork or
application needs can result in better application performance. €omputing platform. Thus, for example, a congestion-aintr

The prototype implementation of CTP has been built using the module can be configured together with a datagram service,

C version of the Cactus microprotocol composition framewok gr g security module can be configured together with other
running on Linux. modules implementing a virtual circuit. The net result is, i
Index Terms— Transport protocol, configuration, customiza- effect, a family of transport protocols, each useful in aegiv

tion, extensibility. scenario.
We experimentally demonstrate that CTP achieves com-
I. INTRODUCTION parable performance to existing protocols such as TCP and

o UDP on the applications for which they were designed. More
Existing network transport protocols such as TCP [1] ar]fjnportantly, we show that CTP can be customized for new

L_JDP [2] hgve limitations when they are “Se‘?' N new appl'c%'pplications to provide better performance than existirg p
tion QOm§\|ns anq fo_r new network technologies. For examp}%,cols without the software engineering overhead assatiat
multimedia applications sharing a network need congestl%lth developing a new protocol from scratch. Our prototype
cothrollbut not necessarlly.ordered reliable dellve-ry,. b version of CTP is implemented using the Cactus microprdtoco
nation implemented by neither TCP nor UDP. Similarly, thgomposition framework [10] running on UNIX UDP sockets

congestion control mechanisms in TCP work well in eregn a cluster of Linux x86 machines and between x86 machines

networks but often over-react in wireless networks where
across the Internet.

packets can be lost due to factors other than congestion. Therhe rest of this paper is organized as follows. In section I

lack of appropriate guarantees or specific features hasolec{l\_}e describe transport features that individual CTP modules

the widespread development of specialized protocols Lr$e0|V\}ould need to implement, describe the overall design of CTP

conjunt_:tlon with or instead of standard transport Ior()TB“COIin which configurable protocol modules (microprotocols® ar
These include IPSec [3] and SSL [4] for security,

RSVP [q}nplemented, and the relevant features of the Cactus prbtoc

for bandwidth reservation, RTP [6] for real-time audio an?jramework on which this design relies. Section Il descsibe

video, GTP [7] and CEP [8] for transport in Grid and hlghfhe microprotocols currently implemented in CTP and presen

end comput_lng_ _enwronmen_ts, and SCTP [9)] for enhancgﬂ in-depth example of how they interact to implement TCP-
transport reliability. Developing such a protocol fromeagdch

. = ) like protocol semantics in a particular CTP configuratiam. |
is, needless to say, often a significant undertaking.

section IV, we describe our experiences designing and imple
1 Computer Science Department, MSC01-1130, 1 University @i Wlex- menting CTP, particularly how component decomposition and
ico, Albuquerque, NM 87131, emaifbridges,barrick@cs.unm.edu protocol infrastructure changed during implementatior an
2Computer Science Department, Boston University, 111 Curgtan St., testing, and our experiences using the Cactus to implement
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07932CTP. Section V illustrates the advantages of CTP’s config-
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email{ hiltunen, rick @research.att.com urable approach to protocol construction by comparing its
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performance in a variety of configurations to that provideshodification, while cryptographic methods such as DSA [11]
to different applications by TCP and UDP. Finally, sectiongrotect against intentional modification. In other casé$grd
VI and VII compare CTP with related work, and presergnt algorithms provide approximately the same guarantge, b
conclusions and directions for future work, respectively.  with different trade-offs with respect to resource usagetber
attributes. For example, forward error correction tygdicakes
Il. CTP DESIGN more bandwidth than acknowledgments, but usually provides
A. Transport Attributes and Algorithms faster recovery from failures, and thus a smoother data flow

As a first step in developing a customizable transpdfl the receiver.
protocol, we studied a wide range of transport protocols andPifferent choices can also be made for other design ele-
identified various quality attributes that can be provided fMeNts, such as whether to use congestion and/or flow control,
higher levels and the algorithms used to implement these gef! if S0, what type. The protocol must also be able to interac

other aspects of the service. In this case, we roughly divid@PPropriately with the protocol below it in the protocolaka
quality attributes into the following: For example, messages may need to be fragmented into pieces

or small messages coalesced into one packet. If a resource
Beeservation protocol such as RSVP is available, the trahspo
otocol may interact with it to make a resource reservdtion

e connection. Finally, the transport protocol must deisth w
such practical issues as connection establishment, nimgto

d tear-down.

o Reliability. Addresses the likelihood that the receive
receives all the data sent by the sender. Reliability can
increased by using different forms of redundancy rangirp
from retransmissions to the use of parallel channels
transmission of redundant data along one connection.

« Ordering. Describes guarantees concerning the orderift
of data at the receiver relative to the order in which it
is sent. For a stream-based transport services, the oRly Cactus
reasonable ordering option is FIFO, but for message-Cactus is a system for constructing highly-configurable
based services other options may be reasonable. protocols for networked and distributed systems. In thisise

« PerformanceDescribes how quickly data is transportedve give a brief overview of Cactus; a detailed description of
from sender to receiver in terms of average throughp@actus and its execution model can be found in [10].

The protocol may attempt to provide guaranteed perfor- Individual protocols in Cactus, term@dmposite protocols
mance by reserving resources or may do it only onge constructed from fine-grained software modules called
best-effort basis. microprotocols that interact using an event-driven exeout

« Timeliness.Describes the timing characteristics of theyaradigm. Each microprotocol is structured as a collectibn
end-to-end transmission with respect to maximum lateneyent handlers and generally implements a distinct prgpert
or jitter. Latency guarantees are typically made throughnction of the protocol. Next, protocols are layered on ¢p
resource allocation, while jitter can be controlled byach other to create a protocol stack using an interfacéasimi
adding a buffer at the receiver that is drained at @ the standara-kernel API [12] (e.g.Denmux(), Push(),
controlled rate. Pop(), Open()). This two-level approach has a high degree

TCP and UDP provide essentially a fixed set of thes# flexibility, yet provides enough structure and contraitfit

attributes. In particular, TCP provides strong reliapiliguar- is easy to build collections of modules realizing a large ham
anteed delivery) and ordering (in-order byte stream) sd¢icgn of diverse properties.

but only best-effort performance and no timeliness guaesit At runtime, composite protocol instances, terncedhposite
Similarly, UDP provides a best-effort performance, buthwitsessionsare used to process packets. Composite sessions are
no ordering, timeliness, or reliability guarantees. created by protocol routines (e.dermux() or Open()) in

Given an attribute, numerous algorithms and protocols amsponse to open requests from either local applications or

often available for implementing its properties. For exénp received packets. Each composite session contains attmiiec
reliability can use some combination of positive, negativef microprotocol instances which event handlers are bound
or selective acknowledgment protocols, or several differeto protocol-specific events to effect protocol processing.
forward error correction schemes. In some cases, differenfProcessing of structured messages by microprotocol-akfine
algorithms provide different types of guarantees. For examvent handlers comprises the basic programming model of
ple, IP-style one’s complement and cyclic redundancy checkactus. Events are used to signify state changes of interest
(CRC) provide integrity that protects against accidentthd such as “message arrival from the network”. When such
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an event occurs, all event handlers bound to that event #ieial, since often much of the functionality is tightly apled

executed. Events can be raised explicitly by microprotocfdr efficiency. For example, reliability, congestion caitr

instances or implicitly by the composite protocol runtimand flow control in TCP often utilize the same transmission

system. window data structure, while byte sequence numbers are used
The Cactus runtime system provides a variety of operatiottsimplement reliability and ordering, and to provide neszey

for managing events and event handlers. In addition to-trafitedback for flow control.

tional blocking events, Cactus events can also be raisddavit Unfortunately, the design space for transport protocols is

specified delay to implement time-driven execution, andzn very large; to somewhat limit the scope of the problem, the

raised asynchronously. Arguments can be passed to hamdlersurrent CTP design focuses on only bidirectional message-

two ways, statically when the an event is bound to a handleriented point-to-point communication over an unreliable

and dynamically when an event is raised. Other operatiopacket-oriented network protocol (e.g., IP). Specifically ap-

are available for unbinding handlers, creating and dedetiplication uses a given CTP configuration to exchange arlitra

events, halting event execution, and canceling a delayedtevlength messages (e.g., a video frame) with some application

Handler execution is atomic with respect to concurreney, i. defined semantics with a single endpoint. Since the design of

a handler is executed to completion before any other hand@&FP does not assume that the underlying network protocol

is started unless it voluntarily yields the CPU. supports such arbitrary length messages, microprotocols f
The Cactus message abstraction is designed to facilitht@gmenting or coalesces messages into an appropriate tran

development of configurable services. One of the main featuport unit—a segment-are provided Finally, CTP addresses

of Cactus messages amessage attributeswhich are a are currently local/remote IP/port number 4-tuples simita

generalization of traditional message headers. Opesatioe those used by TCP.

provided for microprotocols to add, read, and delete messag

attributes. Furthermore, a customizable pack routine @o@sb D. CTP Events

message atiributes with the message body for network ranspg \yith a1l Cactus protocols, microprotocol instances in

mission (on-wire format), while an analogous unpack raitin, cTp session interact using events that manipulate shared

extracts attributes at the receiver. data—in particular, the messages and their attributes. CTP
Synchronization and coordination of execution aCtiVitieﬁredefines a set of common events useable by all CTP micro-
in Cactus is ac.:complls.,hed thro.u@hyent.-basefj barrierthat 1 ot0cols. These events are illustrated in figure 1. The digur
may be assoqated with data items, rncludmg Messages.,&ps solid arrows to indicate events raised by CTP's interfa
microprotocol instance can register with the barrier, and ,ines and dashed arrows to indicate causal relatiomsleat
event associated with the barrier will only be raised Whel\,ar events. For example, when theG FROM USER event
all microprotocol instances registered with the barrievehaiS raised by CTP, some microprotocol will raise $ESMENT
ent.er(?d the barrier. .TheS(.a barriers are useq to coordingte,; yser event. Additional local timeout events are used
activities across multiple microprotocols, especiallcmtrol -, seyeral of the microprotocols. Most of the event names are
the transfer of messages up and down the protocol stack. it gyplanatory. For exampleEGMENT RECEIVED is raised
when a previously sent segment is acknowled@EMENT
C. Design Overview TIMEOUT when a segment’s status has been unknown too long,

In Cactus terms, CTP is a composite protocol in which ea@fd SEGMENT LOST when CTP is explicitly notified that a
attribute or function described in section II-A is implertesh Segment has been lost.
by one microprotoco| or a set of alternative microprotoco|s CTP makes extensive use of the Cactus event-based barrier,

Thus, the current design has one or more microprotocols forticularly event-based barriers associated with iisl
reliability, ordering, security, jitter control, congést control, Messages. For historical reasons, event-based barrsmsi-as
flow control, data and header compression, MTU discoveted with messages are generally referred tchalsl bits*
message fragmentation and collation, and connection -est&J P uses three sets of hold bits on each message: send
lishment, monitoring and tear-down. The goal of the desigtﬂtsi deallocate bits, and done bits. The send bits are used
is to decouple the implementations of different attrioiaes t0 coordinate sending of segments down to lower layers and
functions to maximize the ability to mix and match differenélelivery of messages up to the application. A microprotocol

microprOtOCO|S to provide exaCtly the reqUired properties 1The event-based barrier synchronization mechanism waatecieas a
Decoupling the different features of transport protocelsidt generalization of the hold bits originally associated witessages.
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W delay setting deallocate bits on messages even though ihey w
never retransmit the packet. For example, Hoeward Error

v Correction microprotocol delays deallocating sent messages
| SEGMENT FROM USER| .
; so that it has the data needed to compute the contents of
s redundant packets using an erasure code algorithm.
| SEGMENTLOST |

T

- | sEemENT RECENVED | [ SEGMENT DONE | E. Configuration and Initialization

A . . .
‘ | SEGMENT TIMEOUT | Like most Cactus-implemented protocols, CTP composite
[ 1cMP soURcE QuENCH

sessions are created in response to an explicit open request
from an application or when th®enux() protocol entry
point receives a packet with a host/port 4-tuple that dods no
demultiplex to any existing session (addressing and démult
plexing in CTP is not currently configurable; this is an aréa o
current work.) As with all Cactus protocols, the CTP session
initialization routine is then invoked, resulting in thesation
sets a send bit in a given message when the message cagfbgession-global state, the instantiation of microprotdn-
delivered up or down the graph as far as the microprotocoldgances, and the initialization of these microprotocdkinses.
concerned. When all of these bits are set, the message exitshis time, microprotocol instance initialization ronéis set
and thesEND SEGMENT event is raised so that microprotocolsgp their data structures and notify the runtime system of any
can be notified when a segment actually leaves the protog@cessary hold bits they will need on CTP messages. After the
For example, congestion control, flow control, and reliapil session and all of its microprotocol instances are initéad]
functionality in CTP each control send bits to determine whehe CTP demux routine raises theEN SESSION event in the
a segment can be transmitted, while flow control, jitter ooint new session so that microprotocols that perform connection
and the different ordering microprotocols use send bits E&tablishment can execute appropriately. If the sessiom wa
determine when a message can be delivered to the applicatif@ated as a reaction to a packet received from the netwwk, t
Send bits allow different microprotocols to operate OBEGMENT FROM NET event will be raised to allow processing
messages independently without knowing which other microf any data contained in the packet.
protocols need to process the message. They also decoupldew CTP sessions select the appropriate microprotocol
the approval process from any kind of ordering—when all thiastances for each composite session based either on infor-
required microprotocols have set their bits, the messa@s exnation in the locally-generated open request or on data in
the composite protocol independent of the order in whicly theéhe packet that caused the creation of the new session. For
were set. Note that systems supporting only hierarchical-colocal open requests, the current CTP implementation reguir
position intrinsically dictate one fixed release order. i&inty, applications to specify exactly the microprotocols thegide
deallocate bits are used for determining when a segment vifilthe session being created, including resolving depecidsn
not be needed by any microprotocol in CTP and can thus bg hand. Configuration tools such as those used in previous
deleted. systems [13] could be used to ease this process, but that has
Some microprotocols need to know when an outgoing messt been a focus of our work thus far.
sage is not on the network (i.e., has either been acknowtedge For open requests received from a remote host, CTP requires
or timed out)and will never be retransmitted. For examplethat packets that create a session contain sufficient data to
flow and congestion control microprotocols need to knodetermine which microprotocols were used to generate the
when new capacity is available on the wire so that they can, fieeceived segment. In the most general case, connectionless
example, advance the trailing edge of the congestion contpsotocols where any packet can establish a session, this is
window. As this condition involves the agreement of muéiplimplemented as a 32-bit bitfield that is included with every
protocols, CTP uses per-message event barriers referrasl t&TP packet, with a different bit assigned to each possible CT
done bitsto detect this condition. When every microprotomicroprotocol. For connection-oriented CTP configuration
col participating in this barrier has entered the barribe t however, this bitfield need only be included in the connectio
SEGMENT DONE event is raised. Note that deallocate bits arestablishment request.
not sufficient for this purpose because microprotocols mayNote that the microprotocol configuration in an existing

SEGMENT FROM NET‘ ‘ ICMP FRAGMENTATION REQUIRED‘

Fig. 1. Major CTP events.
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CTP session is not currently changeable at runtime. Whie fauseful for other microprotocols such as reliability or aidg.

sible in principle, doing so would require substantial éiddal Performing the procedure in a separate microprotocol allow
machinery either to quiesce the network or to support meltipthe other microprotocols to share the same attribute, gavin
microprotocol instances simultaneously while old pacleets space in the message.

drained from the network. However, work to support such A group of microprotocols transforms messages into seg-
dynamic adaptation capabilities has been done in the contgents at the sender and then back to messages at the receiver.
of Cactus [14] and in other systems such as the K42 operatinigey are also responsible for raising tSEGMENT FROM
system [15]. USER and MSG FROM NET events.Fixed Size simply creates

a separate segment from each messagejesce combines
multiple small messages into one segment, Redize frag-

This section gives an overview of some of the microprotgnents the messages into segments that can be handled by the
cols available in the CTP suite, including those that im@atm ynderlying IP network without IP-level fragmentation (MTU
reliable delivery, transmission control, message ord@gramd discovery). One of these microprotocols must be present in
jitter control. There are also several microprotocols ti@- each configuration.
vide base functionality not directly connected with a speci  Einglly, a set of optional microprotocols is responsible fo
semantic propertyThis section concludes with an examplegtaplishing and shutting down a connection, and for menito
showing how individual microprotocols interact in a TCReli g its statusyirtual Circuit implements a handshake protocol
configuration to implement TCP-like congestion control anghat provides reliable startup and shutdown semantics, and
reliability semantics on a sending node. exchanges random initial sequence numbers for message and
segment numberingirtual Circuit is completely transparent to
other microprotocols, even those that use sequence numbers

Transport Driver is the only microprotocol that must beif it is not included, constant initial values are used. Thiity
present in any configuration. It adds port identifiers on al realize this transparency stems directly from the Cactus
outgoing segments for demultiplexing and also containgfri event handling mechanisms. Specifically, this microprotoc
handlers for certain events to ensure that a message isdtarfinds event handlers to tr=EGMENT FROM NET event, order-
through CTP irrespective of the presence of other micr@profing them so that they are executed before other event handler
cols. It also sets the send bits to ensure that messagesnare @ghen the event occurs, it uses a Cactus operation to stop the
even if there are no other microprotocols that set send bitsdyent, which prevents the other event handlers from exag.uti
the configuration. The event interactions Dénsport Driver  As a result, other microprotocols do not see any handshake
are illustrated in figure 2. In the figure, arrows pointing tghessages and are unaware of the presence or absence of
a microprotocol indicate that the microprotocol has a handlyirtual Circuit in a given configuration. An additionaleep
bound to the event and arrows originating in the microprotocajive microprotocol is responsible for sending probe messages
indicate that the microprotocol raises the event. to detect link failures in the absence of application messag

IIl. MICROPROTOCOLHIGHLIGHTS

A. Base functionality

’ SEGMENT FROM USER‘ ’ MSG EROM NET B. Informational microprotocols

CTP contains a number of microprotocols that collect infor-
Transport . . . .
Driver mation and provide it to other microprotocols by raisingrege
/ or setting shared variables. These microprotocols can then
| SEGMENT TO NETN use the provided information to make decisions. For example
the Round Trip Time Estimation microprotocol maintains an
Fig. 2. Transport Driver event handling. estimate of the end-to-end round trip time in a protocolevid
shared variable by handling tiS€ND SEGMENT andSEGMENT
FROM NET events so that it can note when a segment is
The Sequenced Messages and Sequenced Segments mi- actually placed on the wire and when an acknowledgment for
croprotocols add message attributes uniquely identifgach the segment is received. This estimate is then used by other
outgoing message and segment, respectively. While this haicroprotocols for detecting congestion and setting tinteo
beling does not provide any service to the application, it islues, for example.
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The Positive ACK microprotocol is another, more com-
plex, informational microprotocol used to track the status keguent receveb

of transmitted segments. It implements a general cumelativ
acknowledgment facility necessarily more general thanlaim -
functionality in other protocols. In particular, it can bsed in P?ASitIi(VG
CTP configurations that do not require all messages to be de- ¢
livered because it does not include any reliability funictibty _/
e o e
SEGMENT FROM NE|

such as retransmission facilities. This allows it to be yused
example, in unreliable protocols that still need to trackkes _
. . Fig. 3. ACK-related event handling.
delivery status for flow and congestion control purposes as
well as in reliable configurations that include micropratisc
such asRetransmit. events to track segment status. For each outgoing message
This generality is achieved by slightly redefining thé€VentSEGMENT TO NET), Positive ACK includes a cumulative
meaning of a cumulative acknowledgment and imroducmga&knowledgment attribute as described above, and alsesrais
session-global data structure to decouptsitive ACK from the SEGMENT TIMEOUT timer event when the message is
the presence of reliability microprotocols. Rositive ACK, an actually transmitted (even$END SEGMENT). For each in-
acknowledgment indicates that the acknowledged segment §8@MiNg message (eVESEGMENT FROM NET), it checks the
receivedand that the receiver no longer needs or expects &knowledgment attribute, and cancels SE&MENT TIMEOUT
receive the acknowledged segment or any segment sent pfiggnt and raises thEEGMENT RECEIVED event if appropriate.
to it. Note that this does not mean that the previous segmegigilarly, the Duplicate ACK microprotocol also monitors the
were necessarily received—simply that they are unneetiat, tSEGMENT FROMNET event and raises tr&EGMENT LOST event
is, that theirreliability constraintshave been met. when appropriate. Other microprotocols suchRasransmit
CTP’s session-global data includes a data structure il use these events and the data included in event argsiment
keeps track of whether the reliability constraints on a eaéﬂ'g" sequence numbers) to determine when to retransehit ol
packet have been met. If a reliability microprotocol (eRp; segments or release new packets to the network.
transmit) is included in CTP, it sets the default reliability status
of packets in this list tdRELI ABI LI TY_UNVET in its initial- C. Reliability microprotocols

ization routine, and then later sets it RELI ABI LI TY MET Reliable transmission can be implemented using different
when the packet is acknowledged. If a reliability micropical types of redundancy ranging from redundant network con-
is not included in the configuration, however, the defauliections to redundant transmission over the same connectio
reliability status of packets remainBELI ABI LI TY.MET. TP currently has two reliability microprotocolRetransmit
This list allows Positive ACK and similar informational mi- andForward Error Correction. Retransmit is a traditional ARQ
croprotocols to know for which packet to send a cumulativgiability scheme that relies on informational micromools
acknowledgment. to know when packets have been received and which ones
In reliable protocols, where the receiver expects to r@&ceighould be retransmitted. As shown in the pseudocode in figure
every packet, the more general definition of acknowledgment, it handles th&EGMENT LOST andSEGMENT TIMEOUT events
and the reliability tracking data structure results in ttemdard and retransmits the appropriate segment when one of these
acknowledgment behavior used in protocols such as TCP.dvents is raised. In addition, it allocates a done bit on each
protocols that do not require complete reliability, howewee outgoing message and sets it upon receiving $B8MENT
more general definition of acknowledgments and the religbil Receivep event. As mentioned in section II, this allows
tracking data structure allow acknowledgments for pactets other microprotocols to know when the message will not
be sent even if some previous packets have not been receiygdretransmitted so that they can, for example, advance the
In addition, this design also allows for partially relialden- congestion window.
figurations, where some packets must be transported rgliabl Forward Error Correction transmits redundant data so that
and some unreliably, although CTP does not currently irelughe receivers can reconstruct a complete transmissioriteesp
any microprotocols that make use of this flexibility. message losseSorward Error Correction at the receiver then
Figure 3 shows howpPositive ACK, Duplicate ACK, and an handles the redundant segments and uses them to create a
example reliability microprotocoRetransmit, in this case) use new message for each of these missing segments and raises
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micro-protocol Retransmit (){ D. Transmission control microprotocols
handler handleSegToNet(segment{s) ) o )
setSendBit(s): CTP offers flexible facilities for controlling the speed of
transmission, typically used to ensure that a sender limits
handler handleRetransmit(int sefy) its outgoing traffic to a level acceptable to the network and
m = HashLookup(protocolState.segmentHash, seq); receiver. Our architecture divides these microprotocots i
clearSendBit (m); setSendBit(m); . .
two categories: flow control and congestion control.
handler handleSegRxd(int sef}) a) Flow Control: Flow control refers to end-to-end trans-
m = HashLookup(protocolState.segmentHash, seq); mission control that provides a mechanism for the recewer t
SetReliabilityState (protocolState.rellList, seq, P
RELIABILITY _MET); dictate the sender’s transmission speed. Available miotop
setDoneBit(m); setDeallocateBit(m); cols include:
initial { o« XON/XOFF.The receiver issues suspend/resume instruc-
protocolState.defaultRelStatus = RELIABILITYNMET; .
requestDoneBit () tions to the sender.

requestDeallocateBit(); o RTS/CTS.The sender explicitly requests the ability to

requestSendBit();

bind(SEGMENT TO NET,handleSegToNet,0); se.nd more packets.. L .

bind(SEGMENT LOST,handleRetransmit,0); « Windowed.The receiver periodically informs the sender

bind(SEGMENT TIMEOUT ,handleRetransmit,0); of its available buffer space.

bind(SEGMENT RECEIVED,handleSegRxd,0); ] ) o

1 These microprotocols all operate at the sender side byrmndi

t a handler to th&EGMENT TO NET event, which sets its send bit
Fig. 4. Retransmit microprotocol pseudo code on an outgoing message only when restrictions on transmnissi

are fulfilled.
At the receiver side, there are facilities in the API to allow
higher level protocols to specify policies on traffic rat€he

the SEGMENT FROM NET event for the reconstructed segments

. . . flow-control microprotocols can communicate this inforioat
Redundant data packets are also tagged with a specialigtrib . o

L to the sender either by transmitting new feedback messages
to assure that they are not handed to the application. As a

result, other microprotocols see the reconstructed setgnasn o the sender .or by plggypacklng the information Or] existing
. . messages. This feedback is handled at the sender in a handler
if they had arrived normally.

B _ bound to theSEGMENT FROM NET event.
The specific error correction scheme currently used by this b) Congestion ControlCongestion control behaves sim-

microprotocol is a block erasure code algorithm [16] that €f)ary to flow control in that it limits the transmission rate

codesk segments of original data into segments of encoded 4t senders, but is intended to avoid overrunning the capacit

data qf_ < n). At the sender,. _aftek segments have beenyt the network rather than the receiver. Congestion control
transmitted as normal, an additionat k redundant segments;, cTp consists of two types of microprotocols: congestion

are com.puted and transmitte.d.. The encoding scheme allwtrol and congestion policy. Congestion control micepr
the receiver to compute alf original segments provided thatyocois are responsible for implementing the mechanism for

at leastk of then segments are delivered intact. A number Oéontrolling congestion, while congestion policy microjmro
tradeoffs are involved in selectingand# in this system. For .,is describe corresponding policies. Typical configorai
example, introducing a large percentage of redundant p&ckGo g include one congestion control and one congestion
(i.e., k/n — 0) makes the system more tolerant to losses, bHBIicy microprotocol.

lowers effective data bandwidth. Similarly, increasingfor Congestion control microprotocols, like flow control mi-

a fixed value ofk/n can increase resistance to burst losse@roprotocols use send bits to provide a mechanism that

but also .delays the o-lelivery of redundant data and can PI3eBulates segment transmission. These microprotocoléanon
substantial computational load on the sender for cOn$gICt b 40col-wide shared variables that congestion policyreric

redundant packets. protocols change in response to policy-specific indicatioh
Note that forward error correction and ARQ reliability cartongestion. CTP currently implements two congestion @bntr

often be used together in the same CTP configuration. ThigcroprotocolsWindowed Congestion Control andRate-based

gives the user a rich set of possibilities for reliable commu Congestion Control.

cation that can be used to match the specific requirements ofVindowed Congestion Control implements a simple

particular applications. window-based scheme that limits the number of unacknowl-
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edged packets in the network. The size of the window is storddlivered, and &ossy FIFO alternative that discards messages
in a shared variable that can be changed by congestion potilgit arrive out of order after a configurable delaySémantic
microprotocols in response to various events. Rae-based Order microprotocol uses ordering information provided by
Congestion Control microprotocol works similarly, but insteadthe application to record and enforce the logical predexsss
controls the average outgoing byte rate based on a shaoédach message. A@ut of Band microprotocol can be used
variable. Because each congestion control microprotose$ uwith any ordering microprotocol to allow urgent out-of-loan
a different send bit for controlling segment transmissiomessages to be delivered as quickly as possible by oveagridin
multiple congestion control microprotocols can be used dhe send bit used by the current ordering microprotocol.
multaneously when appropriate. Jitter control microprotocols are structurally similar ao-
As already mentioned, congestion policy microprotocols idering microprotocols, but use the passage of time ratfzer th
the current design work by changing shared variables eggorpredecessor information to decide when the send bit in a
by congestion control microprotocols. As such, these micrmessage is set. These microprotocols incleided Rate Jitter,
protocols are designed to work with specific congestionrabnt which delivers messages separated by a fixed time interdal an
microprotocols. Available congestion policy microprodtses Timestamp Jitter, which preserves the sender’s time intervals
include: between messages at the receiver.
o TCP Congestion Detection. This microprotocol handles
the SEGMENT RECEIVED, SEGMENT TIMEOUT, and SEG- IV. DESIGN AND IMPLEMENTATION EXPERIENCES
MENT LOST events and changes the congestion window Over the course of designing and implementing CTP, we
used by thewindowed Congestion Control in response to gained substantial experience in dealing with configuitgbil
these events in accordance with the congestion contielCTP, as well as using the Cactus protocol framework. As
policy used by TCP [17]. Note that the policy imple-part of this process, we ran into issues with our original CTP
mented by this microprotocol does not depend on thiesign that we had to resolve. In this section, we discuss
presence of theRetransmit microprotocol in the CTP our experiences designing and implementing a configurable
configuration, so it may be used with unreliable commuprotocol, the mistakes made in this process and how they
nication or in combination witlrorward Error Correction.  were remedied, and our experiences using the Cactus event-
o TCP-Friendly Rate Control. This microprotocol monitors based protocol framework for implementing a substantial
segments status events and sets the maximum outgagogfigurable protocol.
data rate used bRate-based Congestion Control accord-
ing to the TCP response equation [18]. A. Configurability and extensibility in CTP

o SCP Congestion Detection. This microprotocol monitors
the average round-trip time and the packet status eve[bt
and sets both the outgoing data rate used Raye-
based Congestion Control and the window size used
by Windowed Congestion Control similarly to the SCP
protocol [19].

To make CTP highly configurable, the different micropro-
2ols have been designed to be as independent as possible.
However, there are sonmdependencieswhen one micropro-
tocol requires that another be in the configuration to func-
tion correctly—and someonflicts—when two microprotocols

cannot be in the same configuration. The dependencies in
Other congestion policy microprotocols, for example, dhes$ he current design are relatively simple. Every configura-

use ICMP source quench messages or ECN notification Bits, must haveTransport Driver and one of the message-to-

[20], are also easily implemented in this framework. segment conversion microprotocdiked Size, Coalesce, or

Resize. The reliability and FIFO ordering microprotocols use

E. Ordering and jitter control microprotocols sequence numbers provided by equenced Messages and
Ordering microprotocols are relatively simple for pointSequenced Segments. Similarly, most flow and congestion

to-point communication as currently supported by CTP. Tte@ntrol microprotocols require an informational microjool
sender can add a message attribute that indicates the drdesuch asPositive ACK to provide feedback on the status of
the message either as a sequence number or by specifyingttaesmitted segments. Finally, congestion control pohoyl
message’s logical predecessor(s). The current impleti@mta mechanism microprotocols must be used in conjunction with
has aReliable FIFO microprotocol, which enforces strict in-each other.
order delivery by buffering out-of-order messages andisgnd Conflicts are either syntactic or semantic in nature. An
them to the application only after their predecessors haesb example of a syntactic conflict is that only one message-to-
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segment conversion microprotocol should be in each configtase. In our original design, a singkesitive ACK micropro-
ration, while an example of a semantic conflict is thassy tocol performed two logically separate functions: trackthe
FIFO and a reliable communication microprotocol shouldtatus feceivedlost'timed ouj of transmitted segments, and
not be used together. Semantic conflicts do not cause tletiable transmission of segments using timeouts andnetra
combination to fail, but the resulting semantics do notsfati missions. This overloading, the result of failing to contplg
the properties of both of the microprotocols. decompose acknowledgment functionality inspired by TCP,
Despite these dependencies and conflicts, there are st@dlsed problems for applications that wanted segmentsstatu
hundreds of possible different CTP configurations even withacking but not retransmissions such as streaming mutiene
a small number of different microprotocols for each tramsparansmission applications.
property and function. The challenge is to identify the eotr  Decoupling these responsibilities required the introidunct
configuration for each application domain and execution eof several new microprotocols and events. Much of this decou
vironment. In many cases, this may require experimentatipting comes from the use of Cactus’ event-based programming
with different combinations to reach the optimal one. model, but some required the generalization of protocotfun
CTP is also designed to be easily extensible, meanitignality and the introduction of additional mechanismsl an
that new microprotocols can be added without modifying th#ata structures. We decomposed the origiwaitive ACK mi-
existing ones. The actual effort needed depends on the typeprotocol into several microprotocols, namelysitive ACK,
of extension. It is typically trivial to add a new alternativ Duplicate ACK, Negative ACK, Retransmit, and RoundTripTi-
implementation for an existing property or function, silbe meEstimation. We also introduced three new everssGMENT
event and data structure interactions are usually the S8meRBCEIVED, SEGMENT LOST, and SEGMENT TIMEOUT, to an-
in existing microprotocols. nounce when segments are acknowledged, explicitly lost, or
On the other hand, adding a completely new property bave had an unknown status for an unacceptable amount of
function can be more difficult. The implementor must firsime. This decomposition allowed CTP to be configured to
determine if CTP already has all the necessary events egfjuinse acknowledgments for feedback about segment arrival and
by the new microprotocol. If not, the CTP framework or somkss without mandating the introduction of retransmissiand
of the existing microprotocols may need to be modified their negative effects on multimedia applications.
raise these events. However, completely new microprosocol The newPositive ACK microprotocol implements acknowl-
can often be implemented using the existing set of events. fepigments and segment timeouts, while Kegative ACK and
example, in our design, the jitter control microprotocolsr& Duplicate ACK add additional packet tracking functionality. On
added after the rest of CTP was designed with no modificatiog sender side, all of these microprotocols work by raising

to other microprotocols. the appropriate events at the appropriate time; these ®vent
are then responded to byetransmit. On the receiver side,
B. Corrected Design Mistakes Positive ACK was changed to acknowledge packets when it

Over the course of designing and implementing CTP, wias either received a packet or no longer needs a packet, and
ran into two substantial design mistakes that required r@session-global data structure describes whether tiabié)
architecting parts of the system. In particular, complea- prconstraints on each received packet have been met. Inleeliab
tocol services implemented monolithically in protocolsisu protocols, where the receiver expects to receive everygtack
as TCP initially led us to make similar monolithic service#his behavior results in the standard acknowledgment behav
in CTP that either did not sufficiently decompose complexsed in protocols such as TCP. In protocols that do not requir
services, or did not separate mechanism and policy desisioeomplete reliability, however, the more general definition
This resulted in an insufficiently flexible protocol when wedllows an acknowledgment for a packet to be sent even if
initially tried to use CTP for multimedia applications likke Some previous packets have not been received. Note that this
one used in the experiments in section V. These two issu@¥nge also required the introduction of done bits for use by
are discussed in more detail below. WindowedCongestionControl as described in section 111-B.

Decomposing Complex InteractionBlexible configurability Separating Mechanism and Polidnother shortcoming of the

in CTP did not come without substantial effort. For exampl@riginal CTP design was that it did not separate congestion
while the reliability, ordering, and flow control transporicontrol mechanism and policy. As in all systems, keeping
functions that are tightly connected in TCP are completefuch separation is important, and failing to do so in our
independent in our final design, this was not originally theriginal CTP design was a substantial mistake. This problem
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was solved by introducing two different microprotocolsttha V. EXPERIMENTAL RESULTS
implement congestion control mechanisméndowedConges- A Overview
tionControl andRateBasedCongestionControl, and a variety of

different m.|c.roprotocols. that |mplement different congms of TCP and UDP, the flexibility provided by the service is
control policies as previously described. The most sulbistian o . : .
useful for application domains and execution environments

change required by this generalization was the introductiﬂqat are not the focus of the standard protocols. In pagicul
of the done bits on each CTP segment and the correspond(lflpp is useful when either a set of characteristics that falls

SEGMENT DZNE CTF;] ever.1IF, aIIC;W|ng\:cv|rr1]dowed(:ong.gestlor1-d somewhere between TCP and UDP is required, or for cases
Control to & va_nce t_ e tralling edge of the congestion win Where stronger guarantees are needed than TCP provides. CTP
at the appropriate timé. . . . . .
) ) ) ) is also appropriate when there is the opportunity to conéigur
As a result_ O_f this experience, separate policy mlCmprf's)\'protocol to match the characteristics of a specific network
tocols were similarly used for controlling forward errorreo environment. The goal of this section is to quantify the pete

rection parameters when CTP was later modified to SUPPRL) overheads and benefits provided by the configurability o

adaptation of error correction parameters. To further hmaltTP

careful separation of mechanism and policy later work on In the remainder of this section, we present local area

a system named Cholla [21] explicitly separated protocghd wide area network results in a variety of situations.
policies into a separate policy control engine where theydo

be separately composed, controlled, and analyzed.

While CTP cannot compete at this stage with tuned versions

Local area performance results were collected between two 2

processor 2.2 GHz Pentium 3 Xeon machines running Linux
kernel 2.4.18 across a quiescent 100 Mbps Ethernet; only one
C. Cactus Event Experiences processor was used by the test program. The C implementation

After implementing a variety of CTP microprotocols ané)f Cactgs 2.2 was used for c_omposing microprotocols ir_1to a
gomposne CTP protocol running at user level on top of Linux

testing a variety of different configurations, we found th o i
. . UDP sockets. Note that this imposes additional overhead on
largest source of bugs was in the ordering of event handlers.

Cactus allows event handlers to bind with differesrder CTP compared to TCP and UDP. Wide area performance

o . . .. results were collected between Linux machines at the Uni-
priorities, and handlers are run in numeric order priority.

. . . versity of New Mexico (UNM) and the Georgia Institute of
Excessive use of event ordering, however, resulted in a Bumb y ( ) g

of different bugs. In the original implementation for exdmp Technology (Georgia Tech).

Section V-B uses these platforms to quantify the cost of
there were not separa$EGMENT TO NET and SEGMENT SENT

. configurability in CTP by comparing latency and bandwidth
events; microprotocols that wanted to run after segmente we

_ . . numbers in different CTP configurations over both local and
sent would simply bind t@EGMENT TO NET with a large order

o . _ wide area networks. Section V-C then illustrates the paent
priority. As new microprotocols were introduced, however,

. . benefits of CTP by customizing protocol configurations to
misorderings between when handlers were run could cause, . . .
oL . . application-specific and hardware-specific needs.
for example, round trip times to be calculated inapprophat
To address this problem, later implementations of CTP wege Configurability Overhead
changed to use more fine-grained events instead of orderin
among event handers on fewer events. The resulting definitio,

. - - lat f UDP, TCP, and vari fi ti f
of more CTP events along the sending and receiving proceg!Srlg pohg fatency o and various contigurations o

. . . ) CTP. Four different CTP configurations are included:
ing path required us to understand and interface with longer
event chains when implementing new protocols. However, ) . ]
our experience shows that documenting and understanding only the driver and fragmentation/reassembly micropro-
the (well-defined) longer event chains was much easier than tocols. o ] )

understanding somewhat shorter event chains and the ogderi * CTP-LossyFIFO: the minimal CTP configuration aug-

. . . . mented with per-message sequence numbers and unre-
constraints of every possible microprotocol in the system. ) i P 9 . q )
liable in-order message delivery microprotocols.

2Note that simply monitoring th&&EGMENT RECEIVED, SEGMENT o CTP-Video: a CTP configuration for video transmission
TIMEOUT, and SEGMENT LOST events is not sufficient for this purpose. that uses SCP-ster congestion control, positive and neg-
This follows because a packet may or may not be reintroduoéa the . L . .
network depending on whether or not, for example, Retransmit mi- ative acknowledgments, round-trip-time estimation, and
croprotocol is included in the current CTP configuration. in-order unreliable message delivery.

q‘he first set of experiments measures the bandwidth and

o CTP-Minimal: a minimal CTP configuration containing
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o CTP-Bulk: a TCP-Tahoe-like CTP configuration includLossyFIFO configuration) adds negligible overhead; more
ing reliable, in-order message delivery using retransmisemplex microprotocols that implement, for example, caage
sions, duplicate acknowledgments, and TCP-style congéisn control, introduce correspondingly more overhead.
tion control. In the wide area unreliable results, latencies are doninate

Note that the first three of these configurations are all uRY Wide area network costs, which obscure event overhead

reliable configurations; only CTP-Bulk guarantees rekabFOSts. Bandwidth numbers vary as expected, with the UDP,
transmission of all data. CTP-Minimal, and CTP-LossyFIFO configurations providing

In the latency tests, two machines ping-pong minimal-sizdde Pest bandwidths given their lack of congestion control.
application packets 10 times to measure the average m-lmd_{:TP—Video provides less bandwidth because of congestion
latency for one round trip. In the bandwidth tests, a sendiifgntrol actions, but more bandwidth than the TCP and CTP-
application transmits 1000 1250-byte messages to a recei\%”k configurations. Again, this is expected since the SCP-
which replies with a user-level acknowledgment once all t#S€d congestion control policy used by the multimedia-
data has been received. We measure the interval at the se/fiignted CTP configurations is more aggressive than TCP-
between the transmission of the first packet and receipt $frived policies and known to not be TCP-fair.
the acknowledgment and use this to compute the end-to-en§©mparing the reliable protocols, the latency overhead of
data transmission rate. To enable direct comparison obpobt CTP-Bulk compared to TCP is somewhat higher, on the order
processing costs, tHUSH flag is set on every message hande®f 200 microseconds. This is caused by the increased event
to TCP, causing it to preserve message boundaries and sefgfessing in CTP for the complex configuration required
the same number of data segments as the other protocols;@efull reliability. We expect the latency performance df a
confirmed experimentally that the same message boundafidd® configurations to improve as the event mechanisms in
were used in TCP. the Cactus runtime are optimized, although it is probably

Table | shows the averages and standard deviations of Yyealistic to expect CTP to beat TCP and UDP for this type

runs of the bandwidth and latency tests on both local afd YS®€:
wide area networks, with the top part of the table comparingThe bandwidth differences between CTP-Bulk and TCP are

unreliable protocol configurations and the bottom part corfidused by minor differences in delayed acknowledgment han-

paring reliable protocols. All measurements were made §ng and packetization in the two protocol implementasion

the receivemfter several initial packet exchanges to allow thePecifically:

congestion control window to open fully. o CTP-Bulk currently has an MTU of 1250 bytes as
These results indicate a latency overhead of approximately opposed to the 1400+ bytes that TCP uses, has larger

100 microseconds per round trip over UDP in the simple local- headers, and runs on top of UDP.

area test and execution environment, with approximatedy th « TCP (as a stream protocol) maintains the sender window

same service guarantees. Similarly, bandwidth is conmpetit sizes in bytes, while CTP-bulk maintains a window size

with UDP, although slightly less because this version of CTP  in packets, since it is a message-oriented protocol.

is layered on top of UDP and because of protocol overhegflese two differences prevent CTP-Bulk from utilizing the
such as the longer CTP headers required to support Wigndwidth of a lower bandwidth wide area connection as
sophisticated semantics of more complex configurations (6ffectively as TCP does.Note, however, that CTP’s mod-

byte CTP headers as opposed to 8 byte UDP headers). G§& structure makes such differences easy to change when
header overhead is currently unoptimized, however, and cghpropriate.

be reduced by specializing headers to particular configumrat

instead of having a single generic header that encompasses

all current possible CTP configurations. Additionally, nimg C. Benefits of Custom Configurations

CTP directly on top of IP would lower its latency costs CTP can be tuned to provide optimized behavior for given

significantly. applications or hardware environments similar to handtbui
As microprotocols implementing more complex semantiegistom protocols without the engineering overhead of de-

are added to CTP configurations in the first part of the tablgloping such protocols from scratch. In this section, we

latency gradually increases and bandwidth slightly desgga demonstrate the performance benefits that customizing CTP

Adding relatively simple microprotocols such Bsssy FIFO configurations to application- and hardware-specific neads

andSequenced Messages to the CTP configurations (the CTP-provide.
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Local Area Wide Area
Protocol Latency (ms) | Bandwidth (Mb/sec)|| Latency (ms)| Bandwidth (Mb/sec)
UDP 0.152+0.0028 | 90.28+0.005 413+3 61.54+1.317
CTP-Minimal 0.273+0.0052 | 81.76+0.014 414+0.4 56.814-0.637
CTP-LossyFIFO|| 0.279+0.0031 | 81.77:-0.008 414+0.7 56.62+0.975
CTP-Video 0.366+-0.0050 | 82.17£0.005 414+1 21.97-0.745
TCP 0.162+0.0029 | 89.40+0.025 4124+-0.9 9.38+0.189
CTP-Bulk 0.380+0.0090 | 68.31:0.148 415+0.8 4.73+0.288
TABLE |

LATENCY AND BANDWIDTH COMPARISON

1) Application-Specific Customizatioffo study the poten- on time more robustly that UDP in the face of packet loss.
tial application-level benefits of protocol customizatiore ran Local-area comparisons between UDP and CTP-Audio behave
CTP as the underlying transport protocol for a custom Cactessentially the same.

multimedia-transmission and playback application. Thisla.  Figure 5(c) provides a more detailed breakdown of the
cation sends compressed audio or video to a remote receiyRiiformance of the CTP-Bulk protocol in the wide-area case.
which then plays back the received data in realtime from&ince CTP-Bulk delivers all packets in order, as packet loss
playback buffer with fixed time capacity. This applicatiamps jncreases, packets are delivered increasingly late dubeo t
ports both uncompressed and compressed (H.263/0gg Vorkig)p-like retransmission-based reliability scheme. UDR an
audio and video streams. CTP-Audio, on the other hand, deliver packets in a timely

We studied the impact that custom CTP configurations haf@shion. All of the late packets shown in 5(b) and 5(c) are
on an audio transmission configuration of this applicatiof/® to packet loss, though CTP-Audio delivers more packets
using UDP, CTP-Bulk, and a new configuration CTP-Audi8" time in the face of packet loss thanks to the forward-error
for audio transmission that is configured identically to €TFEOITection service it provides to the application.

Video except for the addition of a block-erasure forward Of course, existing protocols, for example RTP [6] and
error correction microprotocol. CTP-Bulk acts as a prox$CTP [9], can provide application benefits similar to those
for TCP performance in this experiment, since we did nshown above. However, each of these protocols had to be
have the kernel-level access that would be needed to vapnstructed from scratch, and are not easy to modify to sippo
the loss experienced by the TCP protocol on the wide-arether, different application needs. CTP, however, allohes t
test machines. Audio packets were sent at 128kbps on baftplication authors to customize protocol behavior using a
low-latency (local) and high-latency (wide-area) netveyrnd  single integrated package that already supports a wideerang
with different amounts of additional packet loss at the @sgr of application-desirable semantics.

network device to examine how different protocol configura- ) Hardware-Specific Customizatiomn the previous case,
tions and network conditions affectag@plication performance. cTp was able to be easily reconfigured to provide superior
The application was set to use a fixed 3000ms playout bUﬁEErformance to applications compared to TCP and UDP
and CTP-Audio was set to use N=5 and K=4 to be able {pcause the service requirements of the application were
recover from one dropped data packet out of every five packeigferent than those provided by TCP and UDP. However, CTP
Each test consisted of 1500 packet transmissions, and Wagfigurations can provide superior performance compared t
conducted 10 times on each protocol/network configurationycp even in cases where TCP exactly matches application ser-
Figure 5(a) shows the performance of all three protocotéce requirements, particularly when the underlying netwo
on this application in terms of the percentage of packeigrdware violates fundamental assumptions that TCP makes.
delivered within the application playout window on a wide- For example, modern versions of TCP derived from the BSD
area network between UNM and Georgia Tech. CTP-Bulk &ode retransmit segments after receiving 3 duplicate ACKs
unable to deliver packets on time in the face of significamr upon expiration of a retransmission timeout, Howeveg, th
packet loss, while UDP and CTP-Audio continue to provid€CP retransmission timer is typically very coarse, on the
reasonable service to the application. Figure 5(b) shovis order of 500ms. Local wireless networks, connections &cros
UDP and CTP-Audio performance over wide-area networksampus networks or even wide area-networks frequentlgyiel
and demonstrates that CTP-Audio is able to deliver packetind-trip times on the order of tens of milliseconds or
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Fig. 5. Real-time Streaming Media Performance of UDP, CTikBand CTP-Audio
Loss rate (%)) Round-Trip Latency (ms) specialized protocols from scratch.
CTP-Bulk TCP
0 0.34+0.002 | 0.17+0.0008
1 0.62:0.07 | 2.1+8 D. Performance optimizations
2 0.66+0.07 | 4.4+8
3 1.9+0.5 8.0+13 The performance of a composite protocol built using Cactus
4 2.1£0.4 13+18 such as CTP can be optimized in any number of ways. These
5 2.4+0.7 16+25 o o .
optimizations can be classified based on whether they requir
TABLE I changes in the Cactus runtime system or microprotocols, and
ROUND-TRIP LATENCY ON LOW-LATENCY UNRELIABLE NETWORKS the extent of these changes. The least intrusive optimizsti

customize the protocol’'s behavior using features in thet@@ac

runtime specifically provided for such customization. For
faster, so faster retransmission timers can be benefic@dgrunexample, message handling operations can be customized to
certain circumstances. This is particularly true on, faaraple, construct message headers in whatever format is most afficie
802.11b wireless networks, which can have low latencies af@t the particular protocol by customizing the message pack
high drop rates. and unpack routines as mentioned in section II-B.

We have measured the performance of CTP using theAnother type of optimization modifies the Cactus runtime
CTP-Bulk configuration described above. This configuraticsystem, but does not require changes in the microprotocol
includes thePositive ACK and Retransmit microprotocols de- code. For example, to eliminate the table lookups requived t
scribed in sections IlI-B and IlI-C, which use fine-graineihvoke customizable operations, the message handlingaeper
retransmission timing. Table Il lists the average roungl-trtions can be added as static functions to the runtime system.
latency of this CTP configuration compared to TCP. Thessgmilarly, event dispatch and handling performance cowdd b
times were measured using 10 tests of 100 back-to-batiamatically improved using techniques already demotesira
round-trips using zero-length application packets. Téss was elsewhere [22], [23].
performed on the same platform as described above; networlEinally, some optimizations require that the chosen micro-
packet losses were simulated by randomly dropping varyipgotocols be modified in some way, either by hand or through
proportions of packets on each receiving machine. automatic compile time or run time optimization. For exaeypl

Although TCP has better latency in the lossless case, CTife indirection required to raise an event can be optimized b
was able to provide faster delivery on average when losgeplacing the raise operation with direct calls to the appete
occurred by retransmitting more quickly. CTP can providevent handlers or even by inlining the handlers.
similar advantages in other environments where TCP is knownin the experiments above, the only optimization used was
to perform sub-optimally, such as high bandwidth-delaydprothe first one described above, where the Cactus message
uct links and long-distance wireless networks, or networkendling operations are customized. This optimizationlted
where losses may not be the result of congestion but mizya minor decrease in the latency and increase in the band-
instead indicate, for example, radio interference. Moegpv width in the CTP-Minimal and CTP-Bulk configurations over
CTP allows the user to configure all of these from a singlenoptimized CTP. This only took a few hours of programming
integrated package, rather than forcing the constructioee and did not require any changes to the Cactus framework



ACM/IEEE TON 14

or CTP microprotocols. Other work has shown that moi@TP also allows the wire message format to be customized,
aggressive CTP optimizations can substantially improv® Cpotentially enabling backwards compatibility with protde

bandwidth performance [24]. such as TCP and UDP. When implemented, this backwards
compatibility could enable the broader adaptation of CTP in
E. Limitations production, research, and teaching environments, songethi

The current version of CTP has a number of limitationdhat €xisting fine-grained protocol composition systemeeha

mostly because it was designed primarily to serve asY§! {0 achieve.
prototyping environment for testing different combinaisoof
transport-related algorithms and functions. One is thaséts a B. Protocol Composition Frameworks

push/pop interface for interacting with upper levels rathan A nhumber of different configuration frameworks have been
a more standard socket-type API. It is, of course, possible §sed to construct modular, and to some degree configurable,
add such an APl on top of CTP. However, the traditional sock@hnsport services. Most of these frameworks use a linear
interface must be extended somewhat to support specificatig nierarchical composition model where the communication
of the desired transport properties for each connection agghsystem is constructed as a stack or directed graph of mod-
possibly for each message (e.g., semantic ordering, out @és with identical interfaces for interchangeability. ddde
band). interactions in these systems are typically limited to rages

A second limitation is that CTP is not interoperable witlychange between adjacent modules in the composition graph
any standard transport protocol, partially due to its use gkamples of such composition models include the System
the custom message format. However, limited interopétabilyy STREAMS [28], thex-kernel [12], CORDS [29], Horus
could be added easily by customizing the message pack'[@g]’ Ensemble [31], Globus XIO [32], and Rwanda [33]. To
routine to generate a message header format compatible vty knowledge, none of these approaches have been used to
an existing protocol such as UDP. Note, however, that egonstruct transport services that are customizable todhess
forcing compatibility with other protocols such as TCP Wbu'degree as CTP.
place severe restrictions on CTP’s configurability, sinte i The Cactus model provides a more flexible framework for
semantics would be limited to those provided by the eXiStiQﬂ)nstructing configurable transport protocols than anyhef t
protocol. hierarchical models. Cactus does not force a linear order
between modules when the modules are logically on the same
level or even completely independent. For example, rditgbi
A. Composite Transport Protocol Systems flow control, and congestion control in our design are indepe

Several other researchers have explored composite ptotgé@nt, which means that no specific execution order is needed o
frameworks, generally in the context of specialized enviroenforced by Cactus. Furthermore, Cactus allows arbyrech
ments. Specifically, XTP [25] and TP++ [26] have been usdateractions between modules that need to interact rakizer t
to support flexible data transport in high-speed networkd, alimiting interaction to be message exchanges betweenetjac
Minden’s composite protocol system [27] supports transpdnodules in a graph. Finally, modules in hierarchical models
protocol composition for active network systems. XTP, fdypically must act as data filters that get one chance to gsoce
example, can be configured to support different amounts @fmessage when it traverses the communication subsystem.
reliability and different connection establishment metdbms, [N Cactus, a microprotocol can be much more sophisticated
while TP++ explicitly supports the semantic needs of thre@d can process a message at multiple places as it traverse
different classes of applications: latency-sensitivdiapfions, the composite protocol. For example, a microprotocol may be
bulk data transport applications, and distributed tramsac nhotified when a message arrives at the composite protocol,
systems. when it is ready to be transmitted, and when it has been sent

In contrast, CTP is designed to allow very general confi@ut. As a result, microprotocols do not need to be simple data
urability, enabling its use in a wide range of general puepoélters, but can implement arbitrary logical transport pedes.
and specialized applications, as well as for prototypingy ne Protocol heaps [34] propose a non-hierarchicé-based
protocols and networking instructidnUnlike these systems, approach to constructing network services and suggest that

_ o such a role-based approach could be used either in a single

SCTP was used for student protocol implementation in a Coerphiet-

working class at the University of Arizona in 2003, for exdeymnd we are layer of the pl’OtOCOl stack or to replace protocol stacks
currently exploring using it for these purposes more brpadl altogether. The authors note that roles in their propossi&sy

VI. RELATED WORK
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are similar to microprotocols in Cactus’ predecessor Gayateliability using techniques such as multihoming, andiplyt
[35], although Cactus and Coyote focus on non-hierarchiaa&liable transport protocols for use in multimedia sersice
composition inside a layer of the network stack as opposptl]. Extensions to TCP have been developed to improve its
to across an entire protocol stack. To our knowledge, pobtogerformance and applicability for specific application ae-e
heaps have not yet been used to implement substantial pratation domains. Examples of such extensions include setect
cols such as we have done with CTP. Howevbegcause of acknowledgments [42] and support for transaction-orignte
the similarities between the two systems, our experienees dervices [43].
signing and implementing a flexible, non-hierarchicals@ort ~ The goal of CTP is not to be yet another transport protocol
service and our measurements of the costs of such flexibilgy yet another TCP extension. Rather, CTP is a prototype
should be directly applicable to protocol heaps. of a completely customizable transport protocol that can be
Adaptive [36] introduces a non-hierarchical approach f@onfigured to serve any application domain in any execution
constructing configurable protocols. In this approach,heaenvironment to the best degree possible. CTP can also be used
protocol or service consists of a “backplane” with slots fosis a prototyping environment for testing new algorithms for
different protocol functions such as flow control and religifferent transport properties in different execution ieon-
ability. The fact that a service is pre-divided into a fixeenents.
set of functions (or slots) naturally restricts the composi
e.g., slots cannot be left empty and new slots are difficult
to add. Interactions between different protocol functians
also prescribed by the backplane. Adaptive provides a highe

level configuration interface, where a protocol compogii® . Lo . : _
. . - important flexibility when it comes to supporting new appli-
created automatically based on a functional specificaBoich . . .
cations and new network technologies. In this paper, we have

a h|_gher—level interface could also be developed for CTP éfescribed an approach to building such services based on the
desired. . . .

. Cactus design and implementation framework, as well as a
STP [37] focuses on operating system and network Safewc'(r)]ncrete realization of the approach in the form of CTP. In

deploying new network protocols. STP protocols are W”ttet?lis family of transport protocols, various attributesisas re-

in Cyclone, a type-safe version of C, and distributed in SeUliable transmission and congestion control are implenttate

form over the Internet. The operating system then uses Tcs%parate microprotocols, which are then combined in differ

friendly rate-control to guarantee the network safety af thWays to provide customized semantics. Initial experimaeta

resulting protocol. This combination of sandboxed code ag(ljjlts indicate that, while the performance is somewhat etow

resource control eases the deployment of novel networkin,gan TCP and UDP for similar configurations, the ability to

services. Sllmllar technlques cou]ch be fushed o dle_ploy C_TP rpa'frget the guarantees more precisely can in fact resulttierbe
croprotocols to guarantee the safety of the resulting caitpo performance. While it will always be possible to construct a

VII. CONCLUSIONS

The ability to customize transport protocols can provide

protocol. specialized solution that performs at least as well as CTP, C
allows easy component-based construction of custom toansp
C. Other Novel Transport Protocols protocols with minimal effort.

A number of other transport protocols have been proposedOther future work will concentrate in three areas. First,
since the introduction of TCP and UDP. Examples includee intend to use CTP as an experimentation and prototyping
the Reliable Data Protocol (RDP) [38], [39] that provides platform to implement and measure different transpotesl
message-based transport service with reliability andoapti algorithms. This work will require extensions to CTP on
FIFO ordering guarantees, and the Versatile Message Traosnfigurable (non-IP-centric) addressing and demultipigx
action Protocol (VMTP) [40] for transactional (RPC styleBupport for MPI-style matching instead of port-based demul
communication. The latter has certain customizable featurtiplexing is just one example of this. Support for other axbdr
including optional security and customizable reliabilapd ing and demultiplexing schemes, for example, virtual clednn
some support for real time and multicast data. More recedentifiers (VIDs) are also being considered. Second, we pla
proposals include the Real-Time Transport Protocol (RBP) [to extend CTP to support customizable multicast and group
that supports transmission of real-time data such as audiocommunication. Finally, we will explore further perfornemn
video over multicast network services, the Stream Controptimizations, both in the CTP composite protocol and in the
Transmission Protocol (SCTP) [9] that provides improve@actus runtime system itself.
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