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Abstract— The ability to configure transport protocols from
collections of smaller software modules allows the characteristics
of the protocol to be customized for a specific application
or network technology. This paper describes a configurable
transport protocol system called CTP in which microprotocols
implementing individual attributes of transport can be combined
into a composite protocol that realizes the desired overallfunc-
tionality. In addition to describing the overall architecture of
CTP and its microprotocols, this paper also presents experiments
on both local area and wide area platforms that illustrate the
flexibility of CTP and how its ability to more closely match
application needs can result in better application performance.
The prototype implementation of CTP has been built using the
C version of the Cactus microprotocol composition framework
running on Linux.

Index Terms— Transport protocol, configuration, customiza-
tion, extensibility.

I. I NTRODUCTION

Existing network transport protocols such as TCP [1] and

UDP [2] have limitations when they are used in new applica-

tion domains and for new network technologies. For example,

multimedia applications sharing a network need congestion

control but not necessarily ordered reliable delivery, a combi-

nation implemented by neither TCP nor UDP. Similarly, the

congestion control mechanisms in TCP work well in wired

networks but often over-react in wireless networks where

packets can be lost due to factors other than congestion. The

lack of appropriate guarantees or specific features has led to

the widespread development of specialized protocols used in

conjunction with or instead of standard transport protocols.

These include IPSec [3] and SSL [4] for security, RSVP [5]

for bandwidth reservation, RTP [6] for real-time audio and

video, GTP [7] and CEP [8] for transport in Grid and high-

end computing environments, and SCTP [9] for enhanced

transport reliability. Developing such a protocol from scratch

is, needless to say, often a significant undertaking.
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In this paper, we describe our experience building a config-

urable transport protocol, CTP, that allows protocol seman-

tics to be tuned to specific application needs without the

engineering effort involved with new protocol development.

With this approach, software modules that implement different

service attributes or variants are written, and then a custom

protocol is constructed by selecting appropriate modules based

on the needs of the higher levels that use the service or

on the specific characteristics of the underlying network or

computing platform. Thus, for example, a congestion-control

module can be configured together with a datagram service,

or a security module can be configured together with other

modules implementing a virtual circuit. The net result is, in

effect, a family of transport protocols, each useful in a given

scenario.

We experimentally demonstrate that CTP achieves com-

parable performance to existing protocols such as TCP and

UDP on the applications for which they were designed. More

importantly, we show that CTP can be customized for new

applications to provide better performance than existing pro-

tocols without the software engineering overhead associated

with developing a new protocol from scratch. Our prototype

version of CTP is implemented using the Cactus microprotocol

composition framework [10] running on UNIX UDP sockets

on a cluster of Linux x86 machines and between x86 machines

across the Internet.

The rest of this paper is organized as follows. In section II,

we describe transport features that individual CTP modules

would need to implement, describe the overall design of CTP

in which configurable protocol modules (microprotocols) are

implemented, and the relevant features of the Cactus protocol

framework on which this design relies. Section III describes

the microprotocols currently implemented in CTP and presents

an in-depth example of how they interact to implement TCP-

like protocol semantics in a particular CTP configuration. In

section IV, we describe our experiences designing and imple-

menting CTP, particularly how component decomposition and

protocol infrastructure changed during implementation and

testing, and our experiences using the Cactus to implement

CTP. Section V illustrates the advantages of CTP’s config-

urable approach to protocol construction by comparing its
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performance in a variety of configurations to that provided

to different applications by TCP and UDP. Finally, sections

VI and VII compare CTP with related work, and present

conclusions and directions for future work, respectively.

II. CTP DESIGN

A. Transport Attributes and Algorithms

As a first step in developing a customizable transport

protocol, we studied a wide range of transport protocols and

identified various quality attributes that can be provided to

higher levels and the algorithms used to implement these and

other aspects of the service. In this case, we roughly divided

quality attributes into the following:

• Reliability. Addresses the likelihood that the receiver

receives all the data sent by the sender. Reliability can be

increased by using different forms of redundancy ranging

from retransmissions to the use of parallel channels to

transmission of redundant data along one connection.

• Ordering. Describes guarantees concerning the ordering

of data at the receiver relative to the order in which it

is sent. For a stream-based transport services, the only

reasonable ordering option is FIFO, but for message-

based services other options may be reasonable.

• Performance.Describes how quickly data is transported

from sender to receiver in terms of average throughput.

The protocol may attempt to provide guaranteed perfor-

mance by reserving resources or may do it only on a

best-effort basis.

• Timeliness.Describes the timing characteristics of the

end-to-end transmission with respect to maximum latency

or jitter. Latency guarantees are typically made through

resource allocation, while jitter can be controlled by

adding a buffer at the receiver that is drained at a

controlled rate.

TCP and UDP provide essentially a fixed set of these

attributes. In particular, TCP provides strong reliability (guar-

anteed delivery) and ordering (in-order byte stream) semantics,

but only best-effort performance and no timeliness guarantees.

Similarly, UDP provides a best-effort performance, but with

no ordering, timeliness, or reliability guarantees.

Given an attribute, numerous algorithms and protocols are

often available for implementing its properties. For example,

reliability can use some combination of positive, negative,

or selective acknowledgment protocols, or several different

forward error correction schemes. In some cases, different

algorithms provide different types of guarantees. For exam-

ple, IP-style one’s complement and cyclic redundancy checks

(CRC) provide integrity that protects against accidental data

modification, while cryptographic methods such as DSA [11]

protect against intentional modification. In other cases, differ-

ent algorithms provide approximately the same guarantee, but

with different trade-offs with respect to resource usage orother

attributes. For example, forward error correction typically uses

more bandwidth than acknowledgments, but usually provides

faster recovery from failures, and thus a smoother data flow

at the receiver.

Different choices can also be made for other design ele-

ments, such as whether to use congestion and/or flow control,

and if so, what type. The protocol must also be able to interact

appropriately with the protocol below it in the protocol stack.

For example, messages may need to be fragmented into pieces

or small messages coalesced into one packet. If a resource

reservation protocol such as RSVP is available, the transport

protocol may interact with it to make a resource reservationfor

the connection. Finally, the transport protocol must deal with

such practical issues as connection establishment, monitoring,

and tear-down.

B. Cactus

Cactus is a system for constructing highly-configurable

protocols for networked and distributed systems. In this section

we give a brief overview of Cactus; a detailed description of

Cactus and its execution model can be found in [10].

Individual protocols in Cactus, termedcomposite protocols,

are constructed from fine-grained software modules called

microprotocols that interact using an event-driven execution

paradigm. Each microprotocol is structured as a collectionof

event handlers and generally implements a distinct property or

function of the protocol. Next, protocols are layered on topof

each other to create a protocol stack using an interface similar

to the standardx-kernel API [12] (e.g.,Demux(), Push(),

Pop(), Open()). This two-level approach has a high degree

of flexibility, yet provides enough structure and control that it

is easy to build collections of modules realizing a large number

of diverse properties.

At runtime, composite protocol instances, termedcomposite

sessions, are used to process packets. Composite sessions are

created by protocol routines (e.g.,Demux() or Open()) in

response to open requests from either local applications or

received packets. Each composite session contains a collection

of microprotocol instancesin which event handlers are bound

to protocol-specific events to effect protocol processing.

Processing of structured messages by microprotocol-defined

event handlers comprises the basic programming model of

Cactus. Events are used to signify state changes of interest,

such as “message arrival from the network”. When such
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an event occurs, all event handlers bound to that event are

executed. Events can be raised explicitly by microprotocol

instances or implicitly by the composite protocol runtime

system.

The Cactus runtime system provides a variety of operations

for managing events and event handlers. In addition to tradi-

tional blocking events, Cactus events can also be raised with a

specified delay to implement time-driven execution, and canbe

raised asynchronously. Arguments can be passed to handlersin

two ways, statically when the an event is bound to a handler

and dynamically when an event is raised. Other operations

are available for unbinding handlers, creating and deleting

events, halting event execution, and canceling a delayed event.

Handler execution is atomic with respect to concurrency, i.e.,

a handler is executed to completion before any other handler

is started unless it voluntarily yields the CPU.

The Cactus message abstraction is designed to facilitate

development of configurable services. One of the main features

of Cactus messages aremessage attributes, which are a

generalization of traditional message headers. Operations are

provided for microprotocols to add, read, and delete message

attributes. Furthermore, a customizable pack routine combines

message attributes with the message body for network trans-

mission (on-wire format), while an analogous unpack routine

extracts attributes at the receiver.

Synchronization and coordination of execution activities

in Cactus is accomplished throughevent-based barriersthat

may be associated with data items, including messages. A

microprotocol instance can register with the barrier, and an

event associated with the barrier will only be raised when

all microprotocol instances registered with the barrier have

entered the barrier. These barriers are used to coordinate

activities across multiple microprotocols, especially tocontrol

the transfer of messages up and down the protocol stack.

C. Design Overview

In Cactus terms, CTP is a composite protocol in which each

attribute or function described in section II-A is implemented

by one microprotocol or a set of alternative microprotocols.

Thus, the current design has one or more microprotocols for

reliability, ordering, security, jitter control, congestion control,

flow control, data and header compression, MTU discovery,

message fragmentation and collation, and connection estab-

lishment, monitoring and tear-down. The goal of the design

is to decouple the implementations of different attributesand

functions to maximize the ability to mix and match different

microprotocols to provide exactly the required properties.

Decoupling the different features of transport protocols is not

trivial, since often much of the functionality is tightly coupled

for efficiency. For example, reliability, congestion control,

and flow control in TCP often utilize the same transmission

window data structure, while byte sequence numbers are used

to implement reliability and ordering, and to provide necessary

feedback for flow control.

Unfortunately, the design space for transport protocols is

very large; to somewhat limit the scope of the problem, the

current CTP design focuses on only bidirectional message-

oriented point-to-point communication over an unreliable

packet-oriented network protocol (e.g., IP). Specifically, an ap-

plication uses a given CTP configuration to exchange arbitrary

length messages (e.g., a video frame) with some application-

defined semantics with a single endpoint. Since the design of

CTP does not assume that the underlying network protocol

supports such arbitrary length messages, microprotocols for

fragmenting or coalesces messages into an appropriate trans-

port unit—a segment—are provided.Finally, CTP addresses

are currently local/remote IP/port number 4-tuples similar to

those used by TCP.

D. CTP Events

As with all Cactus protocols, microprotocol instances in

a CTP session interact using events that manipulate shared

data—in particular, the messages and their attributes. CTP

predefines a set of common events useable by all CTP micro-

protocols. These events are illustrated in figure 1. The figure

uses solid arrows to indicate events raised by CTP’s interface

routines and dashed arrows to indicate causal relations between

other events. For example, when theMSG FROM USER event

is raised by CTP, some microprotocol will raise theSEGMENT

FROM USER event. Additional local timeout events are used

by several of the microprotocols. Most of the event names are

self explanatory. For example,SEGMENT RECEIVED is raised

when a previously sent segment is acknowledged,SEGMENT

TIMEOUT when a segment’s status has been unknown too long,

and SEGMENT LOST when CTP is explicitly notified that a

segment has been lost.

CTP makes extensive use of the Cactus event-based barrier,

particularly event-based barriers associated with individual

messages. For historical reasons, event-based barriers associ-

ated with messages are generally referred to ashold bits.1

CTP uses three sets of hold bits on each message: send

bits, deallocate bits, and done bits. The send bits are used

to coordinate sending of segments down to lower layers and

delivery of messages up to the application. A microprotocol

1The event-based barrier synchronization mechanism was created as a
generalization of the hold bits originally associated withmessages.
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SEGMENT TIMEOUT

MSG FROM NET

ICMP SOURCE QUENCH

SEGMENT RECEIVED

SEGMENT TO NET

SEGMENT DONE

SEND SEGMENT
SEGMENT LOST

OPEN SESSION

ICMP FRAGMENTATION REQUIRED

MSG FROM USER

SEGMENT FROM USER

SEGMENT FROM NET

Fig. 1. Major CTP events.

sets a send bit in a given message when the message can be

delivered up or down the graph as far as the microprotocol is

concerned. When all of these bits are set, the message exits

and theSEND SEGMENT event is raised so that microprotocols

can be notified when a segment actually leaves the protocol.

For example, congestion control, flow control, and reliability

functionality in CTP each control send bits to determine when

a segment can be transmitted, while flow control, jitter control,

and the different ordering microprotocols use send bits to

determine when a message can be delivered to the application.

Send bits allow different microprotocols to operate on

messages independently without knowing which other micro-

protocols need to process the message. They also decouple

the approval process from any kind of ordering—when all the

required microprotocols have set their bits, the message exits

the composite protocol independent of the order in which they

were set. Note that systems supporting only hierarchical com-

position intrinsically dictate one fixed release order. Similarly,

deallocate bits are used for determining when a segment will

not be needed by any microprotocol in CTP and can thus be

deleted.

Some microprotocols need to know when an outgoing mes-

sage is not on the network (i.e., has either been acknowledged

or timed out)and will never be retransmitted. For example,

flow and congestion control microprotocols need to know

when new capacity is available on the wire so that they can, for

example, advance the trailing edge of the congestion control

window. As this condition involves the agreement of multiple

protocols, CTP uses per-message event barriers referred toas

done bits to detect this condition. When every microproto-

col participating in this barrier has entered the barrier, the

SEGMENT DONE event is raised. Note that deallocate bits are

not sufficient for this purpose because microprotocols may

delay setting deallocate bits on messages even though they will

never retransmit the packet. For example, theForward Error

Correction microprotocol delays deallocating sent messages

so that it has the data needed to compute the contents of

redundant packets using an erasure code algorithm.

E. Configuration and Initialization

Like most Cactus-implemented protocols, CTP composite

sessions are created in response to an explicit open request

from an application or when theDemux() protocol entry

point receives a packet with a host/port 4-tuple that does not

demultiplex to any existing session (addressing and demulti-

plexing in CTP is not currently configurable; this is an area of

current work.) As with all Cactus protocols, the CTP session

initialization routine is then invoked, resulting in the creation

of session-global state, the instantiation of microprotocol in-

stances, and the initialization of these microprotocol instances.

At this time, microprotocol instance initialization routines set

up their data structures and notify the runtime system of any

necessary hold bits they will need on CTP messages. After the

session and all of its microprotocol instances are initialized,

the CTP demux routine raises theOPEN SESSION event in the

new session so that microprotocols that perform connection

establishment can execute appropriately. If the session was

created as a reaction to a packet received from the network, the

SEGMENT FROM NET event will be raised to allow processing

of any data contained in the packet.

New CTP sessions select the appropriate microprotocol

instances for each composite session based either on infor-

mation in the locally-generated open request or on data in

the packet that caused the creation of the new session. For

local open requests, the current CTP implementation requires

applications to specify exactly the microprotocols they desire

in the session being created, including resolving dependencies

by hand. Configuration tools such as those used in previous

systems [13] could be used to ease this process, but that has

not been a focus of our work thus far.

For open requests received from a remote host, CTP requires

that packets that create a session contain sufficient data to

determine which microprotocols were used to generate the

received segment. In the most general case, connectionless

protocols where any packet can establish a session, this is

implemented as a 32-bit bitfield that is included with every

CTP packet, with a different bit assigned to each possible CTP

microprotocol. For connection-oriented CTP configurations,

however, this bitfield need only be included in the connection

establishment request.

Note that the microprotocol configuration in an existing
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CTP session is not currently changeable at runtime. While fea-

sible in principle, doing so would require substantial additional

machinery either to quiesce the network or to support multiple

microprotocol instances simultaneously while old packetsare

drained from the network. However, work to support such

dynamic adaptation capabilities has been done in the context

of Cactus [14] and in other systems such as the K42 operating

system [15].

III. M ICROPROTOCOLHIGHLIGHTS

This section gives an overview of some of the microproto-

cols available in the CTP suite, including those that implement

reliable delivery, transmission control, message ordering, and

jitter control. There are also several microprotocols thatpro-

vide base functionality not directly connected with a specific

semantic property.This section concludes with an example

showing how individual microprotocols interact in a TCP-like

configuration to implement TCP-like congestion control and

reliability semantics on a sending node.

A. Base functionality

Transport Driver is the only microprotocol that must be

present in any configuration. It adds port identifiers on all

outgoing segments for demultiplexing and also contains trivial

handlers for certain events to ensure that a message is carried

through CTP irrespective of the presence of other microproto-

cols. It also sets the send bits to ensure that messages are sent

even if there are no other microprotocols that set send bits in

the configuration. The event interactions ofTransport Driver

are illustrated in figure 2. In the figure, arrows pointing to

a microprotocol indicate that the microprotocol has a handler

bound to the event and arrows originating in the microprotocol

indicate that the microprotocol raises the event.

Transport
Driver

MSG FROM NETSEGMENT FROM USER

SEGMENT TO NET

Fig. 2. Transport Driver event handling.

The Sequenced Messages and Sequenced Segments mi-

croprotocols add message attributes uniquely identifyingeach

outgoing message and segment, respectively. While this la-

beling does not provide any service to the application, it is

useful for other microprotocols such as reliability or ordering.

Performing the procedure in a separate microprotocol allows

the other microprotocols to share the same attribute, saving

space in the message.

A group of microprotocols transforms messages into seg-

ments at the sender and then back to messages at the receiver.

They are also responsible for raising theSEGMENT FROM

USER and MSG FROM NET events.Fixed Size simply creates

a separate segment from each message,Coalesce combines

multiple small messages into one segment, andResize frag-

ments the messages into segments that can be handled by the

underlying IP network without IP-level fragmentation (MTU

discovery). One of these microprotocols must be present in

each configuration.

Finally, a set of optional microprotocols is responsible for

establishing and shutting down a connection, and for monitor-

ing its status.Virtual Circuit implements a handshake protocol

that provides reliable startup and shutdown semantics, and

exchanges random initial sequence numbers for message and

segment numbering.Virtual Circuit is completely transparent to

other microprotocols, even those that use sequence numbers—

if it is not included, constant initial values are used. The ability

to realize this transparency stems directly from the Cactus

event handling mechanisms. Specifically, this microprotocol

binds event handlers to theSEGMENT FROM NET event, order-

ing them so that they are executed before other event handlers.

When the event occurs, it uses a Cactus operation to stop the

event, which prevents the other event handlers from executing.

As a result, other microprotocols do not see any handshake

messages and are unaware of the presence or absence of

Virtual Circuit in a given configuration. An additionalKeep

Alive microprotocol is responsible for sending probe messages

to detect link failures in the absence of application messages.

B. Informational microprotocols

CTP contains a number of microprotocols that collect infor-

mation and provide it to other microprotocols by raising events

or setting shared variables. These microprotocols can then

use the provided information to make decisions. For example,

the Round Trip Time Estimation microprotocol maintains an

estimate of the end-to-end round trip time in a protocol-wide

shared variable by handling theSEND SEGMENT andSEGMENT

FROM NET events so that it can note when a segment is

actually placed on the wire and when an acknowledgment for

the segment is received. This estimate is then used by other

microprotocols for detecting congestion and setting timeout

values, for example.
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The Positive ACK microprotocol is another, more com-

plex, informational microprotocol used to track the status

of transmitted segments. It implements a general cumulative

acknowledgment facility necessarily more general than similar

functionality in other protocols. In particular, it can be used in

CTP configurations that do not require all messages to be de-

livered because it does not include any reliability functionality

such as retransmission facilities. This allows it to be used, for

example, in unreliable protocols that still need to track packet

delivery status for flow and congestion control purposes as

well as in reliable configurations that include microprotocols

such asRetransmit.

This generality is achieved by slightly redefining the

meaning of a cumulative acknowledgment and introducing a

session-global data structure to decouplePositive ACK from

the presence of reliability microprotocols. InPositive ACK, an

acknowledgment indicates that the acknowledged segment was

receivedand that the receiver no longer needs or expects to

receive the acknowledged segment or any segment sent prior

to it. Note that this does not mean that the previous segments

were necessarily received—simply that they are unneeded, that

is, that theirreliability constraintshave been met.

CTP’s session-global data includes a data structure that

keeps track of whether the reliability constraints on a each

packet have been met. If a reliability microprotocol (e.g.,Re-

transmit) is included in CTP, it sets the default reliability status

of packets in this list toRELIABILITY UNMET in its initial-

ization routine, and then later sets it toRELIABILITY MET

when the packet is acknowledged. If a reliability microprotocol

is not included in the configuration, however, the default

reliability status of packets remainsRELIABILITY MET.

This list allows Positive ACK and similar informational mi-

croprotocols to know for which packet to send a cumulative

acknowledgment.

In reliable protocols, where the receiver expects to receive

every packet, the more general definition of acknowledgments

and the reliability tracking data structure results in the standard

acknowledgment behavior used in protocols such as TCP. In

protocols that do not require complete reliability, however, the

more general definition of acknowledgments and the reliability

tracking data structure allow acknowledgments for packetsto

be sent even if some previous packets have not been received.

In addition, this design also allows for partially reliablecon-

figurations, where some packets must be transported reliably

and some unreliably, although CTP does not currently include

any microprotocols that make use of this flexibility.

Figure 3 shows howPositive ACK, Duplicate ACK, and an

example reliability microprotocol (Retransmit, in this case) use

SEGMENT LOST
SEGMENT TIMEOUT

SEND SEGMENT

SEGMENT TO NET

SEGMENT RECEIVED

Positive
Ack

Retransmit

Duplicate
Ack

SEGMENT FROM NET

Fig. 3. ACK-related event handling.

events to track segment status. For each outgoing message

(eventSEGMENT TO NET), Positive ACK includes a cumulative

acknowledgment attribute as described above, and also raises

the SEGMENT TIMEOUT timer event when the message is

actually transmitted (eventSEND SEGMENT). For each in-

coming message (eventSEGMENT FROM NET), it checks the

acknowledgment attribute, and cancels theSEGMENT TIMEOUT

event and raises theSEGMENT RECEIVED event if appropriate.

Similarly, theDuplicate ACK microprotocol also monitors the

SEGMENT FROM NET event and raises theSEGMENT LOST event

when appropriate. Other microprotocols such asRetransmit

then use these events and the data included in event arguments

(e.g., sequence numbers) to determine when to retransmit old

segments or release new packets to the network.

C. Reliability microprotocols

Reliable transmission can be implemented using different

types of redundancy ranging from redundant network con-

nections to redundant transmission over the same connection.

CTP currently has two reliability microprotocols:Retransmit

andForward Error Correction. Retransmit is a traditional ARQ

reliability scheme that relies on informational microprotocols

to know when packets have been received and which ones

should be retransmitted. As shown in the pseudocode in figure

4, it handles theSEGMENT LOST andSEGMENT TIMEOUT events

and retransmits the appropriate segment when one of these

events is raised. In addition, it allocates a done bit on each

outgoing message and sets it upon receiving theSEGMENT

RECEIVED event. As mentioned in section II, this allows

other microprotocols to know when the message will not

be retransmitted so that they can, for example, advance the

congestion window.

Forward Error Correction transmits redundant data so that

the receivers can reconstruct a complete transmission despite

message losses.Forward Error Correction at the receiver then

handles the redundant segments and uses them to create a

new message for each of these missing segments and raises
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micro-protocol Retransmit (){
handler handleSegToNet(segment s){

setSendBit(s);
}

handler handleRetransmit(int seq){
m = HashLookup(protocolState.segmentHash, seq);
clearSendBit (m); setSendBit(m);

}
handler handleSegRxd(int seq){

m = HashLookup(protocolState.segmentHash, seq);
SetReliabilityState (protocolState.relList, seq,

RELIABILITY MET);
setDoneBit (m); setDeallocateBit(m);

}
initial {

protocolState.defaultRelStatus = RELIABILITYUNMET;
requestDoneBit ();
requestDeallocateBit();
requestSendBit();
bind(SEGMENT TO NET,handleSegToNet,0);
bind(SEGMENT LOST,handleRetransmit,0);
bind(SEGMENT TIMEOUT,handleRetransmit,0);
bind(SEGMENT RECEIVED,handleSegRxd,0);

}
}

Fig. 4. Retransmit microprotocol pseudo code

the SEGMENT FROM NET event for the reconstructed segments.

Redundant data packets are also tagged with a special attribute

to assure that they are not handed to the application. As a

result, other microprotocols see the reconstructed segments as

if they had arrived normally.

The specific error correction scheme currently used by this

microprotocol is a block erasure code algorithm [16] that en-

codesk segments of original data inton segments of encoded

data (k < n). At the sender, afterk segments have been

transmitted as normal, an additionaln−k redundant segments

are computed and transmitted. The encoding scheme allows

the receiver to compute allk original segments provided that

at leastk of then segments are delivered intact. A number of

tradeoffs are involved in selectingn andk in this system. For

example, introducing a large percentage of redundant packets

(i.e., k/n → 0) makes the system more tolerant to losses, but

lowers effective data bandwidth. Similarly, increasingn for

a fixed value ofk/n can increase resistance to burst losses,

but also delays the delivery of redundant data and can place

substantial computational load on the sender for constructing

redundant packets.

Note that forward error correction and ARQ reliability can

often be used together in the same CTP configuration. This

gives the user a rich set of possibilities for reliable communi-

cation that can be used to match the specific requirements of

particular applications.

D. Transmission control microprotocols

CTP offers flexible facilities for controlling the speed of

transmission, typically used to ensure that a sender limits

its outgoing traffic to a level acceptable to the network and

receiver. Our architecture divides these microprotocols into

two categories: flow control and congestion control.

a) Flow Control: Flow control refers to end-to-end trans-

mission control that provides a mechanism for the receiver to

dictate the sender’s transmission speed. Available microproto-

cols include:

• XON/XOFF.The receiver issues suspend/resume instruc-

tions to the sender.

• RTS/CTS.The sender explicitly requests the ability to

send more packets.

• Windowed.The receiver periodically informs the sender

of its available buffer space.

These microprotocols all operate at the sender side by binding

a handler to theSEGMENT TO NET event, which sets its send bit

on an outgoing message only when restrictions on transmission

are fulfilled.

At the receiver side, there are facilities in the API to allow

higher level protocols to specify policies on traffic rates.The

flow-control microprotocols can communicate this information

to the sender either by transmitting new feedback messages

to the sender or by piggybacking the information on existing

messages. This feedback is handled at the sender in a handler

bound to theSEGMENT FROM NET event.

b) Congestion Control:Congestion control behaves sim-

ilarly to flow control in that it limits the transmission rate

of senders, but is intended to avoid overrunning the capacity

of the network rather than the receiver. Congestion control

in CTP consists of two types of microprotocols: congestion

control and congestion policy. Congestion control micropro-

tocols are responsible for implementing the mechanism for

controlling congestion, while congestion policy microproto-

cols describe corresponding policies. Typical configurations

would include one congestion control and one congestion

policy microprotocol.

Congestion control microprotocols, like flow control mi-

croprotocols, use send bits to provide a mechanism that

regulates segment transmission. These microprotocols monitor

protocol-wide shared variables that congestion policy micro-

protocols change in response to policy-specific indications of

congestion. CTP currently implements two congestion control

microprotocols:Windowed Congestion Control andRate-based

Congestion Control.

Windowed Congestion Control implements a simple

window-based scheme that limits the number of unacknowl-
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edged packets in the network. The size of the window is stored

in a shared variable that can be changed by congestion policy

microprotocols in response to various events. TheRate-based

Congestion Control microprotocol works similarly, but instead

controls the average outgoing byte rate based on a shared

variable. Because each congestion control microprotocol uses

a different send bit for controlling segment transmission,

multiple congestion control microprotocols can be used si-

multaneously when appropriate.

As already mentioned, congestion policy microprotocols in

the current design work by changing shared variables exported

by congestion control microprotocols. As such, these micro-

protocols are designed to work with specific congestion control

microprotocols. Available congestion policy microprotocols

include:

• TCP Congestion Detection. This microprotocol handles

the SEGMENT RECEIVED, SEGMENT TIMEOUT, and SEG-

MENT LOST events and changes the congestion window

used by theWindowed Congestion Control in response to

these events in accordance with the congestion control

policy used by TCP [17]. Note that the policy imple-

mented by this microprotocol does not depend on the

presence of theRetransmit microprotocol in the CTP

configuration, so it may be used with unreliable commu-

nication or in combination withForward Error Correction.

• TCP-Friendly Rate Control. This microprotocol monitors

segments status events and sets the maximum outgoing

data rate used byRate-based Congestion Control accord-

ing to the TCP response equation [18].

• SCP Congestion Detection. This microprotocol monitors

the average round-trip time and the packet status events

and sets both the outgoing data rate used byRate-

based Congestion Control and the window size used

by Windowed Congestion Control similarly to the SCP

protocol [19].

Other congestion policy microprotocols, for example, onesthat

use ICMP source quench messages or ECN notification bits

[20], are also easily implemented in this framework.

E. Ordering and jitter control microprotocols

Ordering microprotocols are relatively simple for point-

to-point communication as currently supported by CTP. The

sender can add a message attribute that indicates the order of

the message either as a sequence number or by specifying the

message’s logical predecessor(s). The current implementation

has aReliable FIFO microprotocol, which enforces strict in-

order delivery by buffering out-of-order messages and sending

them to the application only after their predecessors have been

delivered, and aLossy FIFO alternative that discards messages

that arrive out of order after a configurable delay. ASemantic

Order microprotocol uses ordering information provided by

the application to record and enforce the logical predecessors

of each message. AnOut of Band microprotocol can be used

with any ordering microprotocol to allow urgent out-of-band

messages to be delivered as quickly as possible by overriding

the send bit used by the current ordering microprotocol.

Jitter control microprotocols are structurally similar toor-

dering microprotocols, but use the passage of time rather than

predecessor information to decide when the send bit in a

message is set. These microprotocols includeFixed Rate Jitter,

which delivers messages separated by a fixed time interval and

Timestamp Jitter, which preserves the sender’s time intervals

between messages at the receiver.

IV. D ESIGN AND IMPLEMENTATION EXPERIENCES

Over the course of designing and implementing CTP, we

gained substantial experience in dealing with configurability

in CTP, as well as using the Cactus protocol framework. As

part of this process, we ran into issues with our original CTP

design that we had to resolve. In this section, we discuss

our experiences designing and implementing a configurable

protocol, the mistakes made in this process and how they

were remedied, and our experiences using the Cactus event-

based protocol framework for implementing a substantial

configurable protocol.

A. Configurability and extensibility in CTP

To make CTP highly configurable, the different micropro-

tocols have been designed to be as independent as possible.

However, there are somedependencies—when one micropro-

tocol requires that another be in the configuration to func-

tion correctly—and someconflicts—when two microprotocols

cannot be in the same configuration. The dependencies in

the current design are relatively simple. Every configura-

tion must haveTransport Driver and one of the message-to-

segment conversion microprotocolsFixed Size, Coalesce, or

Resize. The reliability and FIFO ordering microprotocols use

sequence numbers provided by theSequenced Messages and

Sequenced Segments. Similarly, most flow and congestion

control microprotocols require an informational microprotocol

such asPositive ACK to provide feedback on the status of

transmitted segments. Finally, congestion control policyand

mechanism microprotocols must be used in conjunction with

each other.

Conflicts are either syntactic or semantic in nature. An

example of a syntactic conflict is that only one message-to-
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segment conversion microprotocol should be in each configu-

ration, while an example of a semantic conflict is thatLossy

FIFO and a reliable communication microprotocol should

not be used together. Semantic conflicts do not cause the

combination to fail, but the resulting semantics do not satisfy

the properties of both of the microprotocols.

Despite these dependencies and conflicts, there are still

hundreds of possible different CTP configurations even with

a small number of different microprotocols for each transport

property and function. The challenge is to identify the correct

configuration for each application domain and execution en-

vironment. In many cases, this may require experimentation

with different combinations to reach the optimal one.

CTP is also designed to be easily extensible, meaning

that new microprotocols can be added without modifying the

existing ones. The actual effort needed depends on the type

of extension. It is typically trivial to add a new alternative

implementation for an existing property or function, sincethe

event and data structure interactions are usually the same as

in existing microprotocols.

On the other hand, adding a completely new property or

function can be more difficult. The implementor must first

determine if CTP already has all the necessary events required

by the new microprotocol. If not, the CTP framework or some

of the existing microprotocols may need to be modified to

raise these events. However, completely new microprotocols

can often be implemented using the existing set of events. For

example, in our design, the jitter control microprotocols were

added after the rest of CTP was designed with no modifications

to other microprotocols.

B. Corrected Design Mistakes

Over the course of designing and implementing CTP, we

ran into two substantial design mistakes that required re-

architecting parts of the system. In particular, complex pro-

tocol services implemented monolithically in protocols such

as TCP initially led us to make similar monolithic services

in CTP that either did not sufficiently decompose complex

services, or did not separate mechanism and policy decisions.

This resulted in an insufficiently flexible protocol when we

initially tried to use CTP for multimedia applications likethe

one used in the experiments in section V. These two issues

are discussed in more detail below.

Decomposing Complex Interactions.Flexible configurability

in CTP did not come without substantial effort. For example,

while the reliability, ordering, and flow control transport

functions that are tightly connected in TCP are completely

independent in our final design, this was not originally the

case. In our original design, a singlePositive ACK micropro-

tocol performed two logically separate functions: tracking the

status (received/lost/timed out) of transmitted segments, and

reliable transmission of segments using timeouts and retrans-

missions. This overloading, the result of failing to completely

decompose acknowledgment functionality inspired by TCP,

caused problems for applications that wanted segment status

tracking but not retransmissions such as streaming multimedia

transmission applications.

Decoupling these responsibilities required the introduction

of several new microprotocols and events. Much of this decou-

pling comes from the use of Cactus’ event-based programming

model, but some required the generalization of protocol func-

tionality and the introduction of additional mechanisms and

data structures. We decomposed the originalPositive ACK mi-

croprotocol into several microprotocols, namelyPositive ACK,

Duplicate ACK, Negative ACK, Retransmit, and RoundTripTi-

meEstimation. We also introduced three new events,SEGMENT

RECEIVED, SEGMENT LOST, and SEGMENT TIMEOUT, to an-

nounce when segments are acknowledged, explicitly lost, or

have had an unknown status for an unacceptable amount of

time. This decomposition allowed CTP to be configured to

use acknowledgments for feedback about segment arrival and

loss without mandating the introduction of retransmissions and

their negative effects on multimedia applications.

The newPositive ACK microprotocol implements acknowl-

edgments and segment timeouts, while theNegative ACK and

Duplicate ACK add additional packet tracking functionality. On

the sender side, all of these microprotocols work by raising

the appropriate events at the appropriate time; these events

are then responded to byRetransmit. On the receiver side,

Positive ACK was changed to acknowledge packets when it

has either received a packet or no longer needs a packet, and

a session-global data structure describes whether the reliability

constraints on each received packet have been met. In reliable

protocols, where the receiver expects to receive every packet,

this behavior results in the standard acknowledgment behavior

used in protocols such as TCP. In protocols that do not require

complete reliability, however, the more general definition

allows an acknowledgment for a packet to be sent even if

some previous packets have not been received. Note that this

change also required the introduction of done bits for use by

WindowedCongestionControl as described in section III-B.

Separating Mechanism and Policy.Another shortcoming of the

original CTP design was that it did not separate congestion

control mechanism and policy. As in all systems, keeping

such separation is important, and failing to do so in our

original CTP design was a substantial mistake. This problem
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was solved by introducing two different microprotocols that

implement congestion control mechanisms,WindowedConges-

tionControl andRateBasedCongestionControl, and a variety of

different microprotocols that implement different congestion

control policies as previously described. The most substantial

change required by this generalization was the introduction

of the done bits on each CTP segment and the corresponding

SEGMENT DONE CTP event, allowingWindowedCongestion-

Control to advance the trailing edge of the congestion window

at the appropriate time.2

As a result of this experience, separate policy micropro-

tocols were similarly used for controlling forward error cor-

rection parameters when CTP was later modified to support

adaptation of error correction parameters. To further enable

careful separation of mechanism and policy later work on

a system named Cholla [21] explicitly separated protocol

policies into a separate policy control engine where they could

be separately composed, controlled, and analyzed.

C. Cactus Event Experiences

After implementing a variety of CTP microprotocols and

testing a variety of different configurations, we found the

largest source of bugs was in the ordering of event handlers.

Cactus allows event handlers to bind with differentorder

priorities, and handlers are run in numeric order priority.

Excessive use of event ordering, however, resulted in a number

of different bugs. In the original implementation for example,

there were not separateSEGMENT TO NET andSEGMENT SENT

events; microprotocols that wanted to run after segments were

sent would simply bind toSEGMENT TO NET with a large order

priority. As new microprotocols were introduced, however,

misorderings between when handlers were run could cause,

for example, round trip times to be calculated inappropriately.

To address this problem, later implementations of CTP were

changed to use more fine-grained events instead of ordering

among event handers on fewer events. The resulting definition

of more CTP events along the sending and receiving process-

ing path required us to understand and interface with longer

event chains when implementing new protocols. However,

our experience shows that documenting and understanding

the (well-defined) longer event chains was much easier than

understanding somewhat shorter event chains and the ordering

constraints of every possible microprotocol in the system.

2Note that simply monitoring theSEGMENT RECEIVED, SEGMENT
TIMEOUT, andSEGMENT LOST events is not sufficient for this purpose.
This follows because a packet may or may not be reintroduced into the
network depending on whether or not, for example, theRetransmit mi-
croprotocol is included in the current CTP configuration.

V. EXPERIMENTAL RESULTS

A. Overview

While CTP cannot compete at this stage with tuned versions

of TCP and UDP, the flexibility provided by the service is

useful for application domains and execution environments

that are not the focus of the standard protocols. In particular,

CTP is useful when either a set of characteristics that falls

somewhere between TCP and UDP is required, or for cases

where stronger guarantees are needed than TCP provides. CTP

is also appropriate when there is the opportunity to configure

a protocol to match the characteristics of a specific network

environment. The goal of this section is to quantify the poten-

tial overheads and benefits provided by the configurability of

CTP.

In the remainder of this section, we present local area

and wide area network results in a variety of situations.

Local area performance results were collected between two 2-

processor 2.2 GHz Pentium 3 Xeon machines running Linux

kernel 2.4.18 across a quiescent 100 Mbps Ethernet; only one

processor was used by the test program. The C implementation

of Cactus 2.2 was used for composing microprotocols into a

composite CTP protocol running at user level on top of Linux

UDP sockets. Note that this imposes additional overhead on

CTP compared to TCP and UDP. Wide area performance

results were collected between Linux machines at the Uni-

versity of New Mexico (UNM) and the Georgia Institute of

Technology (Georgia Tech).

Section V-B uses these platforms to quantify the cost of

configurability in CTP by comparing latency and bandwidth

numbers in different CTP configurations over both local and

wide area networks. Section V-C then illustrates the potential

benefits of CTP by customizing protocol configurations to

application-specific and hardware-specific needs.

B. Configurability Overhead

The first set of experiments measures the bandwidth and

ping-pong latency of UDP, TCP, and various configurations of

CTP. Four different CTP configurations are included:

• CTP-Minimal: a minimal CTP configuration containing

only the driver and fragmentation/reassembly micropro-

tocols.

• CTP-LossyFIFO: the minimal CTP configuration aug-

mented with per-message sequence numbers and unre-

liable in-order message delivery microprotocols.

• CTP-Video: a CTP configuration for video transmission

that uses SCP-style congestion control, positive and neg-

ative acknowledgments, round-trip-time estimation, and

in-order unreliable message delivery.
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• CTP-Bulk: a TCP-Tahoe-like CTP configuration includ-

ing reliable, in-order message delivery using retransmis-

sions, duplicate acknowledgments, and TCP-style conges-

tion control.

Note that the first three of these configurations are all un-

reliable configurations; only CTP-Bulk guarantees reliable

transmission of all data.

In the latency tests, two machines ping-pong minimal-sized

application packets 10 times to measure the average round-trip

latency for one round trip. In the bandwidth tests, a sending

application transmits 1000 1250-byte messages to a receiver,

which replies with a user-level acknowledgment once all the

data has been received. We measure the interval at the sender

between the transmission of the first packet and receipt of

the acknowledgment and use this to compute the end-to-end

data transmission rate. To enable direct comparison of protocol

processing costs, thePUSH flag is set on every message handed

to TCP, causing it to preserve message boundaries and send

the same number of data segments as the other protocols; we

confirmed experimentally that the same message boundaries

were used in TCP.

Table I shows the averages and standard deviations of 10

runs of the bandwidth and latency tests on both local and

wide area networks, with the top part of the table comparing

unreliable protocol configurations and the bottom part com-

paring reliable protocols. All measurements were made on

the receiverafter several initial packet exchanges to allow the

congestion control window to open fully.

These results indicate a latency overhead of approximately

100 microseconds per round trip over UDP in the simple local-

area test and execution environment, with approximately the

same service guarantees. Similarly, bandwidth is competitive

with UDP, although slightly less because this version of CTP

is layered on top of UDP and because of protocol overhead

such as the longer CTP headers required to support the

sophisticated semantics of more complex configurations (68

byte CTP headers as opposed to 8 byte UDP headers). CTP

header overhead is currently unoptimized, however, and can

be reduced by specializing headers to particular configurations

instead of having a single generic header that encompasses

all current possible CTP configurations. Additionally, running

CTP directly on top of IP would lower its latency costs

significantly.

As microprotocols implementing more complex semantics

are added to CTP configurations in the first part of the table,

latency gradually increases and bandwidth slightly decreases.

Adding relatively simple microprotocols such asLossy FIFO

andSequenced Messages to the CTP configurations (the CTP-

LossyFIFO configuration) adds negligible overhead; more

complex microprotocols that implement, for example, conges-

tion control, introduce correspondingly more overhead.

In the wide area unreliable results, latencies are dominated

by wide area network costs, which obscure event overhead

costs. Bandwidth numbers vary as expected, with the UDP,

CTP-Minimal, and CTP-LossyFIFO configurations providing

the best bandwidths given their lack of congestion control.

CTP-Video provides less bandwidth because of congestion

control actions, but more bandwidth than the TCP and CTP-

Bulk configurations. Again, this is expected since the SCP-

based congestion control policy used by the multimedia-

oriented CTP configurations is more aggressive than TCP-

derived policies and known to not be TCP-fair.

Comparing the reliable protocols, the latency overhead of

CTP-Bulk compared to TCP is somewhat higher, on the order

of 200 microseconds. This is caused by the increased event

processing in CTP for the complex configuration required

for full reliability. We expect the latency performance of all

CTP configurations to improve as the event mechanisms in

the Cactus runtime are optimized, although it is probably

unrealistic to expect CTP to beat TCP and UDP for this type

of use.

The bandwidth differences between CTP-Bulk and TCP are

caused by minor differences in delayed acknowledgment han-

dling and packetization in the two protocol implementations.

Specifically:

• CTP-Bulk currently has an MTU of 1250 bytes as

opposed to the 1400+ bytes that TCP uses, has larger

headers, and runs on top of UDP.

• TCP (as a stream protocol) maintains the sender window

sizes in bytes, while CTP-bulk maintains a window size

in packets, since it is a message-oriented protocol.

These two differences prevent CTP-Bulk from utilizing the

bandwidth of a lower bandwidth wide area connection as

effectively as TCP does.Note, however, that CTP’s mod-

ular structure makes such differences easy to change when

appropriate.

C. Benefits of Custom Configurations

CTP can be tuned to provide optimized behavior for given

applications or hardware environments similar to hand-built

custom protocols without the engineering overhead of de-

veloping such protocols from scratch. In this section, we

demonstrate the performance benefits that customizing CTP

configurations to application- and hardware-specific needscan

provide.
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Local Area Wide Area
Protocol Latency (ms) Bandwidth (Mb/sec) Latency (ms) Bandwidth (Mb/sec)

UDP 0.152±0.0028 90.28±0.005 413±3 61.54±1.317
CTP-Minimal 0.273±0.0052 81.76±0.014 414±0.4 56.81±0.637
CTP-LossyFIFO 0.279±0.0031 81.77±0.008 414±0.7 56.62±0.975
CTP-Video 0.366±0.0050 82.17±0.005 414±1 21.97±0.745

TCP 0.162±0.0029 89.40±0.025 412±0.9 9.38±0.189
CTP-Bulk 0.380±0.0090 68.31±0.148 415±0.8 4.73±0.288

TABLE I

LATENCY AND BANDWIDTH COMPARISON

1) Application-Specific Customization:To study the poten-

tial application-level benefits of protocol customization, we ran

CTP as the underlying transport protocol for a custom Cactus

multimedia-transmission and playback application. This appli-

cation sends compressed audio or video to a remote receiver,

which then plays back the received data in realtime from a

playback buffer with fixed time capacity. This application sup-

ports both uncompressed and compressed (H.263/Ogg Vorbis)

audio and video streams.

We studied the impact that custom CTP configurations have

on an audio transmission configuration of this application

using UDP, CTP-Bulk, and a new configuration CTP-Audio

for audio transmission that is configured identically to CTP-

Video except for the addition of a block-erasure forward

error correction microprotocol. CTP-Bulk acts as a proxy

for TCP performance in this experiment, since we did not

have the kernel-level access that would be needed to vary

the loss experienced by the TCP protocol on the wide-area

test machines. Audio packets were sent at 128kbps on both

low-latency (local) and high-latency (wide-area) networks, and

with different amounts of additional packet loss at the ingress

network device to examine how different protocol configura-

tions and network conditions affectedapplication performance.

The application was set to use a fixed 3000ms playout buffer,

and CTP-Audio was set to use N=5 and K=4 to be able to

recover from one dropped data packet out of every five packets.

Each test consisted of 1500 packet transmissions, and was

conducted 10 times on each protocol/network configuration.

Figure 5(a) shows the performance of all three protocols

on this application in terms of the percentage of packets

delivered within the application playout window on a wide-

area network between UNM and Georgia Tech. CTP-Bulk is

unable to deliver packets on time in the face of significant

packet loss, while UDP and CTP-Audio continue to provide

reasonable service to the application. Figure 5(b) shows only

UDP and CTP-Audio performance over wide-area networks,

and demonstrates that CTP-Audio is able to deliver packets

on time more robustly that UDP in the face of packet loss.

Local-area comparisons between UDP and CTP-Audio behave

essentially the same.

Figure 5(c) provides a more detailed breakdown of the

performance of the CTP-Bulk protocol in the wide-area case.

Since CTP-Bulk delivers all packets in order, as packet loss

increases, packets are delivered increasingly late due to the

TCP-like retransmission-based reliability scheme. UDP and

CTP-Audio, on the other hand, deliver packets in a timely

fashion. All of the late packets shown in 5(b) and 5(c) are

due to packet loss, though CTP-Audio delivers more packets

on time in the face of packet loss thanks to the forward-error

correction service it provides to the application.

Of course, existing protocols, for example RTP [6] and

SCTP [9], can provide application benefits similar to those

shown above. However, each of these protocols had to be

constructed from scratch, and are not easy to modify to support

other, different application needs. CTP, however, allows the

application authors to customize protocol behavior using a

single integrated package that already supports a wide range

of application-desirable semantics.

2) Hardware-Specific Customization:In the previous case,

CTP was able to be easily reconfigured to provide superior

performance to applications compared to TCP and UDP

because the service requirements of the application were

different than those provided by TCP and UDP. However, CTP

configurations can provide superior performance compared to

TCP even in cases where TCP exactly matches application ser-

vice requirements, particularly when the underlying network

hardware violates fundamental assumptions that TCP makes.

For example, modern versions of TCP derived from the BSD

code retransmit segments after receiving 3 duplicate ACKs

or upon expiration of a retransmission timeout, However, the

TCP retransmission timer is typically very coarse, on the

order of 500ms. Local wireless networks, connections across

campus networks or even wide area-networks frequently yield

round-trip times on the order of tens of milliseconds or



ACM/IEEE TON 13

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5

%
 o

f p
ac

ke
ts

% added loss

UDP
bulk

audio

(a) UDP/CTP-Bulk/CTP-Audio

Wide-Area

 95.5

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0  1  2  3  4  5

%
 o

f p
ac

ke
ts

% added loss

UDP
audio

(b) UDP/CTP-Audio Wide-Area

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  1  2  3  4  5

%
 o

f p
ac

ke
ts

% added loss

on time
late
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Fig. 5. Real-time Streaming Media Performance of UDP, CTP-Bulk, and CTP-Audio

Loss rate (%) Round-Trip Latency (ms)
CTP-Bulk TCP

0 0.34±0.002 0.17±0.0008
1 0.62±0.07 2.1±8
2 0.66±0.07 4.4±8
3 1.9±0.5 8.0±13
4 2.1±0.4 13±18
5 2.4±0.7 16±25

TABLE II

ROUND-TRIP LATENCY ON LOW-LATENCY UNRELIABLE NETWORKS

faster, so faster retransmission timers can be beneficial under

certain circumstances. This is particularly true on, for example,

802.11b wireless networks, which can have low latencies and

high drop rates.

We have measured the performance of CTP using the

CTP-Bulk configuration described above. This configuration

includes thePositive ACK and Retransmit microprotocols de-

scribed in sections III-B and III-C, which use fine-grained

retransmission timing. Table II lists the average round-trip

latency of this CTP configuration compared to TCP. These

times were measured using 10 tests of 100 back-to-back

round-trips using zero-length application packets. This test was

performed on the same platform as described above; network

packet losses were simulated by randomly dropping varying

proportions of packets on each receiving machine.

Although TCP has better latency in the lossless case, CTP

was able to provide faster delivery on average when losses

occurred by retransmitting more quickly. CTP can provide

similar advantages in other environments where TCP is known

to perform sub-optimally, such as high bandwidth-delay prod-

uct links and long-distance wireless networks, or networks

where losses may not be the result of congestion but may

instead indicate, for example, radio interference. Moreover,

CTP allows the user to configure all of these from a single

integrated package, rather than forcing the construction of new

specialized protocols from scratch.

D. Performance optimizations

The performance of a composite protocol built using Cactus

such as CTP can be optimized in any number of ways. These

optimizations can be classified based on whether they require

changes in the Cactus runtime system or microprotocols, and

the extent of these changes. The least intrusive optimizations

customize the protocol’s behavior using features in the Cactus

runtime specifically provided for such customization. For

example, message handling operations can be customized to

construct message headers in whatever format is most efficient

for the particular protocol by customizing the message pack

and unpack routines as mentioned in section II-B.

Another type of optimization modifies the Cactus runtime

system, but does not require changes in the microprotocol

code. For example, to eliminate the table lookups required to

invoke customizable operations, the message handling opera-

tions can be added as static functions to the runtime system.

Similarly, event dispatch and handling performance could be

dramatically improved using techniques already demonstrated

elsewhere [22], [23].

Finally, some optimizations require that the chosen micro-

protocols be modified in some way, either by hand or through

automatic compile time or run time optimization. For example,

the indirection required to raise an event can be optimized by

replacing the raise operation with direct calls to the appropriate

event handlers or even by inlining the handlers.

In the experiments above, the only optimization used was

the first one described above, where the Cactus message

handling operations are customized. This optimization resulted

in a minor decrease in the latency and increase in the band-

width in the CTP-Minimal and CTP-Bulk configurations over

unoptimized CTP. This only took a few hours of programming

and did not require any changes to the Cactus framework
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or CTP microprotocols. Other work has shown that more

aggressive CTP optimizations can substantially improve CTP

bandwidth performance [24].

E. Limitations

The current version of CTP has a number of limitations,

mostly because it was designed primarily to serve as a

prototyping environment for testing different combinations of

transport-related algorithms and functions. One is that ituses a

push/pop interface for interacting with upper levels rather than

a more standard socket-type API. It is, of course, possible to

add such an API on top of CTP. However, the traditional socket

interface must be extended somewhat to support specification

of the desired transport properties for each connection and

possibly for each message (e.g., semantic ordering, out of

band).

A second limitation is that CTP is not interoperable with

any standard transport protocol, partially due to its use of

the custom message format. However, limited interoperability

could be added easily by customizing the message packing

routine to generate a message header format compatible with

an existing protocol such as UDP. Note, however, that en-

forcing compatibility with other protocols such as TCP would

place severe restrictions on CTP’s configurability, since its

semantics would be limited to those provided by the existing

protocol.

VI. RELATED WORK

A. Composite Transport Protocol Systems

Several other researchers have explored composite protocol

frameworks, generally in the context of specialized environ-

ments. Specifically, XTP [25] and TP++ [26] have been used

to support flexible data transport in high-speed networks, and

Minden’s composite protocol system [27] supports transport

protocol composition for active network systems. XTP, for

example, can be configured to support different amounts of

reliability and different connection establishment mechanisms,

while TP++ explicitly supports the semantic needs of three

different classes of applications: latency-sensitive applications,

bulk data transport applications, and distributed transaction

systems.

In contrast, CTP is designed to allow very general config-

urability, enabling its use in a wide range of general purpose

and specialized applications, as well as for prototyping new

protocols and networking instruction.3 Unlike these systems,

3CTP was used for student protocol implementation in a Computer Net-
working class at the University of Arizona in 2003, for example, and we are
currently exploring using it for these purposes more broadly.

CTP also allows the wire message format to be customized,

potentially enabling backwards compatibility with protocols

such as TCP and UDP. When implemented, this backwards

compatibility could enable the broader adaptation of CTP in

production, research, and teaching environments, something

that existing fine-grained protocol composition systems have

yet to achieve.

B. Protocol Composition Frameworks

A number of different configuration frameworks have been

used to construct modular, and to some degree configurable,

transport services. Most of these frameworks use a linear

or hierarchical composition model where the communication

subsystem is constructed as a stack or directed graph of mod-

ules with identical interfaces for interchangeability. Module

interactions in these systems are typically limited to message

exchange between adjacent modules in the composition graph.

Examples of such composition models include the System

V STREAMS [28], thex-kernel [12], CORDS [29], Horus

[30], Ensemble [31], Globus XIO [32], and Rwanda [33]. To

our knowledge, none of these approaches have been used to

construct transport services that are customizable to the same

degree as CTP.

The Cactus model provides a more flexible framework for

constructing configurable transport protocols than any of the

hierarchical models. Cactus does not force a linear order

between modules when the modules are logically on the same

level or even completely independent. For example, reliability,

flow control, and congestion control in our design are indepen-

dent, which means that no specific execution order is needed or

enforced by Cactus. Furthermore, Cactus allows arbitrarily rich

interactions between modules that need to interact rather than

limiting interaction to be message exchanges between adjacent

modules in a graph. Finally, modules in hierarchical models

typically must act as data filters that get one chance to process

a message when it traverses the communication subsystem.

In Cactus, a microprotocol can be much more sophisticated

and can process a message at multiple places as it traverse

the composite protocol. For example, a microprotocol may be

notified when a message arrives at the composite protocol,

when it is ready to be transmitted, and when it has been sent

out. As a result, microprotocols do not need to be simple data

filters, but can implement arbitrary logical transport properties.

Protocol heaps [34] propose a non-hierarchicalrole-based

approach to constructing network services and suggest that

such a role-based approach could be used either in a single

layer of the protocol stack or to replace protocol stacks

altogether. The authors note that roles in their proposed system
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are similar to microprotocols in Cactus’ predecessor Coyote

[35], although Cactus and Coyote focus on non-hierarchical

composition inside a layer of the network stack as opposed

to across an entire protocol stack. To our knowledge, protocol

heaps have not yet been used to implement substantial proto-

cols such as we have done with CTP. However,because of

the similarities between the two systems, our experiences de-

signing and implementing a flexible, non-hierarchical transport

service and our measurements of the costs of such flexibility

should be directly applicable to protocol heaps.

Adaptive [36] introduces a non-hierarchical approach for

constructing configurable protocols. In this approach, each

protocol or service consists of a “backplane” with slots for

different protocol functions such as flow control and reli-

ability. The fact that a service is pre-divided into a fixed

set of functions (or slots) naturally restricts the composition,

e.g., slots cannot be left empty and new slots are difficult

to add. Interactions between different protocol functionsis

also prescribed by the backplane. Adaptive provides a higher

level configuration interface, where a protocol composition is

created automatically based on a functional specification.Such

a higher-level interface could also be developed for CTP if

desired.

STP [37] focuses on operating system and network safety in

deploying new network protocols. STP protocols are written

in Cyclone, a type-safe version of C, and distributed in source

form over the Internet. The operating system then uses TCP-

friendly rate-control to guarantee the network safety of the

resulting protocol. This combination of sandboxed code and

resource control eases the deployment of novel networking

services. Similar techniques could be used to deploy CTP mi-

croprotocols to guarantee the safety of the resulting composite

protocol.

C. Other Novel Transport Protocols

A number of other transport protocols have been proposed

since the introduction of TCP and UDP. Examples include

the Reliable Data Protocol (RDP) [38], [39] that provides a

message-based transport service with reliability and optional

FIFO ordering guarantees, and the Versatile Message Trans-

action Protocol (VMTP) [40] for transactional (RPC style)

communication. The latter has certain customizable features,

including optional security and customizable reliabilityand

some support for real time and multicast data. More recent

proposals include the Real-Time Transport Protocol (RTP) [6]

that supports transmission of real-time data such as audio or

video over multicast network services, the Stream Control

Transmission Protocol (SCTP) [9] that provides improved

reliability using techniques such as multihoming, and partially-

reliable transport protocols for use in multimedia services

[41]. Extensions to TCP have been developed to improve its

performance and applicability for specific application or exe-

cution domains. Examples of such extensions include selective

acknowledgments [42] and support for transaction-oriented

services [43].

The goal of CTP is not to be yet another transport protocol

or yet another TCP extension. Rather, CTP is a prototype

of a completely customizable transport protocol that can be

configured to serve any application domain in any execution

environment to the best degree possible. CTP can also be used

as a prototyping environment for testing new algorithms for

different transport properties in different execution environ-

ments.

VII. C ONCLUSIONS

The ability to customize transport protocols can provide

important flexibility when it comes to supporting new appli-

cations and new network technologies. In this paper, we have

described an approach to building such services based on the

Cactus design and implementation framework, as well as a

concrete realization of the approach in the form of CTP. In

this family of transport protocols, various attributes such as re-

liable transmission and congestion control are implemented as

separate microprotocols, which are then combined in different

ways to provide customized semantics. Initial experimental re-

sults indicate that, while the performance is somewhat slower

than TCP and UDP for similar configurations, the ability to

target the guarantees more precisely can in fact result in better

performance. While it will always be possible to construct a

specialized solution that performs at least as well as CTP, CTP

allows easy component-based construction of custom transport

protocols with minimal effort.

Other future work will concentrate in three areas. First,

we intend to use CTP as an experimentation and prototyping

platform to implement and measure different transport-related

algorithms. This work will require extensions to CTP on

configurable (non-IP-centric) addressing and demultiplexing.

Support for MPI-style matching instead of port-based demul-

tiplexing is just one example of this. Support for other address-

ing and demultiplexing schemes, for example, virtual channel

identifiers (VIDs) are also being considered. Second, we plan

to extend CTP to support customizable multicast and group

communication. Finally, we will explore further performance

optimizations, both in the CTP composite protocol and in the

Cactus runtime system itself.
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