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Abstract

Traditionally, testbeds for networking and systems
research have been designed as monolithic facilities:
they contain a single root of trust. The resources in the
facility are assumed to be administered by a single en-
tity or a set of mutually-trusting entities. All user man-
agement, including vouching for users’ identities and
taking responsibility for their actions, is done using a
flat trust structure or a simple hierarchy with the facil-
ity itself as the root. This design is not a good match for
testbeds that are composed of multiple autonomous fa-
cilities, or in which different parts of the testbed operate
under different trust models.

In this paper, we argue that partitioned trust is
increasingly important in large scale and security-
sensitive testbeds. We present a design that accom-
plishes this partitioning by using multiple trust roots.
The trust domains created by these roots may decide,
independently, how much trust to place in each other,
and can apply policies based on the domain or princi-
pal that originates a request. The domains could repre-
sent separately administered facilities (as in a federated
testbed), or they could represent sections within a single
facility that run with different trust models (for example,
with differing levels of security.) We have implemented
this design in ProtoGENI, a control framework for fed-
erated testbeds; we include details of this implementa-
tion and share experiences from using it in an active
deployment with hundreds of users.

1. Introduction

Distinct trust domains arise for a number of reasons
in network experimentation environments. Federated
facilities, in which locally autonomous testbeds pool
their collective resources to form a large and loosely
coupled environment, lead to complex systems with dif-
ferent parts owned and operated by different organiza-
tions. Other facilities are managed by a single entity, but
encompass resources that operate at different security

levels and therefore with complex trust relationships.1

In general, as testbeds grow in size and scope, their
designs must solve distributed systems problems, and
concerns such as fault tolerance, decentralization, co-
ordination and trust become more prominent. In all of
these cases, we argue that it is important that the testbed
be capable of treating users and resources from different
trust domains differently.

However, current testbeds [22, 14, 13] operate
within a single trust domain, even if different users are
granted different permissions. The fundamental prob-
lem caused by this concentration of trust is that every
facility provided by the testbed must be trusted equally.
This model is not scalable to large sets of resources and
users, nor is it suitable for support of operations which
must conform to strict isolation requirements.

By partitioning trust, we propose to overcome these
limitations; our model divides a testbed (or federation
of testbeds) into multiple trust domains. Each object
within the system belongs unambiguously to a single
domain, and each facility has authority only over those
objects which fall within its domain.2 This tight bind-
ing is an essential requirement, and guarantees impor-
tant properties beyond those merely arising from multi-
ple trust anchors. For instance, the trust model used by
Web browsers when communicating over TLS/SSL [2]
makes use of many trust anchors — browsers typically
trust hundreds of root CA certificates — but trust is not
partitioned, and any CA is permitted to sign any certifi-
cate. Therefore, no guarantees about the security of the
composite system can be made beyond that of the least
trusted CA.

1As an example, consider a facility in which part of the testbed has
strong safeguards in place to prevent exfiltration of malware, and part
of the testbed has no such safeguards. An experiment vetted to run
in the lower security environment may be trusted to run in either; an
experiment that is authorized to run in the protected part of the testbed
may be prohibited from running in the part that lacks exfiltration pro-
tection.

2Note that we make a subtle, but important, distinction between
having authority over an object and making assertions about it; only
authorities can attest to the identity of objects, while assertions (state-
ments relating to that object) may be made by any party, and may be
accepted by any entity that trusts the asserter.



Our model permits a hierarchical structure (that is,
“sub-partitions” of trust). It is also transparent: when an
object from one domain interacts with an object from
another domain, both objects’ true identities are ex-
posed, so that policies can be based on the object’s full
identity, the domain to which it belongs, or both.

We begin by summarizing related work in this area
in Section 2, and then give an overview of our design in
Section 3. The details of our trust model, and the au-
thentication and authorization mechanisms used to im-
plement it, are presented in Section 4. We close in Sec-
tion 5, discussing lessons we have learned during de-
sign, implementation, and deployment in a production
federated testbed.

2. Related Work

Our design is related to, and motivated by, recent
work on federated testbeds. In a federated model, each
member of the federation maintains independent re-
sponsibility for maintaining its resources and local con-
trol over usage policies. One of the primary drivers of
this interest in federation is the GENI [6] project; the
trust model that we present in this paper is intended to
fit into the GENI architecture [7].

The Emulab-PlanetLab portal [21] provided Emu-
lab users with access to PlanetLab resources; however,
it used a simplistic trust model in which all users on
Emulab were “proxied” through a single PlanetLab ac-
count. This imposes significant limitations on the trans-
parency of federated operations: from the point of view
of the resource provider, activity is observed at the gran-
ularity of the proxy, not of the ultimate user of the
proxy. Consequently, it is capable of enforcing only
similarly coarse-grained policies. We discuss this fed-
eration further in Section 5. The DETER Federation
Architecture [4] has a more sophisticated model of fed-
erated experiments, but similarly proxies all requests
through a single account.

PlanetLab runs a federation involving multiple cen-
tralized entities (PLCs), including one in the United
States, another in Europe, and another in Japan. This
federation has historically used a tightly-coupled strat-
egy that does not partition trust and replicates some
testbed state globally, making such partitioning diffi-
cult. As part of the GENI project, this federation is
evolving along a similar path to the one we present in
this paper. PlanetLab has designed CERTDIST [16], a
system for securely distributing the results of authoriza-
tion decisions; such a distribution mechanism is com-
plementary to our design.

3. Architecture Overview

Our design partitions trust within a testbed by:
• Partitioning the namespace for objects, so that each

object belongs unambiguously to a particular trust
domain.

• Associating each trust root with one partition of
the namespace, so that there is a unique “owner”
for each object.

• Allowing namespaces to be recursively parti-
tioned, so that trust domains can make fine-grained
divisions within themselves.

• Making object identities verifiable by entities out-
side their trust domains: they can be cryptograph-
ically traced back to trusted roots. This enables
actors in the system to make secure, informed deci-
sions about objects that come from other domains.

• Keeping authentication and authorization separate,
so that they can be managed by different entities.
Together, these design decisions create a system in

which trust is decentralized. Each domain can indepen-
dently apply different levels of trust or policies to other
domains, and the ill effects of bad behavior by any root
are confined to the objects within its domain.

In practical terms, these properties can be real-
ized by naming objects with a multi-level scheme, such
as the one used for domain names, and by creating a
“forest” of hierarchical certificate authorities (CAs) re-
flecting the hierarchy of the namespace. Statements
of identity and authorization can be cryptographically
signed, and traced back to a unique root CA. We pro-
vide a description of one such concrete implementa-
tion, the ProtoGENI authentication and authorization
system, later in this paper.

3.1. Cooperating Services

A testbed is built from a number of logical services,
which cooperate to manage the resources and users in
the system. Our design includes four such services:
Resource Providers (RPs) are responsible for manag-

ing the physical resources (such as computers or
network links) on which users will create net-
work topologies and run experiments. Resource
Providers are responsible for the allocation of their
resources, and may make decisions about who is
authorized to use them.

Identity Providers (IdPs) attest to the identity of users
by forming names that uniquely identify them,
then issuing those users certificates that they can
use to prove their identities to other services.

Responsible Authorities (RAs) take responsibility for
users’ actions; because users may conduct many



different activities on a testbed, different RAs may
vouch for different activities a user performs.

Trusted Introducers (TIs) are optional components
which can ease scalability problems for large fed-
erations of testbeds by certifying service providers
to each other.
There is considerable scope for a variety of policies

within this model: although the logical structure of the
facilities is rigid, the choices of which policies to imple-
ment (and the modules in which to implement them) are
determined by the needs of the testbed. In some cases,
implementations might omit certain types of services or
combine multiple logical services into a single module.

The distinction between Identity Providers and Re-
sponsible Authorities is worth further discussion. Keep-
ing these entities (logically) separate allows for flexible
policies in which identity and accountability are man-
aged independently. For example, a user’s identity may
be warranted by an entity external to the testbed, such
as the organization that employs them or the school they
attend. This entity might maintain identity information
for all of its employees or students, and it may be inap-
propriate to grant all of these individuals access to the
testbed. To control access to the testbed, then, another
level of authorization is required; this is the role filled
by the Responsible Authorities.

Each request for resources must be endorsed by an
RA, which agrees to take responsibility for the actions
the user takes with the granted resources. Furthermore,
Resource Providers may want to permit different lev-
els of access to users depending on what activities they
are performing and who is responsible for their actions.
RPs may treat requests for resources differently if the
request is endorsed by a professor as part of a class, an
industry partner as part of R&D activities, or by a na-
tional agency as part of a high-priority research project.
Each resource request is endorsed by one Responsible
Authority, so that even if a user has multiple roles, it
is unambiguous who claims responsibility for their ac-
tions in a given experiment.

3.2. Constructing a Trust-Partitioned Testbed

At a high level, to form a testbed under this frame-
work, parties form trust relationships with one an-
other: Resource Provider A may agree to trust Iden-
tity Provider B’s statements about what users it has,
and Responsible Authorities C and D’s statements about
the activities they vouch for (see Figure 1). Note that
this does not preclude A from having local allocation
policies: just because it recognizes B’s users does not
mandate it to satisfy all requests for resources that they
might make. Arrangements regarding “fair sharing,”

Figure 1. An example of a small federated sys-
tem. Arrows indicate trust relationships the in-
dividual principals have decided upon.

etc. can be made as part of a federation agreement. Trust
relationships need not be symmetric: A may choose to
trust B even if that trust is not reciprocated.

Of course, establishing trust in this pairwise fash-
ion does not scale well to large numbers of domains.
In general, trust is not transitive; that is, A trusting B
and B trusting C does not imply that A trusts C. In a
facility where it is desirable that most testbeds estab-
lish at least a minimal level of trust with one another, a
Trusted Introducer can make this process more conve-
nient: TIs allow members of the facility to publish the
certificates that are used to establish trust, and to dis-
cover the certificates of other members. An introduc-
tion does not mandate a specific trust relationships: as
described in Section 4.1, any party may choose not to
trust some certificates that it learns through such an in-
troduction, or may choose to trust additional certificates
not provided by the TI. Use of a TI does not mandate
specific policies; a Resource Provider that recognizes a
request vouched for by a trusted Responsible Authority,
for example, may still have policies that prevent allo-
cating resources to it. In almost any practical testbed,
federates joining, leaving, or changing their certificates
is a rare event, so these certificates can be cached for
long periods of time, and the federates need only inter-
act with Trusted Introducers on an infrequent (daily or
weekly) basis.



3.3. Using a Trust-Partitioned Testbed

To begin using a testbed built under this model, a
user first obtains a name and certificate from an Identity
Provider. Depending on the particular testbed, this may
be a service run by the user’s employer or school, such
as Shibboleth [11], or it may be a service associated
with the testbed itself. The IdP gives the user proof of
this identity (in practice, a certificate signed by the IdP),
which the user may present to other parties.

This identity is, by itself, not enough to use the
testbed; the user must find a Responsible Authority
willing to vouch for his or her actions on the testbed.
For a testbed that supports coursework, this RA may be
the instructor of a class. For a researcher, it may be the
PI of a project that he or she is working on. Industrial
testbeds may designate project leaders or managers as
RAs; testbeds with formal approval processes for exper-
iments may appoint bodies to vet experiments. The user
presents the proof of their identity issued by the identity
provider; thus, the RA must trust the user’s IdP. If the
RA agrees to vouch for the user’s activity, it issues the
user a signed statement to this effect. This statement is
specifically bound to the user’s identity.

The user may use the testbed in more than one ca-
pacity; for example, he or she may be taking more than
one class, or be participating on more than one research
project. In this case, he or she will get an endorsement
from more than one RA.

The user now approaches one or more resource
providers, providing the signed documents from the IdP
and RA. In making this request, the user presents an
endorsement from a single RA, even if he or she has
several; this ensures that there is a single party that is
unambiguously responsible for the use to which the re-
sources will be put. The Resource Providers consult
their own policies, availability, etc. and decide whether
or not to grant the user’s request.

3.4. The Model as Implemented in ProtoGENI

To give a concrete example of our model, and to
demonstrate its usefulness through deployment in a real
facility, we now describe how we have implemented it
in the ProtoGENI federated testbed.

The basic architecture of ProtoGENI is based on
the “Slice-based Federation Architecture” (SFA) [15],
which has been developed by the GENI community.
The SFA is so named because it centers around par-
titioning the physical facility into “slices,” each of
which can be running a different network architec-
ture or experiment inside. Physical resources, such as
PCs, routers, switches, links, and allocations of wire-

less spectrum are known as “components;” when a user
allocates resources on a component, the set of resources
they are given comprises a “sliver.” This sliver could
be a virtual machine, a VLAN, a virtual circuit, or even
the entire component. Each sliver belongs to exactly
one slice: in essence, a slice is a container for a set of
slivers.

ProtoGENI has three main types of principals:
Slice Authorities (SAs) are responsible for creat-

ing slice names and granting users the necessary cre-
dentials to manipulate these slices. They correspond to
both the “Identity Provider” and the “Responsible Au-
thority” of our facility model, as a Slice Authority both
warrants user identities (by issuing certificates to users)
and takes responsibility for those users’ actions within
slices (by issuing slice names for users.) A Slice Au-
thority may be an institution, a research group, a gov-
ernmental agency, or other organization that can pro-
vide accountability for its users.

Component Managers (CMs) are ProtoGENI’s
Resource Providers. When a user wishes to allocate a
sliver of a component, he does so through its Compo-
nent Manager. These allocations may be physical hosts,
virtual machines, routers, switches, links, allocations of
wireless spectrum, etc. An individual component man-
ager may manage a collection of components, called an
aggregate; in practice, each facility in ProtoGENI runs
a single component manager that manages all of its re-
sources, and the largest aggregates contain hundreds of
nodes and thousands of links.

Users access components from the federated
testbed to run an experiment or a service. A user has
an account with a Slice Authority, called that user’s
“home” SA; this Slice Authority vouches for the iden-
tity of the user and issues slice names to the user. The
user is, however, free to create slices using any Slice
Authority that, according to its own policies, is willing
to be responsible for that user’s actions.

Principals and many other objects in the system are
uniquely named by Uniform Resource Names (URNs);
to create an object, a URN is created to name it. The
URN scheme that we use [20] is hierarchical — each
authority is given its own namespace, which it can fur-
ther subdivide if it chooses. To maintain trust partition-
ing, each authority is prohibited, through mechanisms
described in Section 4.2.1, from creating URNs outside
of its namespace. An example of a ProtoGENI URN is:

urn:publicid:IDN+emulab.net+user+jay

Because the URN contains the identity of the authority
that issued it (in this example “emulab.net”), it is pos-
sible to tell which authority “owns” the object without
resorting to a lookup service.



4. Authentication and Authorization

When different parts of a system may be owned
and operated by different organizations, or need to en-
force custom local policies, sophisticated requirements
for authentication and authorization infrastructure arise.
Our approach is to adopt a decentralized architecture,
to support disconnected operation, and to decouple au-
thentication from authorization whenever possible.

The authentication system is based on the IETF
PKIX model [1], while the authorization mechanism in-
volves the presentation of cryptographically signed cre-
dentials (which behave analogously to X.509 Attribute
Certificates [5]). When a principal presents a certifi-
cate or credential, it presents all of the signatures re-
quired to link the certificate or credential with one of
the trust roots; as a result, no direct communication
with the certifying party is required to validate certifi-
cates and credentials. Together, these primitives allow
the warranting of identities, the granting and delegation
of permissions, and the verification of identity and priv-
ilege. Most importantly, all of these operations may be
performed by different principals, who need no direct
knowledge of each other. Very little global policy is im-
posed, other than conformance to uniform naming and
data representation schemes.

4.1. Trust

It follows from the basic principle of partitioned
trust that domains have the ability to selectively trust
each other. Each principal in the system has the abil-
ity to decide which certificates and signatures to accept,
and the set of entities from which to honor requests.

4.1.1. Certificate Authorities. We deliberately refrain
from imposing a single hierarchy on the trust struc-
ture (as used in PEM [8], for instance), as that model
is inadequate to support local fine-grained trust deci-
sions. On the other hand, an entirely decentralized pub-
lic key distribution mechanism (such as PGP’s “web of
trust” [18]) is highly flexible, but tends to introduce bar-
riers to new principals entering the system, as their cer-
tificates are unlikely to be accepted by others until they
are able to obtain signatures from a sufficient number of
existing authorities.

Our public key infrastructure treats each domain
as a trust anchor, with its own self-signed CA certifi-
cate. Each CA may form subsidiary namespaces and
issue corresponding CA certificates over them. This
approach yields significant flexibility in trust decisions
(at the granularity of domains), although it does intro-
duce the problem of distributing the set of root certifi-

cates throughout a federation. When the system makes
use of Trusted Introducers, a TI publishes a bundle of
certificates from known domains as a convenience, but
it is important to note that this does not detract from
any site’s autonomy: each domain is free to add to or
delete from the TI’s list of certificates (or even ignore
it entirely). A TI also aggregates certificate revocation
lists [1] from the same set of domains, though nothing
prevents domains from communicating their CRLs to
each other directly.

Since CA certificate bundles are not expected to
change frequently, they can be cached. CRLs are
more problematic, since the consequences of a stale
revocation list which does not contain a recently re-
voked certificate could be severe. Therefore, domains
may choose to obtain current information about certifi-
cate validity from each other (e.g. through the use of
OCSP [12]).

4.2. Authenticating Identities

Public key certificates are issued to each princi-
pal in the system, including users, services, and com-
ponents. They must be signed by the authority cor-
responding to the namespace in which the principal’s
name belongs: since these namespaces do not over-
lap, there always exists exactly one certificate authority
whose signature will be accepted on any valid certifi-
cate.

All requests are made over TLS [2] channels, and
both the client and server must authenticate to each
other. (This implies that if either peer has decided not
to trust the other’s CA, then no communication or oper-
ation will be possible.)

We have ensured that certificates are self contained:
certificates are always presented in conjunction with
any intermediate CA certificates, so that any verifier
can determine the validity of any certificate with no in-
formation other than the set of trust anchor certificates
and current CRLs. (TLS and PKIX already provide this
property, and we have been careful to preserve it in the
conventions and certificate extensions we have added.)

4.2.1. Issuing Names. Formal structure within names
is essential for partitioning trust, so that an unambigu-
ous trust root can be identified for any named ob-
ject. ProtoGENI has adopted the proposal by Viecco
et al. [20] for uniform naming conventions throughout
GENI. This name scheme tightly binds each object’s
name to a particular authority, which is necessary to
maintain clear definitions of trust boundaries. By re-
fusing a CA’s signature on any certificate whose subject
name lies outside the CA’s namespace, we are able to



guarantee the important property that any valid object
name corresponds to exactly one trust root. Although
there are certain limitations to this model (for instance,
if a principal wishes to associate with a different CA
for any reason, then it is forced to change its identity),
the benefits are significant: first, each domain has great
flexibility in choosing the set of peers with whom it
will operate; second, we achieve a reasonable level of
fault containment, since even extremely severe faults
(e.g. malicious CAs or Byzantine failure of a CA) are
unable to affect objects outside their assigned names-
pace. This property is extremely important, as a single
key compromise in a PKI system without naming re-
strictions can leave the entire system vulnerable [17]. A
series of attacks against root CAs in mid-2011 attracted
widespread publicity and has required extensive soft-
ware patches to terminate trust in the affected CAs [3].

4.3. Authorizing Operations

Credentials are used in conjunction with our public
key infrastructure to allow secure validation of permis-
sions: X.509 certificates prove that a key is bound to a
principal, and credentials prove that permissions have
been assigned to that principal.

It is important to note that our credentials are issued
as the result of authorization decisions, and could thus
be considered to represent capabilities. Another use-
ful class of statement about principals are assertions,
which can be used as input to policy decisions; asser-
tions may take the form of statements such as “X is a
student,” “Y has a Top Secret security clearance,” etc.
ABAC [10] (Attribute Based Access Control) combines
a system for making signed assertions with a system
of formal logic to reason about authorization decisions.
Under separate work by the GENI ABAC team, ABAC
is also being integrated with ProtoGENI.

Almost all services must verify both certificates
and credentials: relying on either alone is inadequate.
(There are a small number of exceptions, such as a
ProtoGENI user’s own facility, which records state con-
cerning the users privileges over objects under its con-
trol, and consequently is able to issue credentials on the
basis of a successful key challenge alone.)

While we were able to reuse existing standards to
implement our authentication and certificate scheme,
we chose not to use X.509 Attribute Certificates for our
credential format. This is partly because current X.509
implementations of certain features we require tends
to be weak3, and partly because we require so many

3For instance, section 1.2 of RFC 5755 [5] explicitly recommends
against implementing AC path delegation, which would be necessary
for our delegation mechanism.

dedicated attributes in our credentials that any existing
generic attribute certificate format would require a great
deal of extension in any case. Instead, we represent our
credentials as signed statements in the form of envelop-
ing XML signatures [23]. As with public key certifi-
cates, we ensure that credentials are self-contained: all
credentials must include certificate chains sufficient to
verify their enclosed signatures according to the IETF
PKI certification path validation algorithm.

The mechanism of conveying permission informa-
tion indirectly (through the use of signed statements)
was deliberately chosen to minimize direct communi-
cation between the issuer and the verifier of privileges.
The benefits of our approach are increased fault toler-
ance (privileged operation can proceed even if the priv-
ilege granter is temporarily unavailable), and reduced
communication cost at the time of service requests. The
fact that knowledge is distributed does imply that it
is impossible to guarantee that any single entity holds
complete information about the authority of any princi-
pal: each party is responsible for proving its own priv-
ilege. Presenting credentials is therefore optional, and
an important consequence of this fact is that credentials
must only ever be issued to increase permission: the
mechanism is not directly suited for communicating re-
strictions one might wish to enforce.

4.3.1. Granting Credentials. Credentials are initially
issued by the authority over which privileges are being
conveyed. The authority generates an XML document
containing:
• A target, which is some ProtoGENI object iden-

tified by URN over which the credential applies.
In theory, any named GENI object could be a tar-
get, although in practice, targets are usually slices,
slivers, or Component Managers.

• An owner: the only principal who may present the
credential. Owners are also specified with URNs.
Although the URN could potentially address any
type of object, owners are typically users, and
sometimes authorities or slices.

• A type-dependent description: for privileges (the
typical case of credentials), this description is a list
of pairs of identifying strings and a flag indicating
whether that privilege may be delegated.

• Optional extensions.
• Parent credentials (which are required for dele-

gated credentials).
• Signature(s) covering all of the above. Credentials

must ultimately be signed by the authority identi-
fied in the target URN; no other signature will do.
A simplified example of such a credential can be

found in Figure 2.



Figure 2. Example credential, showing target,
owner, a set of permissions, and a signature.
Note that the URNs in this figure are abbrevi-
ated.

4.3.2. Delegation of Credentials. If a credential al-
lows it, the owner may delegate the corresponding per-
missions (or a subset of them) to another principal. As
shown in Figure 3, the original credential is embedded
in a new credential, which specifies the new permissions
(no greater than the original); the new owner; a full copy
of the original (including its parents, if any); and the old
owner’s signature, covering all the above. Because the
delegated credential contains the original credential, it
is self-contained: no additional information is required
to trace it back to its original trust root.

Delegation is the primary means by which permis-
sions are shared in ProtoGENI: the facility is general
enough that it can replace user groups, access control
lists, and other mechanisms for granting access rights
to other users. One significant advantage of delega-
tion is that it is highly decentralized: the issuer, orig-
inal holder, delegate, and eventual verifier of delegated
credentials are typically different parties, and no direct
communication is ever established between any of them
other than the pairwise exchanges as the credential is
passed from one holder to the next.

ProtoGENI is designed to support liberal delega-
tion policies. If the system discourages delegation (by
providing inadequate tools, or restrictive policies), users
will be tempted to “roll their own” delegation by shar-
ing private keys, which is extremely undesirable.

5. Experiences

The primary indicator of the success of our design
is that ProtoGENI is a running, active system; the cur-
rent federation contains sixteen Component Mangers,
and over 200 users have created more than 3000 slices.
The authentication and authorization system seems suf-
ficiently intuitive to users and powerful enough for fa-
cility administrators; the only reports we have received

Figure 3. A delegated credential. Note that the
credential from Figure 2 is embedded as the
“parent,” that the delegated credential has a
new owner, and the signature on the delegated
credential is that of the original owner.

have been a few instances of confusion on the part of
users as to the difference between certificates and cre-
dentials, and the necessity of having both.

ProtoGENI has been open to users and tool devel-
opers throughout its development. This allowed our ex-
periences with actual users and experimenters to guide
our design decisions. Described below are some of the
lessons we have learned from seeing our system used
by others.

Experience from Earlier Federations: This is
not the first federation of testbeds that the we have at-
tempted to build. Our earlier effort [21] was a project
to modify the Emulab testbed to act as a “gateway” to
the PlanetLab facility. This earlier federation was not
entirely successful, and the design we present here has
taken a number of lessons from the mistakes and diffi-
culties we encountered during that process.

An essential flaw with our older Emulab-PlanetLab
gateway was that PlanetLab and Emulab did not share
any trust mechanisms. There was no way for an Emu-
lab user to authenticate themselves to PlanetLab or vice
versa. In order to work around this limitation, all re-
sources created on PlanetLab were set up under a single
PlanetLab user account. PlanetLab thus had no direct
way to determine which Emulab users were responsible
for activity run through the portal. This opacity meant
that there was no way for PlanetLab to individually



blacklist any Emulab user who had abused their author-
ity. It also meant that that PlanetLab had to trust Emu-
lab to enforce one of PlanetLab’s own policies, namely
that users must belong to an institution that has joined
the PlanetLab Consortium. Finally, this lack of visibil-
ity into individual accounts in effect made the Emulab
facility itself responsible for all of its users activities,
taking on all of the responsibilities that, in our newer
architecture, are distributed among Identity Providers,
Responsible Authorities, and the users themselves.

The problems we faced in our first attempt to fed-
erate with PlanetLab underscore the necessity of hav-
ing a single federation-wide identity. They also shows
how important it is to separate Identity Providers from
Resource Providers. By sharing authentication mech-
anisms and agreeing to a common API, we have fed-
erated PlanetLab and ProtoGENI in a matter of weeks
rather than months, and no important security properties
were compromised.

UUIDs: Our initial strategy was to use UUIDs [9]
as identifiers for objects such as components and users:
because they are essentially large random numbers,
UUIDs can be generated by any party with a high con-
fidence that they will be unique. They are also opaque,
meaning that clients do not have to parse or interpret
them. However, we discovered that using a flat names-
pace for all objects had a number of drawbacks.

First and foremost, there is no notion of an iden-
tifier “belonging” to any particular authority. As dis-
cussed in Section 4.2.1, the ability to follow the same
chain of delegation in an identifier and the certificates
that pertain to that identifier allows us to minimize the
trust placed in each authority. With this ability, it is not
possible for one authority to issue certificates for iden-
tities issued by another authority. In a flat namespace,
no such separation is possible; all authorities must, in
essence, be trusted to sign certificates for any identity
in the system.

A flat-namespace, multiple-CA system is essen-
tially the system used by web browsers, and con-
cerns about such a model have recently become promi-
nent [19, 17, 3]. For example, a single malfunctioning,
compromised, or malicious CA can sign certificates for
any website, effectively subverting the security of the
entire “secure” web. We wanted to avoid placing such
complete trust in every root, and a move to hierarchical
URN identifiers allowed us to do so.

A flat namespace also requires a lookup service to
resolve the authority issuing an identifier. For exam-
ple, to look up information about a component, one
would need to first resolve the UUID to a Component
Manger, then contact that CM to ask about the com-
ponent. While decentralized resolvers for flat names-

paces do exist (such as DHTs), we saw that including
the authority in the identifier has the additional benefit
of eliminating the first lookup step, so that operations
require contacting only the entities directly involved.

Local policies: In the current ProtoGENI feder-
ation, few Component Managers are exercising their
ability to implement local policies, and relatively sim-
ple mechanisms have been sufficient. A policy to block
external users was requested fairly early in the history
of the federation, when the administrators of a testbed
owned and operated by a university desired the ability
to reserve all components for local use during critical
class periods. Another site, operating a highly hetero-
geneous testbed, wished to reserve some hardware for
their own use, while sharing the remainder with the fed-
eration: this became the motivation for a feature which
has been added to allow different policies to apply to
different component types. These basic facilities have
been adequate to address the policy needs of all sub-
sequent testbeds in the federation. While we consid-
ered designing a more sophisticated policy description
engine, capable of communicating restrictions between
federates and assisting users to form requests compliant
with remote policies, our experience operating Proto-
GENI suggests that such formalisms are not necessary
in small to moderate sized federations.

Root Key Management: One of the facilities fed-
erated with ProtoGENI needed to re-generate its certifi-
cate to correct some of the fields contained therein. Ini-
tially, this facility created an entirely new certificate, us-
ing a new private key. Because its key had changed, all
certificates and credentials signed by that facility (and
transitively, delegations of those credentials) became in-
valid. Since ProtoGENI credentials may be delegated
without intervention from the original issuer, it was not
feasible for the facility to track down every delegated
credential to be re-signed. When the potential magni-
tude of these effects became clear, the facility simply
revoked the new certificate they had created, and made
a new one using their original private key. From this ex-
perience, we added as a “best practice” the policy that
federates should not change their private keys for minor
certificate re-issues. Of course, if a certificate must be
re-generated because it is suspected that the private key
may have been compromised, adopting a new private
key is unavoidable.

This incident, as problematic as it was for the
facility in question, demonstrated an important prop-
erty of our design: because trust is partitioned in the
ProtoGENI federation, no other federates were affected.
While it resulted in a temporary inconvenience for users
of one facility, operation in the rest of ProtoGENI con-
tinued as normal.



6. Conclusion

As testbeds become larger, more complicated, and
more security-sensitive, trust models with a single root
are no longer appropriate. We have described the prin-
ciple of partitioned trust, the properties it provides in
testbeds, and its realization in ProtoGENI in particular.
The result is a loosely coupled system which partitions
a testbed into a set of trust domains; each trust domain
can independently decide how much to trust other do-
mains and can apply policies to entire domains or indi-
vidual principals within them.
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