
GPUstore: Harnessing GPU
Computing for Storage Systems

in the OS Kernel

Weibin Sun*, Robert Ricci*, Matthew L. Curry☨

Presented by Weibin Sun

* University of Utah, Flux Group
☨ Sandia National Lab

1

1

Motivation
n Storage system performance

decided by not only I/O,
sometime but also computations

n e.g. Intel X25-E SSD
(256KB I/O size)

2

Raw dm-crypt

Read ~250MB/s ~103MB/s

Write ~170MB/s ~95MB/s

2

Motivation
n Storage system performance

decided by not only I/O,
sometime but also computations

n e.g. Intel X25-E SSD
(256KB I/O size)

2

Raw dm-crypt

Read ~250MB/s ~103MB/s

Write ~170MB/s ~95MB/s

Encryption

Hashing

RAID

Checksum, hashing, encryption,
RAID, semantic fs search, in-
kernel DB ...

2

Motivation
n Storage system performance

decided by not only I/O,
sometime but also computations

n e.g. Intel X25-E SSD
(256KB I/O size)

2

Raw dm-crypt

Read ~250MB/s ~103MB/s

Write ~170MB/s ~95MB/s

Encryption

Hashing

RAID

Checksum, hashing, encryption,
RAID, semantic fs search, in-
kernel DB ...

Exp
ensi

ve

2

Speedup computations for storage

n Parallel at different scales

n File, Block, Trunk,
Sector, and Row

n Mostly same operations on
different data

3

3

Speedup computations for storage

n Parallel at different scales

n File, Block, Trunk,
Sector, and Row

n Mostly same operations on
different data

3

SIMD/STMD
GPU

3

The idea of GPUstore

4

I/O request

Computations

4

The idea of GPUstore

4

I/O request

Computations

4

The idea of GPUstore

4

I/O request
Computations

4

The idea of GPUstore

4

I/O request
Computations

4

The idea of GPUstore

4

I/O request
Computations

Call GPU

Computation
request

4

But it’s not that easy...

5

5

But it’s not that easy...
n Storage challenges:

n Make existing optimizations just work

n Page cache, Read ahead, I/O scheduler ...
n Leave them there, no big change, but still fast

5

5

But it’s not that easy...
n Storage challenges:

n Make existing optimizations just work

n Page cache, Read ahead, I/O scheduler ...
n Leave them there, no big change, but still fast

n I/O request size decides computation request size

n Too small/Too large requests are not preferred
n GPU wants proper size, enough threads, full utilization

5

5

But it’s not that easy...
n Storage challenges:

n Make existing optimizations just work

n Page cache, Read ahead, I/O scheduler ...
n Leave them there, no big change, but still fast

n I/O request size decides computation request size

n Too small/Too large requests are not preferred
n GPU wants proper size, enough threads, full utilization

n Memory management in OS kernel is complicated

5

5

But it’s not that easy...
n Storage challenges:

n Make existing optimizations just work

n Page cache, Read ahead, I/O scheduler ...
n Leave them there, no big change, but still fast

n I/O request size decides computation request size

n Too small/Too large requests are not preferred
n GPU wants proper size, enough threads, full utilization

n Memory management in OS kernel is complicated

n Existing framework/API not for storage
n TimeGraph, PTask, Sponge, Gdev ...

5

5

Some problems

n Too large/too small I/O request

n Redundant buffering (mm problem)

n GPU execution resource abstraction for
management

6

6

Small I/O => Small Computation

❖ Small request can’t provide enough threads for GPU
scheduling

❖ e.g. encrypt 64KB disk block with AES CTR

❖ 16B AES block size

❖ 4K independent blocks = 4K threads

❖ To hide mem latency, use all cores

❖ GPU kernel launch overhead not proportional to req size

7

C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C

7

Large I/O => Large Computation

❖ Large request cause long-time waiting/blocking

❖ Hard to avoid, e.g. read(fd,	 buf,	 1024*1024*128);

❖ but we can do better

❖ Key to solution: GPU is “multi-task-able”

❖ Multiple kernel execution

❖ Execution and copy overlapping

❖ Multiple DMA engines

8

Cpy Exe Cpy

8

Redundant buffering

9

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Pages

Memory pages
used by GPU
driver for DMA

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Pages

Memory pages
used by GPU
driver for DMA

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Pages

Memory pages
used by GPU
driver for DMA

Storage code’s
pages

9

Redundant buffering

9

Pages

Memory pages
allocated at
somewhere else
in existing code

Device
 Memory

Pages

Memory pages
used by GPU
driver for DMA

Make existing mechanisms just work: pages from
page-cache, scheduled I/O request pages

Storage code’s
pages

9

GPU Execution Resources
n DMA engines

n Ability to run multiple kernels

n Ability to overlap execution and copy

n Multiple GPUs

10

10

GPU Execution Resources
n DMA engines

n Ability to run multiple kernels

n Ability to overlap execution and copy

n Multiple GPUs

10

Abstract them for management
like CPU cores for CPU execution

10

GPUstore

11

11

GPUstore

11

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

11

GPUstore

11

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

11

GPUstore

11

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

11

GPUstore

11

GPU Driver

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

11

GPUstore

11

GPU

GPU Driver

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

11

GPUstore

n Stream Management

n Request Management

n Memory Management

12

12

“Stream” for resource abstraction
n Term borrowed from CUDA

n A stream is an abstract execution pipeline including:

n DMA engine

n GPU cores

n Hide real # DMA engines, # cores, # GPUs

n Streams scheduled for request processing

n First come, first serve now

13

13

GPUstore

n Stream Management

n Request Management

n Memory Management

14

14

Request Management

15

15

Request Management
n Computation request scheduling behind all existing

mechanisms

n Just before invoking GPU operations

n Different from I/O scheduler

n Considering computing speed, not read/write speed,
sectors’ locations...

15

15

Request Management
n Computation request scheduling behind all existing

mechanisms

n Just before invoking GPU operations

n Different from I/O scheduler

n Considering computing speed, not read/write speed,
sectors’ locations...

n Too small - Merge

15

15

Request Management
n Computation request scheduling behind all existing

mechanisms

n Just before invoking GPU operations

n Different from I/O scheduler

n Considering computing speed, not read/write speed,
sectors’ locations...

n Too small - Merge

n Too large - Split

15

15

Request Management
n Computation request scheduling behind all existing

mechanisms

n Just before invoking GPU operations

n Different from I/O scheduler

n Considering computing speed, not read/write speed,
sectors’ locations...

n Too small - Merge

n Too large - Split

n Right size?

15

15

Too small I/O cause small computation

16

16

Too small I/O cause small computation

16

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

16

Too small I/O cause small computation

16

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

Merge

Cpy Exe Cpy

16

Too small I/O cause small computation

16

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

Merge

Cpy Exe Cpy

❖ Merge is not linear addition, total time is not sum of all
original ones.
❖ GPU utilization, mem latency, launch overhead

16

Too large I/O causes large computation

17

Cpy Exe Cpy

17

Too large I/O causes large computation

17

Cpy Exe Cpy

Split

17

Too large I/O causes large computation

17

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Split

17

Too large I/O causes large computation

17

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Multiple streams

Cpy Exe Cpy

Split

17

Too large I/O causes large computation

17

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

Cpy Exe Cpy

GPU overlapped copy & execution (Multiple DMA engine)

Multiple streams

Cpy Exe Cpy

Split

17

Service-specific request scheduling

18

18

Service-specific request scheduling

n Not too large, not too small, what’s the RIGHT size:

n Decided by service itself

n Boot-time benchmark, service logic,
computing features...

18

18

Service-specific request scheduling

n Not too large, not too small, what’s the RIGHT size:

n Decided by service itself

n Boot-time benchmark, service logic,
computing features...

n Make sure correctness: Merge/Split logic:

n Done by service too

n Simple ones may use common split/merge

18

18

GPUstore

n Stream Management

n Request Management

n Memory Management

19

19

GPUstore MM

20

20

GPUstore MM
n Remap pages for GPU DMA

n Similar to cudaRegisterHost, but for scattered
pages in kernel mode

n To use existing pages

20

20

GPUstore MM
n Remap pages for GPU DMA

n Similar to cudaRegisterHost, but for scattered
pages in kernel mode

n To use existing pages

n Allocate(and remap) GPU driver’s pages directly

n CUDA Page-locked memory in kernel mode

n For easily changeable code/new code

20

20

Evaluation

21

App. Modified
LOC

% Request
scheduling

MM

eCryptfs 200 2% Merge/Split Remapping

dm-crypt 50 3% Merge/Split No remapping

MD RAID6 20 0.3% Merge/Split No remapping

Applications: (Approximated LOC modification)

21

22

Effectiveness of optimizations

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU" Base"GPU"

AES Cipher

22

23

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

Effectiveness of optimizations

AES Cipher

23

Effectiveness of optimizations

24

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

GPU"no"RB"

AES Cipher

24

25

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

4KB$ 8KB$ 16KB$ 32KB$ 64KB$ 128KB$256KB$512KB$ 1MB$ 2MB$ 4MB$

Th
ro
ug
hp

ut
"(M

B/
s)
"

CPU"

Base"GPU"

GPU"with"Split"

GPU"no"RB"

GPU"no"RB"with"Split"

Effectiveness of optimizations

AES Cipher

25

dm-crypt SSD

26

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o RB, w/ Split
GPU w/o RB
GPU w/ Split

Base GPU
CPU

Figure 4. GPU AES cipher throughput with different opti-
mizations compared with Linux kernel’s CPU implementa-
tion. The experiments marked “w/o RB” use the techniques
described in Section 2.2.2 to avoid redundant buffering.

 0

 50

 100

 150

 200

 250

 300

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

26

Better dm-crypt on RAM disk

27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o RB, w/ Split
GPU w/o RB
GPU w/ Split

Base GPU
CPU

Figure 4. GPU AES cipher throughput with different opti-
mizations compared with Linux kernel’s CPU implementa-
tion. The experiments marked “w/o RB” use the techniques
described in Section 2.2.2 to avoid redundant buffering.

 0

 50

 100

 150

 200

 250

 300

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

27

eCryptfs Concurrent clients

28

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 8. eCryptfs throughput on a RAM-backed filesystem.

for the CPU, a 70% speed increase. Unlike our earlier bench-
marks, read speeds remain nearly constant across all block
sizes. This is explained by the Linux page-cache’s readahead
behavior: when small reads were performed by iozone, the
page-cache chose to issue larger reads to the filesystem in
anticipation of future reads. The default readahead size of
128 KB is large enough to reach the SSD’s full read speed of
250MB/s. This illustrates an important point: by designing
GPUstore to fit naturally into existing storage subsystems,
we enable it to work smoothly with the rest of the kernel.
Thus, by simply implementing the multi-page readpages

interface for eCryptfs, we enabled existing I/O optimizations
in the Linux kernel to kick in, maximizing performance even
though they are unaware of GPUstore.

Another surprising result in Figure 7 is that the GPU write
speed exceeds the write speed of the SSD, and even its read
speed, when block size increases beyond 128 KB. This hap-
pens because eCryptfs is, by design, “stacked” on top of
another filesystem. Even though we take care to sync writes
to eCryptfs, the underlying filesystem still operates asyn-
chronously and caches the writes, returning before the actual
disk operation has completed. This demonstrates another
important property of GPUstore: it does not change the be-
havior of the storage stack with respect to caching, so client
subsystems still get the full effect of these caches without any
special effort.

We tested the throughput limits of our GPU eCryptfs
implementation by repeating the previous experiment on
a RAM disk, as shown in Figure 8. Our GPU-accelerated
eCryptfs achieves more than 700 MBps when reading and
420 Mbps when writing. Compared to the CPU, which does
not perform much better than it did on the SSD, this is a
speed increase of nearly five times for reads and close to three
times for writes. It is worth noting that Linux’s readahead
mechanism not only “rounds up” read requests to 128 KB, it
“rounds down” larger ones as well, preventing eCryptfs from
reaching even higher levels of performance.

Finally, we used filebench to evaluate eCryptfs under
concurrent workloads. We varied the number of concurrent

Figure 9. eCryptfs concurrent write throughput on a RAM
disk for two different block sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o Rednt Buffers
GPU w/ Rednt Buffers

CPU

Figure 10. Throughput for the RAID 6 recovery algorithm
with and without optimizations to avoid redundant buffers.

writers from one to one hundred, and used the RAM-backed
filesystem. Each client writes sequentially to a separate file.
The effects of GPUstore’s merge operation are clearly visible
in Figure 9: with a single client, performance is low, because
we use relatively small block sizes (128 KB and 16 KB) for
this test. But with ten clients, GPUstore is able to merge
enough requests to get performance on par with dm-crypt at
a 1 MB blocksize. This demonstrates that GPUstore is useful
not only for storage systems with heavy single-threaded
workloads, but also for workloads with many simultaneous
clients. While block size still has a significant effect on
performance, GPUstore is able to amortize overheads across
concurrent access streams to achieve high performance even
for relatively small I/O sizes.

4.4 md RAID 6 Data Recovery
As with encryption, the performance of our GPU-based
RAID 6 recovery algorithm increases with larger block sizes,
eventually reaching six times the CPU’s performance, as seen
in Figure 10.

We measured the sequential bandwidth of a degraded
RAID 6 array consisting of 32 disks in our S2 experiment
environment. The results are shown in Figure 11. We find
that GPU accelerated RAID 6 data recovery does not achieve

RAM Disk, Write only

Merge works

28

Existing optimizations still work

29

 0

 100

 200

 300

 400

 500

 600

 700

 800

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 8. eCryptfs throughput on a RAM-backed filesystem.

for the CPU, a 70% speed increase. Unlike our earlier bench-
marks, read speeds remain nearly constant across all block
sizes. This is explained by the Linux page-cache’s readahead
behavior: when small reads were performed by iozone, the
page-cache chose to issue larger reads to the filesystem in
anticipation of future reads. The default readahead size of
128 KB is large enough to reach the SSD’s full read speed of
250MB/s. This illustrates an important point: by designing
GPUstore to fit naturally into existing storage subsystems,
we enable it to work smoothly with the rest of the kernel.
Thus, by simply implementing the multi-page readpages

interface for eCryptfs, we enabled existing I/O optimizations
in the Linux kernel to kick in, maximizing performance even
though they are unaware of GPUstore.

Another surprising result in Figure 7 is that the GPU write
speed exceeds the write speed of the SSD, and even its read
speed, when block size increases beyond 128 KB. This hap-
pens because eCryptfs is, by design, “stacked” on top of
another filesystem. Even though we take care to sync writes
to eCryptfs, the underlying filesystem still operates asyn-
chronously and caches the writes, returning before the actual
disk operation has completed. This demonstrates another
important property of GPUstore: it does not change the be-
havior of the storage stack with respect to caching, so client
subsystems still get the full effect of these caches without any
special effort.

We tested the throughput limits of our GPU eCryptfs
implementation by repeating the previous experiment on
a RAM disk, as shown in Figure 8. Our GPU-accelerated
eCryptfs achieves more than 700 MBps when reading and
420 Mbps when writing. Compared to the CPU, which does
not perform much better than it did on the SSD, this is a
speed increase of nearly five times for reads and close to three
times for writes. It is worth noting that Linux’s readahead
mechanism not only “rounds up” read requests to 128 KB, it
“rounds down” larger ones as well, preventing eCryptfs from
reaching even higher levels of performance.

Finally, we used filebench to evaluate eCryptfs under
concurrent workloads. We varied the number of concurrent

Figure 9. eCryptfs concurrent write throughput on a RAM
disk for two different block sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o Rednt Buffers
GPU w/ Rednt Buffers

CPU

Figure 10. Throughput for the RAID 6 recovery algorithm
with and without optimizations to avoid redundant buffers.

writers from one to one hundred, and used the RAM-backed
filesystem. Each client writes sequentially to a separate file.
The effects of GPUstore’s merge operation are clearly visible
in Figure 9: with a single client, performance is low, because
we use relatively small block sizes (128 KB and 16 KB) for
this test. But with ten clients, GPUstore is able to merge
enough requests to get performance on par with dm-crypt at
a 1 MB blocksize. This demonstrates that GPUstore is useful
not only for storage systems with heavy single-threaded
workloads, but also for workloads with many simultaneous
clients. While block size still has a significant effect on
performance, GPUstore is able to amortize overheads across
concurrent access streams to achieve high performance even
for relatively small I/O sizes.

4.4 md RAID 6 Data Recovery
As with encryption, the performance of our GPU-based
RAID 6 recovery algorithm increases with larger block sizes,
eventually reaching six times the CPU’s performance, as seen
in Figure 10.

We measured the sequential bandwidth of a degraded
RAID 6 array consisting of 32 disks in our S2 experiment
environment. The results are shown in Figure 11. We find
that GPU accelerated RAID 6 data recovery does not achieve

eCryptfs RAM

29

More results in paper

30

n Upper-bound of best GPUstore framework
performance

n eCryptfs on SSD

n RAID6 recovery algorithm

n RAID6 on HDs/RAM disks

n ...

30

URLs

n Google Code: http://code.google.com/p/kgpu

n Github: https://github.com/wbsun/kgpu

n Being refactored

n Will use Gdev for kernel-level CUDA access

31

31

http://code.google.com/p/kgpu
http://code.google.com/p/kgpu
https://github.com/wbsun/kgpu
https://github.com/wbsun/kgpu

Thanks!
Q&A

32

32

Hate too large/small I/O requests?

33

Cpy Exe Cpy

C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C

33

Hate too large/small I/O requests?

33

Cpy Exe Cpy

❖ Small request can’t provide enough threads for GPU scheduling

❖ To hide mem latency, use all cores

C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C

33

Hate too large/small I/O requests?

33

Cpy Exe Cpy

❖ Small request can’t provide enough threads for GPU scheduling

❖ To hide mem latency, use all cores

❖ GPU kernel launch overhead not proportional to req size

C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C

33

Hate too large/small I/O requests?

33

Cpy Exe Cpy

❖ Small request can’t provide enough threads for GPU scheduling

❖ To hide mem latency, use all cores

❖ GPU kernel launch overhead not proportional to req size

❖ Large request cause long-time waiting/blocking

❖ Hard to avoid, but we can do better

❖ GPU is “multi-task-able”

❖ Multiple kernel execution

❖ Execution and copy overlapping

❖ Multiple DMA engines

C E C C E C C E C C E C C E C C E C C E C C E C C E C C E C

33

Effectiveness of optimizations

34

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

GPU w/o RB, w/ Split
GPU w/o RB
GPU w/ Split

Base GPU
CPU

Figure 4. GPU AES cipher throughput with different opti-
mizations compared with Linux kernel’s CPU implementa-
tion. The experiments marked “w/o RB” use the techniques
described in Section 2.2.2 to avoid redundant buffering.

 0

 50

 100

 150

 200

 250

 300

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps

34

Why GPUstore?

35

35

Why GPUstore?

35

Encryption

Hashing

RAID

35

Why GPUstore?

35

Encryption

Hashing

RAID

35

Why GPUstore?

35

Encryption

Hashing

RAID

35

Obstacles

n Computation sizes vary a lot, depend I/O sizes

n Compared with: long-run, large dataset GPGPU

n No optimizations concerning task sizes in CUDA/
OpenCL

n Resources (e.g. memory) management - (because
storage systems in kernel is special)

36

36

Contribution

n Identified problems in...

n GPU computing for storage

n A framework:

n eases integration into existing code

n REALLY cares about OS kernel

37

37

Design - Challenges

n Asynchrony (maybe not a big deal)

n Redundant buffering

n GPU memcpy and access overhead

n Large dataset

n Managing Resources

38

38

Large dataset

39

Cpy Exe

39

GPUstore

40

40

GPUstore

40

40

GPUstore

40

40

GPUstore

40

40

Design

n Request processor

n Functionality -> services

41

41

Design - Request Scheduling

n Merge

n Split

42

42

Design - Request Scheduling

n Merge

n To reduce memcpy

n Hide GPU memory access latency

n Reduce GPU computing launch overhead

43

43

But ...

44

44

But ...

44

n Computation size matters

44

But ...

44

n Computation size matters

n We want to help existing storage code, in OS
kernel, so:

44

But ...

44

n Computation size matters

n We want to help existing storage code, in OS
kernel, so:

Minimum change, maximum performance

44

Why computation size matters?

45

?

45

Why computation size matters?

n Size ∝ Time - so not too large

45

?

45

Why computation size matters?

n Size ∝ Time - so not too large

n Frameworks of General-purpose GPU not
quite general

45

?

45

Why computation size matters?

n Size ∝ Time - so not too large

n Frameworks of General-purpose GPU not
quite general

n Large data/Long run scientific computing/
HPC

45

?

45

Why computation size matters?

n Size ∝ Time - so not too large

n Frameworks of General-purpose GPU not
quite general

n Large data/Long run scientific computing/
HPC

n Kernel storage code should be latency-aware

45

?

45

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

n Single wimpy GPU core

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

n Single wimpy GPU core

n But there could be more than 1000 cores

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

n Single wimpy GPU core

n But there could be more than 1000 cores

n Long latency GPU memory (Global)

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

n Single wimpy GPU core

n But there could be more than 1000 cores

n Long latency GPU memory (Global)

n But GPU hides mem access latency by scheduling ...

46

?

Why computation size matters?

46

n Size ∝ Number of threads - so not too small

n Why GPU faster?

n Single wimpy GPU core

n But there could be more than 1000 cores

n Long latency GPU memory (Global)

n But GPU hides mem access latency by scheduling ...

n GPU kernel launch overhead

46

?

Why computation size matters?

46

Too large computation

47

Cpy Exe Cpy

47

Too large computation

47

Cpy Exe Cpy

Long waiting/blocking time

47

Too large computation

n GPU can do:

47

Cpy Exe Cpy

Long waiting/blocking time

47

Too large computation

n GPU can do:

n Bidirectional DMA with multiple DMA
engines

47

Cpy Exe Cpy

Long waiting/blocking time

47

Too large computation

n GPU can do:

n Bidirectional DMA with multiple DMA
engines

n Overlapped copy and execution

47

Cpy Exe Cpy

Long waiting/blocking time

47

Too large computation

n GPU can do:

n Bidirectional DMA with multiple DMA
engines

n Overlapped copy and execution

n Do more than one computation at the same
time

47

Cpy Exe Cpy

Long waiting/blocking time

47

Too small computation

48

48

Too small computation

48

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

48

Too small computation

48

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

Merge

Cpy Exe Cpy

48

Too small computation

48

Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy Cpy Exe Cpy

Merge

Cpy Exe Cpy

Merge is not linear addition

48

Okay, but

49

49

Okay, but

49

?
What is the RIGHT size?

49

Okay, but

49

?
What is the RIGHT size?

How to logical-correctly merge/split?

49

GPUstore design

n Functionality Service (simply, code on GPU)

n Using functionality Request to service

50

50

Service-specific request scheduling

51

51

Service-specific request scheduling

n Right size:

51

51

Service-specific request scheduling

n Right size:

n Decided by service itself

51

51

Service-specific request scheduling

n Right size:

n Decided by service itself

n Boot-time benchmark, service logic,
computing features...

51

51

Service-specific request scheduling

n Right size:

n Decided by service itself

n Boot-time benchmark, service logic,
computing features...

n Merge/Split logic:

51

51

Service-specific request scheduling

n Right size:

n Decided by service itself

n Boot-time benchmark, service logic,
computing features...

n Merge/Split logic:

n Done by service too, or simply nothing

51

51

The other “But”

52

52

The other “But”

n Existing code - no big change

52

52

The other “But”

n Existing code - no big change

n In OS kernel: not always be able to control
mem allocation - redundant buffering

52

52

The other “But”

n Existing code - no big change

n In OS kernel: not always be able to control
mem allocation - redundant buffering

n Use functionality as function call

52

52

The other “But”

n Existing code - no big change

n In OS kernel: not always be able to control
mem allocation - redundant buffering

n Use functionality as function call

n Simple: move complex work to service,
service as a function call

52

52

One more thing
n Other GPU resources

n Copy engine

n Overlapping cpy/exec capability

53

53

One more thing
n Other GPU resources

n Copy engine

n Overlapping cpy/exec capability

53

Streams

53

GPUstore

54

54

GPUstore

54

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

54

GPUstore

54

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

54

GPUstore

54

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

54

GPUstore

54

GPU Driver

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

54

GPUstore

54

GPU

GPU Driver

GPU
Services GPU Services

GPUstore Memory
Management

Request
Management

Streams
Management

GPU
Users

Block-IO

FilesystemsVirtual Block Devices
Others

VFS

54

Design - Request Scheduling

n Split

n Efficiently using DMA engines

n Overlapping execution

n Newer GPU (Fermi)/Multi-GPU preferred

55

55

Why merge and split?

n Better performance

n (more fundamental)Simplify GPU computing
integration

n Code deals with single page, single block, small
buffers

n Code accepts a buffer as whole and throws it
onto GPU

56

56

Design - Memory Management

n Allocating memory from GPU computing runtime

n Using memory from existing code

n Remapping them

57

57

Design - Resource Management

n Managing execution and copy through ‘streams’ in
CUDA

n First come first serve now

n No preemption currently

58

58

Evaluation

n eCryptfs

n dm-crypt

n md RAID 6 (see the paper)

59

59

