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Abstract
Many storage systems include computationally expensive
components. Examples include encryption for confidentiality,
checksums for integrity, and error correcting codes for reli-
ability. As storage systems become larger, faster, and serve
more clients, the demands placed on their computational
components increase and they can become performance bot-
tlenecks. Many of these computational tasks are inherently
parallel: they can be run independently for different blocks,
files, or I/O requests. This makes them a good fit for GPUs, a
class of processor designed specifically for high degrees of
parallelism: consumer-grade GPUs have hundreds of cores
and are capable of running hundreds of thousands of con-
current threads. However, because the software frameworks
built for GPUs have been designed primarily for the long-
running, data-intensive workloads seen in graphics or high-
performance computing, they are not well-suited to the needs
of storage systems.

In this paper, we present GPUstore, a framework for
integrating GPU computing into storage systems. GPUstore
is designed to match the programming models already used
these systems. We have prototyped GPUstore in the Linux
kernel and demonstrate its use in three storage subsystems:
file-level encryption, block-level encryption, and RAID 6
data recovery. Comparing our GPU-accelerated drivers with
the mature CPU-based implementations in the Linux kernel,
we show performance improvements of up to an order of
magnitude.
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1. Introduction
Many computational tasks in storage systems are inherently
parallel. For example, in an encrypted filesystem, decryption
of separate blocks can occur concurrently. Similarly, RAID
systems can compute parity independently for separate stripes
or blocks. Hash computation for integrity protection, content-
addressable lookup, or duplicate detection is likewise parallel
across blocks. When busy storage servers receive concurrent
streams of I/O requests, read-heavy workloads permit these
streams to be processed independently. Consequently, as
storage systems grow larger, get faster, and serve more
clients, parallel processing can be used to meet some of their
computational demands.

Processors designed for high degrees of parallelism are
widely available in the form of GPUs. Through frameworks
like CUDA [24] and OpenCL [22], GPUs can run general-
purpose programs. While not well-suited to all types of
programs, they excel on parallel code: consumer GPUs
presently contain up to 2048 cores and are fairly inexpensive;
the GPU we use for evaluation (an NVIDIA GTX 480) has
480 cores and a current market value of about $250, or about
50 cents per core. Core counts in GPUs are also increasing
rapidly: in the last four years, mass market GPUs have grown
from 32 cores to 2048. In comparison, over the same time
period, x86 CPUs have “only” increased their core count
from two to eight. Thus, when faced with highly parallel
computation, there is clear incentive to investigate the use of
GPUs.

We find that some computation in storage systems is,
indeed, well suited to GPU computing. For example, as we
will see in Section 4, a CPU is sufficient for encrypting a
filesystem stored on a traditional hard disk drive: an AES
cipher on the CPU can sustain approximately 150 MB/s
of throughput. Moving the encryption to a GPU, we are
easily able to keep up with a fast SATA-attached SSD with
a sustained read throughput of over 250 MB/s. Further
experiments demonstrate that the drive is the bottleneck,
and our GPU is capable of sustaining nearly 1.4 GB/s of
encrypted read throughput. This suggests that a single GPU
has sufficient processing power to keep up with the rated
transfer speeds of six SSDs or ten hard drives. It also puts



the GPU’s throughput in a class with some of the fastest PCI-
attached flash storage devices currently in production [11].
As the throughput of storage systems rises, GPUs present a
promising way to place computation into those systems while
taking full advantage of the speed of the underlying storage
devices.

There are a number of obstacles, however, to achieving
this level of performance while integrating seamlessly with
existing storage architectures. The first contribution of this
paper is identification of the challenges involved in build-
ing a general-purpose framework for GPU acceleration of
storage systems. The second contribution is the design and
implementation of GPUstore, which gives storage subsys-
tems in the operating system kernel a straightforward and
high-performance interface for running code on the GPU.

The first obstacle is that most frameworks available for
“GPGPU” (general purpose GPU) computing are fundamen-
tally built around different workloads than those encountered
in storage: they are designed for long-running computation
on large datasets, as seen in graphics and high performance
computing. In contrast, storage systems are built, at their
lowest levels, on sectors, pages, stripes, and other relatively
small structures, and rely on a great deal of asynchrony to get
good performance. Requests may arrive at any time, alone
or in bursts, and the computation required to service each
individual request is relatively modest. While there exist GPU
computing frameworks that target alternative types of work-
loads [6, 32], none match up directly with the needs of storage.
For example, PTask [32] uses a dataflow model analogous
to UNIX pipes, while kernel storage systems pass data and
control through kernel-managed abstractions such as the vir-
tual filesystem layer and page cache. Modifying a storage
system to use a pipe-like model would necessitate significant
fundamental changes to its architecture.

The second obstacle is that GPUs have resources that must
be managed, including on-board RAM, DMA engines, and
execution streams. Managing these resources on behalf of
storage systems is more than a matter of convenience for
the implementers of such systems: it has a direct impact
on efficiency and performance as well. By designing a
framework specifically for the types of computation used
in storage systems, we can optimize resource management
for these workloads. For example, GPUs have their own
RAM that is separate from main memory, and there are
overheads associated with moving data between the two; by
taking advantage of the independent nature of computations
on blocks, pages, and files, we can define operations that
change the granularity of requests to minimize memory copy
overheads.

This paper is divided into four parts. First, we detail the
challenges of designing a GPU computing framework for stor-
age systems and present GPUstore. Second, we demonstrate
GPUstore by using it to implement GPU acceleration for
standard Linux subsystems: the dm-crypt encrypted block

device, the eCryptfs encrypted filesystem, and the md soft-
ware RAID layer. Third, we evaluate these implementations,
showing that the GPU-accelerated subsystems outperform
their CPU counterparts by a wide margin—in some cases,
as much as an order of magnitude. We finish by discussing
related work on GPU computing frameworks and instances
of GPU use in storage systems.

2. GPUstore Framework
The goal of the GPUstore framework is to allow the GPU to
be used as a “co-processor” for storage subsystems, fitting
naturally into the abstractions and patterns common to this
domain. Storage subsystems should be able to call functions
that run on the GPU as easily as they call functions from any
other subsystem in the kernel.

GPUstore is built on top of a popular framework for
GPU computing, CUDA [24]. CUDA provides a custom
compiler for C (nvcc) and runtime libraries for launching
nvcc-compiled code on the GPU. CUDA treats the GPU as
a co-processor; the CPU (1) uploads individual programs
called “kernels” (hereafter referred to as “GPU-kernels” to
distinguish them from the operating system kernel); (2)
provides the GPU-kernel with input in the form of memory
buffers copied from main memory using DMA over a PCI-
E bus; (3) waits for the GPU-kernel to complete, copying
back a buffer of results. Embedded in these steps is the
first design challenge faced by GPUstore: managing the
overheads inherent in copying memory across the PCI-E bus.
The CUDA runtime executes in userspace, communicating
with the GPU through a kernel driver. The CUDA runtime
and NVIDIA GPU driver are closed source; we are not able
to modify them, nor are we able to interact with the GPU
without going through CUDA. (An alternative to CUDA,
OpenCL, is more open; however, it less mature, and has
not yet implemented several features that we require.) This
arrangement introduces challenges for the implementation of
GPUstore, but does not fundamentally affect its design.

2.1 GPUstore Design Challenges
To get a clear picture of the requirements for GPUstore, and
thus the challenges it must address, we begin by identifying
potential “client” subsystems. Previous studies [9, 14, 16, 25]
have shown that GPUs excel at encryption, hashing, check-
sums, parity calculation, table lookups, scanning, sorting, and
searching. Many of these tasks are used in storage systems to
provide:
• Security and Confidentiality: eCryptfs, Cryptfs [39],

CFS [4], dm-crypt, and more
• Reliability and Integrity: ZFS [37], software RAID

(such as Linux’s md), I3FS [28], etc.
• Performance: Venti [30], content-addressable storage

such as HydraFS [35] and CAPFS [23], etc.
• New Functionality: in-kernel databases [20], stegano-

graphic filesystems [27], and more



These storage subsystems fall into two main categories:
filesystems, such as eCryptfs and I3FS, and virtual block
device drivers, such as dm-crypt and md . After analyzing the
properties of these two classes of components, we identified
five main factors that guide GPUstore’s design: asynchrony,
redundant buffering, GPU memory copy and access overhead,
latency for large operations, and GPU resource management.

2.1.1 Asynchrony
Both filesystems and virtual block device drivers exploit
asynchrony in order to achieve high performance.

Filesystems work with the Virtual Filesystem (VFS) layer,
and often rely on the kernel page-cache for reading and
writing. By its nature, the page-cache makes all I/O operations
asynchronous: read and write requests to the page cache are
not synchronous unless an explicit sync operation is called
or a sync flag is set when opening a file.

Virtual block device drivers work with the kernel’s block-
I/O layer, which is an asynchronous request processing
system. Once submitted, block-I/O requests are maintained
in queues. Device drivers, such as SCSI or SATA drivers, are
responsible for processing the queue and invoking callbacks
when the I/O is complete.

Some filesystems and block devices, such as NFS, CIFS,
and iSCSI, depend on the network stack to provide their
functionality. Because of the potential for high, unpredictable,
latencies on a network, these subsystems are asynchronous
by necessity.

As a result, most filesystems and block devices work
asynchronously to avoid blocking and waiting. This requires
GPUstore to support asynchronous clients, and it gives us the
opportunity to take advantage of asynchrony for performance
optimizations.

2.1.2 Redundant Buffering
GPU drivers allocate and maintain pages in main memory
for the purpose of copying data back and forth to the GPU.
At the same time, the memory used for block devices and
filesystems is managed (or sometimes allocated) by the kernel
block I/O layer or page cache. This leads to redundant buffers:
in order to move data from a client subsystem to the GPU,
it must be copied from a source buffer to the GPU driver’s
memory, and the results must similarly be copied back. These
redundant memory copies and allocations cost both time and
space, and GPUstore should manage memory in a way that
minimizes or eliminates this overhead. The CUDA framework
has a feature known as “GPU-Direct technology” [24] to
avoid redundant memory buffers between the GPU driver and
certain device drivers, but this is only available to a select set
of device drivers and not to general kernel components.

2.1.3 GPU Memory Copy and Access Overhead
Good performance in a GPU program usually requires oper-
ating on a large dataset [24] for four reasons. First, running
code on the GPU requires the launch of a GPU-kernel, the

overhead of which is hundreds of times larger than a simple
CPU function call. This overhead is constant: with larger data
sizes, the relative penalty of the launch decreases. Second,
inputs and outputs to GPU-kernels must be copied between
main memory and the GPU over the PCI-E bus. While this
is a high-bandwidth bus, it nonetheless imposes overhead.
Third, each GPU core is, individually, much slower than a
CPU core. In order to see a speedup over CPU performance,
a large number of cores must be used, meaning that a large
amount of data must be available for parallel processing. Fi-
nally, GPUs hide the latency of accessing their own memory
by using fast thread switching; maximum performance is
reached with many threads (up to several dozen) per core.

However, computing on large buffers is not the common
case in the Linux kernel’s storage subsystems. For example,
in the dm-crypt block-level encryption driver, data is en-
crypted/decrypted one memory page (4KB) at a time. We
cannot rely on kernel’s I/O scheduler to overcome this limita-
tion, since dm-crypt intentionally splits requests after they
go through the I/O scheduler.

Although it is possible to modify some existing subsys-
tems to support larger requests or to merge small requests,
this is often undesirable; many subsystems are fundamen-
tally designed around processing small amounts of data, and
changing this may require significant re-design. GPUstore
must bridge the gap between clients that make small requests
and the large-data needs of GPU computing.

2.1.4 Latency For Large Operations
While operating on large data blocks reduces GPU overhead,
it also has a downside: computation on the GPU does not
begin until all data has been copied from main memory. This
can hurt both latency and throughput: if executing a single
GPU-kernel at a time, memory copies and computation are se-
rialized rather than pipelined. To deal with this problem, GPU
computing libraries such as CUDA provide asynchronous
memory copies and allow GPU-kernel execution to over-
lap with memory copies. Splitting large computations into
smaller ones and pipelining execution of each fragment with
the memory copy for the next both reduces latency and im-
proves efficiency. Selecting an appropriate size for GPU tasks
is a delicate balancing act that depends on the particulars of
the GPU and GPU-kernel in use. GPUstore should manage
this complexity itself, rather than exposing it to every storage
subsystem.

2.1.5 GPU Resource Management
GPUs have more resources than just computing cores: they
also have on-board memory and many have multiple DMA
engines. There may be many subsystems using a GPU at
once, and a single computer may contain multiple GPUs.
Though current GPUs do not support software thread-level
scheduling on GPU cores, the CUDA stream [24] model
includes higher-level abstraction for computing cores and
DMA copy engines. To provide a general framework for
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Figure 1. The architecture of GPUstore.

GPU computing inside the kernel, these resources must be
shared by all client subsystems, and managed by GPUstore.

2.2 GPUstore Design
Figure 1 shows the architecture of the GPUstore framework
and the context it resides in. In GPUstore, GPU computing
tasks are abstracted into “GPU services.” GPU services are
written as C programs, compiled with the nvcc compiler,
and are launched on the GPU using CUDA. Since CUDA
must run in userspace, we have a “helper” process that runs
outside the kernel and manages interaction with the GPU; this
helper is invisible to GPUstore’s clients, which interact with
it solely through its kernel API. Through careful use of shared
memory and synchronization primitives, we have minimized
the overhead of passing requests between the kernel and
userspace portions of GPUstore.

Requests to services are submitted asynchronously to
GPUstore by client subsystems and managed in a queue.
GPU services may implement service-specific policies for
handling of their requests in the queue. A request indicates
which GPU service is to be invoked and includes two sets of
parameters: a set of buffers in main memory to be used as the
primary arguments to the service, and a set of service-specific
parameters. Service requests are dispatched to the appropri-
ate GPU-kernels by GPUstore, where they are processed
asynchronously. When results are available from the service,
a callback is made to the client. Clients of GPUstore may
optionally choose to treat the calls as synchronous, by block-
ing themselves and waiting for the service to return. Before
dispatching requests, GPUstore is responsible for assigning
them GPU computing resources, which are implemented as
CUDA streams.

The processing of each request to a GPU service includes
three major steps: (1) copy buffers from main memory to
the GPU; (2) invoke the GPU-kernel corresponding to the
requested service; (3) copy results back after completion.
These steps are performed sequentially for each request, but
steps from different requests (either for the same service
or different services) can proceed in parallel, pipelining the
process.

2.2.1 Request Management
To ensure that requests are neither too small, as described
in Section 2.1.3, nor too large, as described in Section 2.1.4,
GPUstore defines merge and split operations on requests.
These operations have precedent in storage systems, with
similar operations being provided by the Linux I/O scheduler.

To invoke a merge, GPUstore defers processing small
requests. Instead, it queues up many requests for the same
service and processes them together. This way, clients that
always produce small requests (such as those that process a
single page at a time) can accumulate large enough requests
to benefit from GPU computing acceleration.

To perform a split, GPUstore divides a large request into
smaller ones and pipelines computation and memory copies.
split helps to reduce latency and hide the GPU memory copy
overhead in the case of requests that are very large. split
is made possible by the fact that storage computations are
typically performed independently on objects such as blocks,
pages, and files; because the service knows the boundaries
of these objects, it can safely partition them into subsets
before sending them to the GPU. Consistency or atomicity
guarantees in the storage system are unchanged, as the split
is invisible to the caller; GPUstore waits for all parts of the
original request to complete before invoking its callback.

Both merge and split need service-specific knowledge to
determine appropriate data sizes and number of requests:
thresholds are dependent on factors such as the relative costs
of memory copies and computation for a particular service.
GPUstore allows services to implement their own request
management and scheduling policies, such as the number of
requests to be batched for merges and the maximum size
for requests before they are split. These policies can be
specified statically in the service implementation or defined
dynamically; for example, by running small benchmarks at
boot time to customize them for particular GPUs.

Of course, merge may increase latency when requests are
small and infrequent, because it waits for several requests
to arrive before processing. Each service in GPUstore can
set its own timeout threshold for merge operations, bounding
the latency that this operation can incur. Still, determining an
appropriate value for the timeout is tricky. It is preferable for
the client subsystems to support large requests natively, giving
them more control over latency. merge is useful primarily for
cases in which it is too difficult to re-architect a subsystem to
operate on larger data sizes. It should be noted that split does
not suffer from the same problem; it introduces no additional
latency, so it can be safely applied by any GPU service.

As we will see in Section 4, the CPU versions of services
sometimes outperform their GPU counterparts for small block
sizes. GPUstore enables services to run in hybrid mode—
each service may set a size threshold for requests; below this
threshold, the service is executed on the CPU.



2.2.2 Memory Management in GPUstore

There are two kinds of memory that GPUstore must manage:
the main memory that is used by the GPU driver for DMA
and on-board GPU device memory. In GPUstore, we use
CUDA’s mapped page-locked memory [24] to bind each
buffer in main memory to a corresponding buffer of the
same size on the GPU device. This one-to-one mapping
simplifies device memory management and gets the highest
performance for memory copies [24]. The downside, however,
is that it makes suboptimal use of host memory: buffers must
remain allocated even when not in active use for copies to or
from the GPU.

In order to remove the redundant buffer overhead de-
scribed in Section 2.1.2, GPUstore supports two different
approaches to client subsystems’ memory allocation. Each
is useful in different types of code. When the client subsys-
tem manages its own buffers in memory, direct allocation
is appropriate. When the client operates on buffers that are
allocated and managed by another kernel subsystem (such as
the page cache), remapping eliminates redundant buffering
for pre-existing allocations.

Direct Allocation from the GPU Driver: A client can
ask GPUstore for pages that have been allocated by the GPU
driver: this is done by re-mapping memory allocated by the
driver into the client’s own virtual memory space. Most of
time, this virtual space is simply the kernel space, because
GPUstore targets kernel components. However, there are
some cases that map to a userspace process, such as filesys-
tems that support mmap()ed I/O. To directly allocate GPU
driver memory, the client calls a vmalloc() or kmalloc()
function provided by GPUstore, rather than the standard ver-
sions of these functions provided by the Linux kernel. The
client may treat the allocated memory exactly as if it came
from the normal allocation functions. When using memory
allocated this way, the client manipulates its data (such as
pages used to store data from files or block devices) directly
in pages that can be DMAed to the GPU. As a result, no extra
buffers are needed in main memory, and most copies between
buffers in main memory are eliminated.

Remapping GPU User’s Memory Pages: The other ap-
proach operates in the opposite direction: instead of allocating
pages from the GPU driver, GPUstore takes existing pages
from the client and maps them into the GPU driver’s space.
Page frames are locked (and DMA to and from them becomes
possible) at the time of remapping. This approach also elimi-
nates redundant buffers, and allows the client system to use
memory that was allocated for it by other kernel subsystems,
such as the page cache. The downside, however, is that this
results in frequent re-mapping of pages, and has a tendency
towards use of many small fragmented pages.

2.2.3 GPU Stream Management
GPUs can execute multiple GPU-kernels concurrently. This
introduces scheduling of execution. A GPU can also have
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Figure 2. Storage services implemented with GPUstore.

Subsystem Total LOC Modified LOC Percent
dm-crypt 1,800 50 3%
eCrytpfs 11,000 200 2%
md 6,000 20 0.3%

Table 1. Approximate lines of code required to call GPU
services using GPUstore.

multiple DMA engines, enabling it to sustain multiple con-
current copies between main memory and GPU device mem-
ory. This introduces scheduling of copies. Since a computer
system can have multiple GPUs, scheduling of execution
and copies between tasks and across GPUs can be quite
complicated. In the CUDA framework, the copy and exe-
cution resources are abstracted into “streams” [24]. Streams
are the resources that GPUstore manages for scheduling
service execution. Although it is not currently possible to
do software-controlled preemption on GPUs, a stream still
represents a non-preemptible computing or copy resource.
GPUstore maintains GPU streams and assigns them to ser-
vice requests for service execution and memory copies. Our
current GPUstore implementation uses a simple first-come-
first-served policy to schedule streams. However, it wold be
straightforward, as future work, to adopt scheduling algo-
rithms from the related work discussed in Section 5.

3. Implementing Accelerated Storage
We have used GPUstore to accelerate three existing Linux
kernel storage components. We enhanced encrypted storage
with dm-crypt and eCryptfs, and the software RAID driver
md. We chose these three subsystems because they interact
with the kernel in different ways: md and dm-crypt imple-
ment the block I/O interface, and eCryptfs works with the
virtual filesystem (VFS) layer. The architecture of these im-
plementations is shown in Figure 2.

The design of GPUstore ensures that client subsystems
need only minor modifications to call GPU services. Table 1
gives the approximate number of lines of code that we
had to modify for our example subsystems. The lines of
code reported in this table are those in the subsystems
that are modified to call GPUstore, and do not include
the lines of code used to implement the GPU services.
Linux storage subsystems typically call out to other re-



usable kernel components to perform common operations
such as encryption: essentially, we replace these with calls to
GPUstore and make minor changes to memory management.

3.1 Encrypted Storage
Encrypted storage is a good match for the GPU: while
encryption and decryption are computationally expensive,
most ciphers used by storage systems are parallelizable. This
parallelization can happen at different levels, such as files,
requests or disk sectors.

We added support for GPUstore-accelerated ciphers to the
Linux cryptography subsystem, where they can be selected
by any client of the Linux cryptography API; dm-crypt and
eCryptfs are already make use of this API. To achieve high
levels of performance, modest changes are required in the
storage systems. These changes address the buffer allocation
and overhead issues discussed in Section 2.2.

Although there exist dedicated encryption accelerators
and CPUs with special encryption features (such as AES-
NI), GPUs are nonetheless quite competitive. As we will
see in Section 4, our AES cipher is able to sustain a rate of
over 4 GB/s; results reported for a high-end CPU with AES-
NI [19] are less than half of this speed. GPU implementations
of ciphers are also much more flexible: since they are “just
code,” they allow for any cipher to be implemented, rather
than “baking in” support for a particular cipher into hardware
as AES-NI does.

3.1.1 dm-crypt

dm-crypt is a crypto target in Linux’s device mapper frame-
work. It works as a virtual block device, running on top
of other block devices such as disks. dm-crypt provides
an encrypted view of the underlying devices by performing
block-level encryption. It works asynchronously, as do most
other block drivers.

dm-crypt interacts with the block I/O layer of the Linux
kernel, taking I/O requests and splitting them into 4KB pages,
which are encrypted or decrypted as required. As we will
see in Section 4.1, for 4KB blocks, the size used by the
unmodified dm-crypt, GPU overheads dominate and CPU
encryption is faster. In our modified version of dm-crypt,
we leave the task of combining these 4KB pages into larger
blocks to the GPUstore framework: it relies on the merge
operation described in Section 2.2.1 to coalesce several small
requests into one large one. We use GPUstore’s memory
allocator to request memory pages from the GPU device
driver so that the data manipulated by dm-crypt is ready for
direct DMA copy to the GPU. This means that our changes
to dm-crypt are minor: our implementation changes only
approximately 50 lines of code, less than 3% of the 1,800
total lines in dm-crypt.

3.1.2 eCryptfs
eCryptfs, which is derived from Cryptfs, is a “stacking”
filesystem. To use it, one creates another standard Linux

filesystem, such as EXT3, and mounts eCryptfs “on top” of
it. eCryptfs uses the underlying filesystem as a backing store
and handles encryption and decryption of the files stored to
it. It is part of the mainline Linux kernel, and is used for
user home directory data security in many Linux distributions
such as Ubuntu and Fedora.

To get good performance from eCryptfs, we made two
changes. The first was to change the cipher mode from CBC
to CTR: CBC encryption cannot be parallelized because
ciphertext from each block is used as input to the following
block, creating dependencies. CTR, in contrast, uses a counter
to provide non-uniform input, creating no such dependencies
and allowing us to evaluate both read and write (decryption
and encryption) workloads. In practice, implementations
could still choose CBC mode and forgo GPU acceleration for
encryption while still taking advantage of it for decryption.
This would be a good tradeoff for read-heavy workloads.

The second change was to enable eCryptfs to perform cryp-
tography on larger blocks of data. Like dm-crypt, eCryptfs
uses page-sized units for cryptographic operations, which
means that even when a large I/O buffer is used by higher
level applications, eCryptfs still splits it into small pages
and processes them one by one. This is not a problem when
there are many concurrent readers and writers, as GPUstore’s
merge operation can coalesce requests from different I/O
streams into large GPU requests. However, with a single
reader or writer, large individual I/O requests must be sup-
ported in order to attain high performance. We therefore mod-
ified eCryptfs to support the readpages interface, which
allows the kernel’s page cache layer to pass multi-page reads
directly to the filesystem. Large write support was provided
by a replacement write operation at the VFS layer instead
of writepages due to intricacies of the Linux kernel page
cache system. Implementing these multi-page read and write
interfaces enabled the kernel’s existing mechanisms, such as
readahead, I/O scheduling, and caching, to also take advan-
tage of GPU performance enhancements.

Despite the fact that we made more changes to eCryptfs
than dm-crypt, our modifications to eCryptfs are still rela-
tively small: we modified approximately 200 lines of code, or
less than 2%, of eCryptfs. Those changes also include remap-
ping eCryptfs pages into the GPU driver’s address space for
GPU service requests; these pages are managed by the ker-
nel’s page cache, and it is therefore infeasible to allocate them
from the GPU driver.

3.2 RAID 6 Recovery
RAID services may be provided in hardware or in software;
the Linux kernel includes a software RAID implementation
called md. RAID 6, which can continue operating with two
failed disks, is widely deployed as a space-efficient, fault-
tolerant RAID configuration [7]. RAID 6 employs erasure
codes to allow a set number of disks in a system to fail with no
data loss. While many proprietary RAID 6 codes exist [3, 8],



the Linux kernel includes a RAID 6 implementation based
on Reed-Solomon coding [31].

RAID 6 coding, which occurs during write workloads,
has efficient SSE implementations for x86 and x86-64 pro-
cessors. Unfortunately, the available vector instructions are
not sufficient for RAID 6 decoding, or data recovery, which
must occur during reads when a disk has failed [1]. The pri-
mary issue is that Reed-Solomon coding with an eight-bit
word size relies on a lookup table with 256 entries, which is
not vectorizable with current CPU instructions, resulting in
serialized access to these tables.

We have implemented GPU-accelerated data recovery
for RAID 6 and integrated it into the md device driver.
Our implementation of “degraded mode” makes use of the
fact that GPUs have hundreds of cores with which to issue
table lookups, along with high-speed scratch memories that
service several accesses simultaneously [24]. Previous work
has reported that this organization allows a GeForce GTX
285 GPU to access 41.1 table entries per clock cycle, on
average [10]. Our recovery code handles the particularly
challenging case where two data strips within a stripe holding
data have failed: in this case, all remaining data strips, plus
both parity disks, must be used to recover the missing data.
Since RAID 6 distributes parity strips across the entire disk
array, failure of any two disks will trigger this recovery case.

While RAID stripes can be large enough in size to over-
come GPU overheads, the md driver, like dm-crypt, is funda-
mentally organized around processing individual 4KB mem-
ory pages. md is a very complex system that includes working
threads, asynchronous parity operations, and multiple internal
request queues. We decided not to modify md to operate on
larger requests, as that would require fundamental changes
in its architecture. Instead, we rely on GPUstore’s merge to
deal with small requests, and use the allocator provided by
GPUstore to allocate memory pages from the GPU driver’s
space. As a result, our GPU integration for md requires only
20 lines of changes, most of which are simply saving buffer
pointers for safe sharing of asynchronous calls.

4. Evaluation
We benchmarked the GPUstore framework itself as well as
the three storage subsystems that we adapted to use it. We
used two machine configurations for our evaluation. The
first, system S1, has an Intel Core i7 930 Quad-Core CPU,
6 GB memory, and uses a 32 GB Intel X25-E SSD. The
SSD is SATA-attached, and has rated read and write speeds
of 250 MB/s and 170 MB/s respectively. S1 is used for
filesystem and block device tests. The second, S2, has an
Intel Core i7 975 Quad-Core CPU, 6 GB DDR3 memory, and
a 2 port Fibre Channel 4 Gb adapter. It is connected to two
switched JBODs each containing sixteen 750 GB 7200 RPM
SATA disks, for a total of 32 disks. S2 is used for the RAID
benchmarks. Both S1and S2 have an NVIDIA GTX 480 GPU.
This GPU has 480 cores running at 1.4GHz and 1.5 GB of

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Block size

Asynchronous
Synchronous

Figure 3. Throughput for a GPU-kernel that copies data, but
performs no computation

.

GDDR5 RAM. Both systems run the 2.6.39.4 Linux kernel
and use CUDA version 4.0.

All benchmarks were run without use of hybrid mode in
GPUstore; that is, GPU services were not allowed to fall
back to the CPU for small requests. This has the effect of
clearly illustrating the points where the GPU implementation,
by itself, underperforms the CPU, as well as the points
where their performance crosses. With hybrid mode enabled,
GPUstore would use the CPU for small requests, and the
CPU performance can thus be considered an approximate
lower bound for GPUstore’s hybrid mode performance.

In many cases, our GPU-accelerated systems are capable
of out-performing the physical storage devices in our systems;
in those cases, we also evaluate them on RAM-backed storage
in order to understand their limits. These RAM-based results
suggest that some GPUstore accelerated subsystems will
be capable of keeping up with multiple fast storage devices
in the same system, or PCI-attached flash storage, which is
much faster than the drives available for our benchmarks.

4.1 GPUstore Framework Performance
Our first microbenchmark examines the effect of block sizes
on GPUstore’s performance and compares synchronous
operation with asynchronous. On S1, we called a GPU service
which performs no computation: it merely copies data back
and forth between main memory and GPU memory. Note that
total data transfer is double the block size, since the data block
is first copied to GPU memory and then back to main memory.
In Figure 3, we can see that at small block sizes, the overheads
discussed in Section 2.1.3 dominate, limiting throughput.
Performance steadily increases along with block size, and
reaches approximately 4 GB/s on our system. This benchmark
reveals three things. First, it demonstrates the value to be
gained from our merge operation, which increases block sizes.
Second, it shows a performance boost of 30% when using
asynchronous, rather than synchronous, requests to the GPU.
Finally, it serves as an upper bound for performance of GPU
services, since our test service performs no computation.
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Figure 5. dm-crypt throughput on an SSD-backed device.

Our second microbenchmark shows the effects of our op-
timization to remove redundant buffering and the split oper-
ation. This benchmark, also run on S1, uses the AES cipher
service on the GPU, and the results can be seen in Figure 4.
The baseline GPU result shows a speedup over the CPU ci-
pher, demonstrating the feasibility of GPU acceleration for
such computation. Our split operation doubles performance at
large block sizes, and eliminating redundant buffering triples
performance at sizes of 256 KB or larger. Together, these two
optimizations give a speedup of approximately four times,
and with them, the GPU-accelerated AES cipher achieves
a speedup of 36 times over the CPU AES implementation
in the Linux kernel. The performance levels approach those
seen in Figure 3, implying that the memory copy, rather than
the AES cipher computation, is the bottleneck.

4.2 dm-crypt Sequential I/O
Next, we use the dd tool to measure raw sequential I/O speed
in dm-crypt. The results shown in Figure 5 indicate that
with read and write sizes of about 1MB or larger, the GPU-
accelerated dm-crypt easily reaches our SSD’s maximum
throughput (250MB/s read and 170MB/s write). The CPU

 0

 200

 400

 600

 800

 1000

 1200

 1400

4 KB 16 KB 64 KB 256 KB 1 MB 4 MB

Th
ro

ug
hp

ut
 (M

B/
s)

Read/Write size

GPU Read
GPU Write
CPU Read
CPU Write

Figure 6. dm-crypt throughput on a RAM-backed device.
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Figure 7. eCryptfs throughput on an SSD-backed filesystem.

version is 60% slower; while it would be fast enough to
keep up with a mechanical hard disk, it is unable reach the
full potential of the SSD. Substituting a RAM disk for the
SSD (Figure 6), we see that the GPU-accelerated dm-crypt

was limited by the speed of the drive: it is able to achieve
a maximum read throughput of 1.4 GB/s, more than six
times as fast as the CPU implementation. This is almost
exactly the rated read speed for the ioDrive Duo, currently
the third fastest SSD in production [11]. As the throughput of
storage systems rises, GPUs present a promising way to place
computation into those systems while taking full advantage
of the speed of the underlying storage devices.

4.3 eCryptfs Sequential and Concurrent Access
Figure 7 and Figure 8 compare the sequential performance for
the CPU and GPU implementation of eCryptfs. We used the
iozone tool to do sequential reads and writes using varying
block sizes and measured the resulting throughput. Because
eCryptfs does not support direct I/O, effects from kernel
features such as the page cache and readahead affect our
results. To minimize (but not completely eliminate) these
effects, we cleared the page cache before running read-only
benchmarks, and all writes were done synchronously.

Figure 7 shows that on the SSD, the GPU achieves
250 MBps when reading, compared with about 150 MBps
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Figure 8. eCryptfs throughput on a RAM-backed filesystem.

for the CPU, a 70% speed increase. Unlike our earlier bench-
marks, read speeds remain nearly constant across all block
sizes. This is explained by the Linux page-cache’s readahead
behavior: when small reads were performed by iozone, the
page-cache chose to issue larger reads to the filesystem in
anticipation of future reads. The default readahead size of
128 KB is large enough to reach the SSD’s full read speed of
250MB/s. This illustrates an important point: by designing
GPUstore to fit naturally into existing storage subsystems,
we enable it to work smoothly with the rest of the kernel.
Thus, by simply implementing the multi-page readpages

interface for eCryptfs, we enabled existing I/O optimizations
in the Linux kernel to kick in, maximizing performance even
though they are unaware of GPUstore.

Another surprising result in Figure 7 is that the GPU write
speed exceeds the write speed of the SSD, and even its read
speed, when block size increases beyond 128 KB. This hap-
pens because eCryptfs is, by design, “stacked” on top of
another filesystem. Even though we take care to sync writes
to eCryptfs, the underlying filesystem still operates asyn-
chronously and caches the writes, returning before the actual
disk operation has completed. This demonstrates another
important property of GPUstore: it does not change the be-
havior of the storage stack with respect to caching, so client
subsystems still get the full effect of these caches without any
special effort.

We tested the throughput limits of our GPU eCryptfs
implementation by repeating the previous experiment on
a RAM disk, as shown in Figure 8. Our GPU-accelerated
eCryptfs achieves more than 700 MBps when reading and
420 Mbps when writing. Compared to the CPU, which does
not perform much better than it did on the SSD, this is a
speed increase of nearly five times for reads and close to three
times for writes. It is worth noting that Linux’s readahead
mechanism not only “rounds up” read requests to 128 KB, it
“rounds down” larger ones as well, preventing eCryptfs from
reaching even higher levels of performance.

Finally, we used filebench to evaluate eCryptfs under
concurrent workloads. We varied the number of concurrent
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Figure 10. Throughput for the RAID 6 recovery algorithm
with and without optimizations to avoid redundant buffers.

writers from one to one hundred, and used the RAM-backed
filesystem. Each client writes sequentially to a separate file.
The effects of GPUstore’s merge operation are clearly visible
in Figure 9: with a single client, performance is low, because
we use relatively small block sizes (128 KB and 16 KB) for
this test. But with ten clients, GPUstore is able to merge
enough requests to get performance on par with dm-crypt at
a 1 MB blocksize. This demonstrates that GPUstore is useful
not only for storage systems with heavy single-threaded
workloads, but also for workloads with many simultaneous
clients. While block size still has a significant effect on
performance, GPUstore is able to amortize overheads across
concurrent access streams to achieve high performance even
for relatively small I/O sizes.

4.4 md RAID 6 Data Recovery
As with encryption, the performance of our GPU-based
RAID 6 recovery algorithm increases with larger block sizes,
eventually reaching six times the CPU’s performance, as seen
in Figure 10.

We measured the sequential bandwidth of a degraded
RAID 6 array consisting of 32 disks in our S2 experiment
environment. The results are shown in Figure 11. We find
that GPU accelerated RAID 6 data recovery does not achieve
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RAM-backed devices

significant speedup unless the array is configured with a large
chunk size, or strip size. Interestingly, the speedup is caused
by decreasing CPU performance. We believe the decrease is
caused by the design of md’s I/O request memory pool, which
does not efficiently handle large numbers of requests on large
stripes. Because GPUstore merges these requests into larger
ones, it avoids suffering from the same problem.

We also measured the degraded mode performance of a
RAID 6 array in the S1 system using 6 RAM disks. The
results are shown in Figure 12. We find that our previous re-
covery experiment was limited by the speed of the hard disks,
and both CPU and GPU implementations would be capable
of faster performance given faster disks. With RAM disks,
the CPU based recovery reaches the maximum throughput
we saw in Figure 10, while the GPU version is still far from
its own maximum in the figure.

However, with chunk sizes below 16KB, the throughputs
on RAM disk arrays are actually much higher than we saw
for the raw algorithm in Figure 10. This result demonstrates
the effectiveness of the request merge operation in GPUstore.
merge was in use for recovery benchmark, but not the raw
algorithm test, and the former therefore saw larger effective
block sizes.

5. Related Work
There has been much work [26, 33] on accelerating storage
systems by enhancing I/O patterns, improving data layout,
effective caching, performing readahead, etc. With more and
more modern storage systems providing value-added fea-
tures such as encryption, RAID, and content-addressability,
the computational requirements of storage systems increases,
and can become a bottleneck. GPUstore focuses on the com-
putational needs of storage systems, enabling acceleration on
highly-parallel GPUs by providing a framework for integrat-
ing them into the storage stack.

GPU Computing Frameworks: There are a number
of existing GPGPU computing frameworks. These include
CUDA [24], OpenCL [22], hiCUDA [15], CUDALight [34],
and Brook [6]. Users of these frameworks typically load large
datasets onto the GPU and run very expensive computations
synchronously, such as graphics processing or physics sim-
ulations. As a result, these traditional GPGPU frameworks
place less emphasis on the ability to launch many small tasks
on short timescales, and do not include optimizations like
our split and merge operations for the small-task workloads
found in storage systems.

In-kernel GPU Computing: Gdev [21] and Barracuda [5]
bring GPU computing into the OS kernel. Barracuda uses
a microdriver-based design and a userspace helper, but pro-
vides only a bare minimum synchronous API with no re-
quest scheduling, merging, splitting, or memory management.
Gdev provides a “native” in-kernel CUDA library as well as
a lower-level API. Gdev and GPUstore are complementary:
Gdev concentrates on providing basic access to the GPU from
the kernel while GPUstore focuses on higher-level access
tailored specifically for storage systems. We plan to replace
GPUstore’s userspace helper with Gdev, which will allow
GPUstore to run entirely inside the kernel.

GPUs in Storage Systems: Curry et al. introduced
Gibraltar, a software RAID infrastructure that uses a GPU
to perform Reed Solomon coding [9]. It allows for parity-
based RAID levels that exceed the specifications of RAID 6,
increasing the resiliency of the array. Lack of a kernel frame-
work for GPU computing forced Gibraltar to be implemented
in userspace. As a result, the builders of Gibraltar had to write
over two thousand lines of code to re-implement storage stack
features that already exist in the kernel, including caching,
victimization, asynchronous flushing, and request combining.
Being placed outside of the kernel also creates challenges for
robustness, ease of use, and administration. GPUstore is a
general-purpose framework for GPU storage acceleration and
enables existing storage infrastructure to be re-used. With it,
software RAID can be GPU-accelerated by replacing a few
memory management and function calls. Future versions of
Gibraltar may use GPUstore to move back inside the kernel.

Gharaibeh et al. [13] implemented GPU-accelerated hash-
ing algorithms for content-addressed storage systems. Bha-
totia et al. [2] presented Shredder, a framework specially



designed for content-based chunking to support incremental
storage and computation. These represent specific instances
of GPU computing applied to storage, and are good exam-
ples of the benefits that can be gained from GPUs in storage
systems. GPUstore is a general framework, designed to aid
the implementation of applications like these and others.

GPU Resource Management: The asymmetric dis-
tributed shared memory designed by Gelado et al. [12] eases
memory management for GPU computing; GPUstore man-
ages computing resources such as cores, DMA engines, and
streams in addition to memory. Sponge [18] provides a com-
pilation framework that concentrates on optimizing data-flow
management while GPUstore is a runtime framework. Hy-
dra, created by Weinsberg et al. [38], unifies heterogeneous
computing devices, and could, in theory, be used to run GPU
code from CPU-based storage systems; however, it depends
on functionality that current GPUs do not support.

PTask [32] optimizes data-flow in GPU tasks by providing
a channel abstraction analogous to UNIX “pipes” between
GPU-kernels. While PTask is ideal for programs that use
pipe-like communication, it is less suited for components in
the kernel storage stack; it organizes programs in explicit
dataflow graphs and manages all main memory that will be
transferred to the GPU. Neither of these properties mesh well
with the kernel, where different parts of the storage stack
interact through kernel-managed structures and interfaces
such as the page cache and I/O schedulers. GPUstore also in-
cludes optimizations that are useful to storage systems, such
as split and merge, that are not present in PTask. PTask in-
cludes a scheduler that integrates with the operating system’s
scheduler to preserve priorities. It also includes optimizations
that allow that two back-to-back GPU kernels to re-use com-
putation results without an extra copy to host memory and
back. Learning from PTask, we hope to add similar features
to GPUstore in the future.

System-level Tasks: While we concentrate on use of
GPUstore in storage systems, it has wider potential: we have
experimented with using GPUstore in other kernel subsys-
tems. In this respect, it is related to a number of attempts
to accelerate system-level tasks with the GPU. These in-
clude: PacketShader [14] and SSLShader [19] for IP routing
and SSL session acceleration; Gnort [36] for accelerating
network intrusion detection; Linux kernel cryptography ac-
celeration [17]; and program analysis with EigenCFA [29].
Each of these efforts focuses on acceleration of a single task;
GPUstore is complementary to them, because it provides a
general framework which can be used by many kernel sub-
systems.

6. Conclusion
We have presented GPUstore, a general-purpose framework
for using GPU computing power in storage systems within
the Linux kernel. By designing GPUstore around common
storage paradigms, we have made it simple to use from

existing code, and have enabled a number of optimizations
that are transparent to the calling system. We modified several
standard Linux subsystems to use GPUstore, and were
able to achieve substantial improvements in performance by
moving parts of the systems’ computation on to the GPU. Our
benchmark results also demonstrate the effectiveness of the
optimizations adopted by GPUstore for matching the storage
subsystems requirements. We have released GPUstore as
part of kgpu, our general framework for kernel-level GPU
computing. The code is licensed under the GPL and can be
downloaded from http://code.google.com/p/kgpu/.
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