
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x
1

INVITED PAPER Special Issue on Network Virtualization

An Architecture For International Federation of Network Testbeds

Robert RICCI†a), Gary WONG†b), Leigh STOLLER†c), and Jonathon DUERIG†d), Nonmembers

SUMMARY Testbeds play a key role in the advancement of network
science and the exploration of new network architectures. Because the
scale and scope of any individual testbed is necessarily limited, federation
is a useful technique for constructing testbeds that serve a wide range of
experimenter needs. In a federated testbed, individual facilities maintain
local autonomy while cooperating to provide a unified set of abstractions
and interfaces to users. Forming an international federation is particularly
challenging, because issues of trust, user access policy, and local laws and
regulations are of greater concern that they are for federations within a single
country. In this paper, we describe an architecture, based on the US National
Science Foundation’s GENI project, that is capable of supporting the needs
of an international federation.
key words: testbeds, federation, network, GENI

1. Introduction

Testbed facilities, which provide experimenters with the abil-
ity to run protocols and applications on real or emulated
networks, are key resources in the networking and systems
research and education communities. Because they are pro-
grammable, controlled environments, they give researchers
an excellent platform for investigating future directions in
Internet architecture. Traditionally, each facility has been
built and operated as a stand-alone facility: each testbed
is owned and operated by a different entity, and the focus
of research on testbed control frameworks has considered
problems of designing, building, operating, and improving
individual facilities [1]–[4].

This model, however, is changing: as the needs and
expectations of testbed users expand, it is increasingly hard
to satisfy those needs with a set of isolated facilities. This
leads to a federated model, in which individual testbeds work
together to provide their users with a common framework
for discovering, reserving, and using resources. Federated
testbeds may be built out of existing stand-alone facilities,
new facilities specifically designed for federation, or a com-
bination of the two. A framework for testbed federation must
establish trust between members of the federation, but allow
each member of the federation to retain policy autonomy;
that is, the ability to make local decisions regarding which
users and experiments are allowed to use it. It should also

Manuscript received September 14, 2012.
Manuscript revised January 1, 2012.

†The University of Utah, Salt Lake City, UT, USA.
a) E-mail: ricci@cs.utah.edu
b) E-mail: gtw@cs.utah.edu
c) E-mail: stoller@cs.utah.edu
d) E-mail: duerig@cs.utah.edu

DOI: 10.1587/transcom.E0.B.1

afford each federated facility operational autonomy, mean-
ing that the federate should remain usable regardless of the
operational state of other members of the federation.

As federated testbeds grow in scale and scope, they
naturally begin to cross national boundaries. This presents
a number of new challenges, and strengthens the needs for
autonomy among federates: a facility spanning the globe is
likely to have more distinct resource owners, with a wide
variety of operations models, access policies, and legal con-
siderations. In addition, as the size of a federation increases,
the likelihood that every federate is up and operational at
any point in time declines, so it is important that failure of
remote components does not impact users’ abilities to use
other parts of the federation. In many cases, participants in an
international federation already participate in a national fed-
eration: this makes it necessary to support inter-federation
(federations of federations), allowing individual facilities to
participate in more than one federation at a time.

In this paper, we present an architecture for federation
of network testbeds that takes into account the needs of fed-
eration between nations. We begin by providing background
information on the architecture of the US National Science
Foundation’s GENI project [5]. We then proceed to describe
the goals and principles that inform ProtoGENI, our real-
ization of the GENI architecture. In Section 2, we describe
how each federated facility can be operationally independent
while offering users the impression of a single unified facility.
In Section 3, we turn our attention to issues of trust between
federated facilities and federations-of-federations. In Sec-
tion 4, we put these pieces together to demonstrate how an
international inter-federation can be constructed using this
architecture, combining federations run by different coun-
tries into a cohesive whole, while each federation retains its
own local operational and authorization policy.

1.1 GENI Architecture

The architecture of ProtoGENI builds on the GENI frame-
work. GENI’s architecture is, in turn, based on the “Slice-
based Federation Architecture” (SFA) [6], which has been
developed by the GENI community. The SFA is so named be-
cause it centers around partitioning the physical facility into
“slices,” each of which can be running a different network
architecture or experiment inside. Physical resources, such
as PCs, routers, switches, links, and allocations of wireless
spectrum are known as “components”; when a user allocates
resources on a component, the set of resources they are given

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers



2
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

comprises a “sliver.” This sliver could be a virtual machine, a
VLAN, a virtual circuit, or even the entire component. Each
sliver belongs to exactly one slice: in essence, a slice is a
container for a set of slivers.

There are two key types of principals in GENI:
Aggregate Managers (AMs) are responsible for man-

aging the resources (components) on which users will create
networks and run experiments. AMs are responsible for
the allocation of their resources, and may make decisions
about who is authorized to use them. An individual AM may
manage a collection of components, called an aggregate; in
practice, each facility in GENI runs a single AM that man-
ages all of its resources, and the largest aggregates contain
hundreds of nodes and thousands of links.

Users access components from the federated testbed to
run an experiment or a service. A user is free to create slices
which span multiple AMs, and each user is authorized by
one of the facilities in the federation.

Principals and many other objects in the system are
uniquely named by a Uniform Resource Name (URN) [7].
The URN scheme that we use [8] is hierarchical—each au-
thority is given its own namespace, which it can further
subdivide if it chooses. To maintain partitioned trust, each
authority is prohibited, through mechanisms described in
Section 3 from creating URNs outside of its namespace. An
example of a GENI URN is:

urn:publicid:IDN+

Authority︷ ︸︸ ︷
emulab.net+user+

ID︷︸︸︷
jay

Because the URN contains the identity of the authority that
issued it (in this example “emulab.net”), it is possible to
tell which authority “owns” the object without resorting to a
lookup service.

At a high level, testbeds federate in this framework by
forming trust relationships: if facility A trusts facility B,
then A is willing to trust B’s statements about what users
it has, what slices they have created, and what resources
B offers. Note that this does not preclude A from having
local allocation policies: just because it recognizes B’s users
does not obligate it to satisfy all requests they might make.
Arrangements regarding “fair sharing,” etc. can be made as
part of the federation agreement. Trust relationships need
not be symmetric: A may choose to trust B even if that trust
is not reciprocated.

2. Enabling Independent Operation

We build on the basic GENI architecture by adding three
new kinds of entities into the federation, and by providing an
expanded API for AMs.†

Identity Providers (IdPs) attest to the identity of users
by forming names that uniquely identify them, then issuing

†Here, we limit our discussion to the properties of ProtoGENI
that are relevant to international federations; more details on the
topics in this section, including a set of principles for distributed
facility design, can be found in [9]

CLEARINGHOUSE

AGGREGATE MANAGER

SLICE AUTHORITIES

IDENTITY PROVIDER

USER

E

B

C D

A

U

Fig. 1 An example of entities interacting within a federa-
tion. The principals are described in Sections 1.1 and 2; the
arrows indicate trust relationships, described in Section 3.

those users certificates that they can use to prove their identi-
ties to other services. IdPs can choose to accept responsibility
for enforcing arbitrary policies covering users and names.

Slice Authorities (SAs) are responsible for creating
slice names and granting users the necessary credentials to
manipulate these slices. By issuing a name for a slice, the
SA agrees to be responsible for the actions taken within the
slice. An SA may be an institution, a research group, a
governmental agency, or other organization.

A user has an account with an SA, called the “home”
SA; this SA vouches for the identity of the user, and in most
cases, is willing to create slices for the user. The user is,
however, free to create slices using any SA that, according to
its own policies, is willing to be responsible for that user’s
actions.

Establishing trust in this pairwise fashion does not scale
well to large federations. ProtoGENI’s sole centralized ser-
vice, the Clearinghouse (CH), is used to make this process
more convenient: it allows federates to publish the certifi-
cates that are used to establish trust, and to discover the
certificates of other federates. It is important to note that this
does not mandate specific trust relationships: as described
in [10], a federate may choose not to trust some certificates
stored at the clearinghouse, or may choose to trust additional
certificates that are not registered there.

The clearinghouse also serves a second purpose: it acts
as a registry where various objects can be looked up. Notably,
users can ask the clearinghouse for a list of all registered
federates to bootstrap the process of resource discovery, as
described in the next section. In both of these roles, the infor-
mation provided by the clearinghouse changes infrequently,
and can be safely cached for long periods of time (days or
weeks).

ProtoGENI has been designed to keep federates as
loosely coupled as possible; they do not depend on central
services, and the only parts of the system involved in a given



RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
3

operation are those directly affected by it. In the extreme
case, if a federate is cut off from communication with the
rest of the federation, users who can reach the federate are
still able to create slices and slivers on it.

This is possible because ProtoGENI goes to great
lengths to ensure that minimal state synchronization is re-
quired between AMs, SAs, and the CH. This section de-
scribes the interactions these services have with each other
and with users. We concentrate on where ProtoGENI stores
state, how it avoids centralized services, and how failures
are managed. Because the full ProtoGENI APIs [11] are too
large to cover in depth here, we introduce only the operations
necessary to understand state management.

2.1 Slice State

ProtoGENI does not attempt to guarantee a globally consis-
tent view of the state of each slice. Instead, it uses a loose
consistency model in which each of the individual authorities
and managers maintain their own state.

The authoritative source for user and slice records is the
SA that issued them, and the authoritative source for sliver
information is the AM on which the sliver exists. Because the
URNs used in ProtoGENI encode the issuing authority, it is
possible to determine the correct authority to query simply by
examining an object’s name. If, for example, a AM wishes
to find out more about a user who has created a slice on it,
the AM may use the user’s URN to identify and query the
user’s home SA.

When a sliver is created, the AM is not provided with
a global picture of the slice: the sliver request need only
contain the resources on the AM in question and any links
to directly adjacent AMs that need to be configured as part
of the slice. Information about the rest of the slice is not
needed for the AM to create its slivers, and maintaining a
global view would require that the AM be notified of changes
anywhere in the slice, even if those changes do not directly
affect it.

2.2 Resource Reservation Across AMs

Slices that cross AMs present a dilemma: we would ideally
like the process of allocating or updating slivers to be atomic
across all aggregates. As a concrete example, consider a
slice with existing slivers from two different AMs. We would
like to make a change on both slivers, but only if both of the
changes succeed. If either one is denied, we want to roll back
to the original configuration without losing existing resources
or otherwise changing the slivers. However, the loosely-
coupled nature of the federation precludes using global locks
or global transactions.

Instead, we consider the resource allocation process on
each AM to be a separate local transaction, and model the life
cycle of each sliver as a state machine. We designed the state
machine with minimal abstraction in mind, allowing clients
or other intermediaries to build a transactional abstraction
across AMs on top of our lower-level per-AM API. Each

sliver can be in one of four states:
1. The Null state, in which the sliver does not exist (has

not yet been created, or has been destroyed).
2. The Ticket state, in which the user holds a ticket promis-

ing resources, but the sliver is not instantiated on the
component.

3. The Sliver state, in which the sliver has been instanti-
ated, but the user does not hold a valid ticket.

4. The Sliver and Ticket state, in which the user has both
an instantiated sliver and a ticket.
This state machine makes sliver manipulation a three-

step process:
1. Get the list of currently available resources from each

AM.
2. Request a new ticket on each AM; this step obtains

a guarantee of resources, but does does not actually
instantiate a new sliver or modify an existing sliver.

3. Redeem the tickets at each AM to “commit” the re-
source change.
Steps 1 and 2 are not atomic: if other users are simul-

taneously trying to reserve resources to their own slices, the
second step may fail. In a distributed system like ProtoGENI,
it is not feasible to lock the resource lists for any length
of time. Since contention for resources is generally rare in
ProtoGENI, a form of optimistic concurrency control [12] is
employed to both avoid locking and to ensure that users will
find out if someone else has already reserved a resource.

2.3 Slice and Sliver Lifetimes

Because authoritative slice state is distributed across SAs
and AMs, and we cannot guarantee that they remain in con-
tact throughout the lifetime of the slice, we give each slice
and sliver an expiration date. This way, we can be assured
that all slivers are eventually cleaned up and their resources
reclaimed.

There are important nuances, however, in the relation-
ship between slice and sliver lifetimes. Because each sliver
must belong to a slice, the sliver must not outlive its slice. If
it did, this could lead to a situation in which the user would
lose control of the sliver.

The first consequence of this requirement is straightfor-
ward: the expiration time for each sliver is bounded by the
expiration time of the slice itself. The second consequence is
that a slice cannot be deleted before it expires. It is possible
that slivers exist that the SA is unaware of; a AM may have
been unable to contact the SA to inform it of the sliver’s
existence. Therefore, the SA cannot know with certainty
that deleting the slice is safe and will leave no orphaned
slivers. As a result, slice names cannot be re-used by experi-
menters before they expire. Since the namespace for slices is
effectively unbounded in size, this is not a major concern.

2.4 Behavior in the Face of Failures

ProtoGENI passes as much context as possible in API calls,
so that they can be self-contained. While this does result in



4
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

some extra overhead in the calls, the benefit is that the user
can continue to make progress in the presence of network
or service failures. For example, a user obtains authorisa-
tion credentials from his home SA, and these credentials
are passed by the user to AMs when requesting tickets. As
described in [10], the AM receiving this material can verify
its authenticity without contacting the issuer. As a result, it is
possible for use of the testbed to proceed in the face of many
classes of failures of individual components.

3. Partitioned Trust

Our model divides a testbed (or federation of testbeds) into
multiple trust domains. Each object within the system be-
longs unambiguously to a single domain, and each facility
has authority only over those objects which fall within its
domain.† This tight binding is an essential requirement,
and guarantees important properties beyond those merely
arising from multiple trust anchors. For instance, the trust
model used by Web browsers when communicating over
TLS/SSL [13] makes use of many trust anchors — browsers
typically trust hundreds of root CA certificates — but trust is
not partitioned, and any CA is permitted to sign any certifi-
cate. Therefore, no guarantees about the security of the com-
posite system can be made beyond that of the least trusted
CA.

This problem is particularly acute in international fed-
erations. The stakeholders in such a federation are likely to
have different regulatory and legal requirements, and allow-
ing any member of the federation to assert authority over
other members’ entities could have serious consequences.

Our model permits a hierarchical structure (that is, “sub-
partitions” of trust). It is also transparent: when an object
from one domain interacts with an object from another do-
main, both objects’ true identities are exposed, so that poli-
cies can be based on the object’s full identity, the domain to
which it belongs, or both.

When different parts of a system may be owned and op-
erated by different organizations, or need to enforce custom
local policies, sophisticated requirements for authentication
and authorization infrastructure arise. Our approach is to
adopt a decentralized architecture, to support disconnected
operation, and to decouple authentication from authorization
whenever possible.

The authentication system is based on the IETF PKIX
model [14], while the authorization mechanism involves the
presentation of cryptographically signed credentials (which
behave analogously to X.509 Attribute Certificates [15]).
When a principal presents a certificate or credential, it pro-
vides all of the signatures required to link the certificate or
credential with one of the trust roots; as a result, no direct
communication with the certifying party is required to vali-

†We make a subtle, but important, distinction between hav-
ing authority over an object and making assertions about it; only
authorities can attest to the identity of objects, while assertions
(statements relating to that object) may be made by any party, and
may be accepted by any entity that trusts the asserter.

CA

IdP SA

User

AM

CA

Cert

Cred

Cert

Cert

Cert Cred

Fig. 2 The transfer of cryptographic certificates (“Cert”)
and credentials (“Cred”) between principals in a federation.
Solid lines indicate new material being issued and signed;
dotted lines indicate presentation of existing information.

date certificates and credentials. Together, these primitives
allow the warranting of identities, the granting and dele-
gation of permissions, and the verification of identity and
privilege. Most importantly, all of these operations may be
performed by different principals, who need no direct knowl-
edge of each other. Very little global policy is imposed, other
than conformance to uniform naming and data representation
schemes.

Additional details of this model can be found in [10].

3.1 Certificate Authorities

We deliberately refrain from imposing a single hierarchy
on the trust structure (as used in PEM [16], for instance),
as that model is inadequate to support local fine-grained
trust decisions. On the other hand, an entirely decentralized
public key distribution mechanism (such as PGP’s “web of
trust” [17]) is highly flexible, but tends to introduce barriers
to new principals entering the system, as their certificates are
unlikely to be accepted by others until they are able to obtain
signatures from a sufficient number of existing authorities.

Our public key infrastructure treats each domain as a
trust anchor, with its own self-signed CA certificate. Each CA
may form subsidiary namespaces and issue corresponding
CA certificates over them. This approach yields significant
flexibility in trust decisions (at the granularity of domains),
although it does introduce the problem of distributing the



RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
5

set of root certificates throughout a federation. Our system
makes use of the clearinghouse by giving it the role of a
trusted introducer: it publishes a bundle of certificates from
known domains as a convenience, but it is important to note
that this does not detract from any site’s autonomy. Each
domain is free to add to or delete from the CH’s list of
certificates (or even ignore it entirely). A CH also aggregates
certificate revocation lists [14] from the same set of domains,
though nothing prevents domains from communicating their
CRLs to each other directly.

3.2 Authenticating Identities

Public key certificates are issued to each principal in the sys-
tem, including users, services, and components. They must
be signed by the authority corresponding to the namespace in
which the principal’s name belongs: since these namespaces
do not overlap, there always exists exactly one certificate
authority whose signature will be accepted on any valid cer-
tificate.

All requests are made over TLS [13] channels, and both
the client and server must authenticate to each other. (This
implies that if either peer has decided not to trust the other’s
CA, then no communication or operation will be possible.)

We have ensured that certificates are self contained:
certificates are always presented in conjunction with any
intermediate CA certificates, so that any verifier can deter-
mine the validity of any certificate with no information other
than the set of trust anchor certificates and current CRLs.
(TLS and PKIX already provide this property, and we have
been careful to preserve it in the conventions and certificate
extensions we have added.)

3.3 Issuing Names

Formal structure within names is essential for partitioning
trust, so that an unambiguous trust root can be identified for
any named object. ProtoGENI has adopted the proposal by
Viecco et al. [8] for uniform naming conventions through-
out GENI. This name scheme tightly binds each object’s
name to a particular authority, which is necessary to main-
tain clear definitions of trust boundaries. By refusing a CA’s
signature on any certificate whose subject name lies outside
the CA’s namespace, we are able to guarantee the important
property that any valid object name corresponds to exactly
one trust root. Although there are certain limitations to this
model (for instance, if a principal wishes to associate with
a different CA for any reason, then it is forced to change its
identity), the benefits are significant: first, each domain has
great flexibility in choosing the set of peers with whom it
will operate; second, we achieve a reasonable level of fault
containment, since even extremely severe faults (e.g. mali-
cious CAs or Byzantine failure of a CA) are unable to affect
objects outside their assigned namespace. This property is
extremely important, as a single key compromise in a PKI
system without naming restrictions can leave the entire sys-
tem vulnerable [18]. A series of attacks against root CAs in

mid-2011 attracted widespread publicity and has required
extensive software patches to terminate trust in the affected
CAs [19].

3.4 Authorizing Operations

Credentials are used in conjunction with our public key in-
frastructure to allow secure validation of permissions: X.509
certificates prove that a key is bound to a principal, and cre-
dentials prove that permissions have been assigned to that
principal (see Figure 2).

It is important to note that our credentials are issued
as the result of authorization decisions, and could thus be
considered to represent capabilities. Another useful class of
statement about principals are assertions, which can be used
as input to policy decisions; assertions may take the form
of statements such as “X is a student,” “Y has a Top Secret
security clearance,” etc. ABAC [20] (Attribute Based Access
Control) combines a system for making signed assertions
with a system of formal logic to reason about authorization
decisions. Under separate work by the GENI ABAC team,
ABAC is being integrated with ProtoGENI.

Almost all services must verify both certificates and
credentials: relying on either alone is inadequate. (There
are a small number of exceptions, such as a ProtoGENI
user’s own facility, which records state concerning the users
privileges over objects under its control, and consequently
is able to issue credentials on the basis of a successful key
challenge alone.)

4. Constructing an International Federation

We define an inter-federation to be a federation whose mem-
bers are, in turn, federations†. There are two parts to con-
structing an inter-federation using the ProtoGENI architec-
ture: providing a set of compatible abstractions and APIs
to users, and establishing trust relationships between the
federates.

In order to ensure operational independence of the feder-
ates, the common API should follow the principles described
in Section 2. Examples of APIs following this architecture in-
clude the ProtoGENI [11] and GENI [21] APIs. In most cases
in GENI, this has been done by placing a “wrapper” around
the native APIs of existing testbed control software [1], [2],
[22]. We expect this to be a popular approach in international
federations as well: each nation or funding agency may have
developed its own APIs and mechanisms for resource access,
or have existing frameworks for testbed control.

The remainder of this section focuses on the second
part of inter-federation establishment, the creation of a trust
structure. It is important to note that when we discuss trust
in this context, we refer specifically to the ability to make
statements about the existence, identity, and public keys of
objects: for example, to assert the existence of a user, a slice,

†Without loss of generality, any of these federations could be
trivial federations with a single member.



6
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

Global
CH

CH

Fed

CH

Fed Fed Fed Fed

Global
CH

Fed Fed Fed Fed Fed

CH CH

Fig. 3 An inter-federation consists of one clearinghouse for the entire inter-federation (“Global CH”), one clearinghouse
per federation (“CH”), and a potentially large number of individual federates (“Fed”). The structure on the left illustrates a
single root of trust per federation (see Section 4.1), while the flatter arrangement on the right shows multiple roots of trust per
federation (Section 4.2).

or a component manager. By this definition, establishing
trust does not, by itself, require members of the national
federations to apply specific policies to principals from other
federations. The policies that federations apply to other
members of the inter-federation will be worked out as part of
the inter-federation agreement. Example policies include:

• a national federations may agree to accept all slices
from foreign Slice Authorities;

• a national federation may agree to accept only foreign
slices that are endorsed by a particular foreign Slice Au-
thority, representing experiments that the foreign entity
has vetted as appropriate for running internationally;

• a national federation may accept only foreign slices that
it has vetted itself for use on its resources.

Models such as ABAC [20] can provide the technical means
by which these policies are stated and enforced.

4.1 Single root of trust per federation

We first consider the case in which each national federation
traces all trust relationships back to a single trust root, as
illustrated on the left side of Figure 3. In this trust structure,
the federation creates a root namespace associated with a
single authority certificate; this namespace is recursively sub-
divided, as described in Section 2, with each member of the
federation being assigned to a partition. Each federate’s cer-
tificate is signed by the root for the federation, meaning that
trusting the root certificate is sufficient to trust any member
of the federation.

Creating an inter-federation in this case is straightfor-
ward: a global clearinghouse tracks the root CAs for each na-
tional federation, and members of the inter-federation agree
to trust all CAs provided by the global clearinghouse. This
allows each federation to accept the identity providers, aggre-
gate managers, and slice authorities from the other federation.
This, in turn, makes the users, components, and slices belong-
ing to these entities visible across the entire inter-federation.

This case has the advantage of being simple to imple-
ment, understand, and maintain. Only a small number of
trust roots need to be exchanged between the participants,

and that set will change infrequently (only when a federation
joins or leaves the inter-federation.) However, it means that
each national federation must expose the same trust structure
to the inter-federation that it uses internally; this may not
always be desirable.

4.2 Multiple roots of trust per federation

Individual federations need not be based on a single trust
root: rather than having all federates’ certificates signed by
a single root, each federate can sign its own root certificate.
The act of establishing trust in the federation, then, involves
distributing a set of root certificates, rather than a single one.†

This structure, shown on the right in Figure 3, is the trust
structure used by the existing ProtoGENI federation. The
ProtoGENI clearinghouse maintains a set of root certificates
for members of the federation. Facilities supporting the
ProtoGENI APIs select their own namespaces, and generate
their own self-signed certificates for those namespaces. To
join the federation, the facility sends its certificate to the
clearinghouse. If the clearinghouse choses to accept the
facility as a member of the federation, it simply adds the its
certificate to the root set. A new root set is distributed to the
federation’s members on a daily basis.

To form an inter-federation in this style, a global clear-
inghouse maintains a set of certificates for individual facil-
ities that make up the inter-federation. This is in contrast
to the previous case, in which the list was a list of feder-
ations. In essence, each facility now participates in two
different federations: its own national federation, as well as
the inter-federation.†† The global clearinghouse tracks meta-
data about which national federation each inter-federation
member belongs to. By expressing this meta-data as secure

†If this distribution is done by a single trusted entity, such as
a clearinghouse, that entity could be considered a single trust root.
However, it is not a root in a cryptographic sense: it does not sign the
certificates of the federates. It is also possible for multiple entities
to serve this purpose, distributing either identical or different sets
of federate certificates.

††The architecture sketched in Section 2 was specifically de-
signed to support simultaneous participation in multiple federations.



RICCI et al.: AN ARCHITECTURE FOR INTERNATIONAL FEDERATION OF NETWORK TESTBEDS
7

statements (for example, using ABAC [20]), it can be used
directly in policy decisions, such as to grant users differ-
ent privileges based on which national federation they are a
member of.

While this federation structure is more complicated, and
requires the global clearinghouse to track a larger number
of federates, it has a number of advantages. First, it allows
scenarios in which not all members of a national federation
are presented to the inter-federation: if trust is established
by adding a single federation root to the inter-federation, all
federates endorsed by that root are recursively trusted. A
national federation, may, however, contain members that are
not “production quality,” allow users who do not necessar-
ily meet the policies of the international federation, or are
otherwise unsuitable for inclusion in the inter-federation. Pre-
senting federates individually to the inter-federation allows
these members to be omitted. Second, it makes it easier for
facilities to join the inter-federation at any time: because we
enforce trust partitioning through naming, placing a federate
“under” another trust root requires pre-planning. Federates
that exist before the establishment of the federation, and
therefore have namespaces outside of it, may need to be re-
named under such a scheme. In contrast, if the federate is
trusted directly by the inter-federation, no such pre-planning
or re-naming is needed. Third, it allows each facility to par-
ticipate in multiple federations simultaneously, each of which
may have different trust structures.

It is worth noting that a federation can be formed in this
manner even if the national federations have single-trust-root
structures: rather than exposing the top-level trust roots to
the inter-federation, the root set for the inter-federation can
be constructed from the certificates for individual facilities.

5. Conclusion

Federated testbeds provide new opportunities for experimen-
tation, but also raise a number of design challenges. When
the federation is international in nature, the issues of opera-
tional and policy autonomy are highlighted, and it is neces-
sary for the federation framework to support an organization
that clearly delineates the operational and policy boundaries
between federates. We have presented the GENI and Proto-
GENI architectures, and showed how they can be used to
construct federations that cross national boundaries. For the
last three years, we have operated a federation using this
architecture which now has a dozen federates and 500 users,
who have created over 18,000 slivers.

Acknowledgements

Many people have been active participants in the GENI de-
sign process, which arrived at the basic design in to which
our system is intended to fit. While the total number of con-
tributors to this process is large, we would like to specifically
acknowledge the chairs of the GENI Facility Architecture
Working Group and heads of the GENI control frameworks:
Larry Peterson (PlanetLab), John Wroclawski (TIED), Jeff

Chase (ORCA/BEN), and Max Ott (OMF). Others major
contributors to the design process have included Aaron Falk,
Ted Faber, Steve Schwab, and Ilia Baldine.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0723248 and the
GENI Project Office.

References

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
bold, M. Hibler, C. Barb, and A. Joglekar, “An integrated experimen-
tal environment for distributed systems and networks,” Proc. of the
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI), Boston, MA, Dec. 2002.

[2] L. Peterson, A. Bavier, M.E. Fiuczynski, and S. Muir, “Experiences
building PlanetLab,” Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, Nov. 2006.

[3] M. Ott, I. Seskar, R. Siraccusa, and M. Singh, “ORBIT testbed soft-
ware architecture: Supporting experiments as a service,” Proc. of the
International ICST Conf. on Testbeds and Research Infrastructures
for the Development of Networks and Communities (TridentCom),
Trento, Italy, Feb. 2005.

[4] D.G. Anderson, H. Balakrishnan, M.F. Kaashoek, and R. Morris,
“Resilient overlay networks,” Proc. of the ACM Symposium on Oper-
ating Systems Principles (SOSP), Banff, Canada, Oct. 2001.

[5] GENI Architecture Team, “GENI federation software architec-
ture document,” March 2012. http://groups.geni.net/geni/
wiki/GeniArchitectTeam.

[6] L. Peterson, R. Ricci, A. Falk, and J. Chase, “Slice-based
federation architecture.” http://groups.geni.net/geni/wiki/
SliceFedArch, June 2010.

[7] R. Moats, “URN syntax,” Request for Comments 2141, Internet
Engineering Task Force, May 1997.

[8] C. Viecco, “Use of URNs as GENI identifiers.” http://gmoc.

grnoc.iu.edu/gmoc/file-bin/urn-proposal3.pdf, June 2009.
[9] J. Duerig, R. Ricci, L. Stoller, G. Wong, S. Chikkulapelly, and

W. Seok, “Designing a federated testbed as a distributed system,”
Proceedings of the 8th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and
Communities (Tridentcom), June 2012.

[10] G. Wong, R. Ricci, J. Duerig, L. Stoller, S. Chikkulapelly, and
W. Seok, “Partitioning trust in network testbeds,” Proc. of the 45th
Hawaii International Conf. on System Sciences (HICSS-45), Wailea,
HI, Jan. 2012.

[11] ProtoGENI Project, “ProtoGENI API.” http://www.protogeni.

net/trac/protogeni/wiki/API, May 2012.
[12] H.T. Kung and J.T. Robinson, “On optimistic methods for concur-

rency control,” ACM Transactions on Database Systems, vol.6, no.2,
June 1981.

[13] T. Dierks and E. Rescorla, “The transport layer security (TLS) proto-
col version 1.2,” Request for Comments 5246, Internet Engineering
Task Force, Aug. 2008.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk, “Internet X.509 public key infrastructure certificate and
certificate revocation list (CRL) profile,” Request for Comments
5280, IETF, May 2008.

[15] S. Farrell, R. Housley, and S. Turner, “An internet attribute certifi-
cate profile for authorization,” Request for Comments 5755, Internet
Engineering Task Force, Jan. 2010.

[16] S. Kent, “Privacy enhancement for internet electronic mail: Part II:
Certificate-based key management,” Request for Comments 1422,
Internet Engineering Task Force, Feb. 1993.

[17] W. Stallings, “The PGP web of trust,” BYTE, vol.20, no.2, Feb. 1995.
[18] C. Soghoian and S. Stamm, “Certified lies: Detecting and defeat-

ing government interception attacks against SSL.” http://files.
cloudprivacy.net/ssl-mitm.pdf.



8
IEICE TRANS. COMMUN., VOL.Exx–??, NO.xx XXXX 200x

[19] K. Dilanian, “Cyber-attack in Europe highlights internet risks,” Los
Angeles Times, 9 Sept. 2011. http://articles.latimes.com/
2011/sep/09/world/la-fg-cyber-attack-20110910.

[20] N. Li, J.C. Mitchell, and W.H. Winsborough, “Design of a role-based
trust management framework,” Proc. of the 2002 IEEE Symposium
on Security and Privacy, May 2002.

[21] GENI Project Office, “GENI aggregate manager API.” http://

groups.geni.net/geni/wiki/GAPI_AM_API, Sept. 2012.
[22] “The ORCA GENI control framework.” http://www.nicl.cs.

duke.edu/orca.

Robert Ricci Robert Ricci is a Research
Assistant Professor in the University of Utah’s
School of Computing. He has been been build-
ing network testbeds for over a decade, begin-
ning with the Emulab facility and continuing
with the National Science Foundation’s GENI
and PRObE facilities. He has done research on
a variety of topics regarding testbed design, con-
struction, and use, including resource mapping,
control system design, and emulation of realistic
network conditions.

Gary Wong Gary Wong is a Research As-
sociate with the University of Utah’s School of
Computing, where he works on network testbeds
and other systems projects. He has contributed
to the design and implementation of authentica-
tion and authorisation mechanisms used in GENI,
and his previous work covers a range of topics
from compilers to distributed systems. He holds
a Bachelor of Science degree from the University
of Auckland.

Leigh Stoller Leigh Stoller is a Senior Soft-
ware Developer in the Flux Research Group. He
joined the group in 2000 and has been involved
in a number of its main research activities since.
Leigh is one of the principal architects and devel-
opers of the Utah Emulab network testbed [1], as
well its companion, ProtoGENI. He plays a cen-
tral role in essentially every aspect of Emulab’s
design, implementation, maintenance, and oper-
ation. Leigh has co-authored papers on a variety
of topics including operating systems, languages,

networking protocols, system architecture, and network testbed design. He
earned his MS degree in Computer Science in 1993.

Jonanthon Duerig Jonathon Duerig is a Re-
search Associate in the School of Computing at
the University of Utah. He has worked on the
ProtoGENI project since its inception and has
helped to shape both its architecture and imple-
mentation. Jonathon was the lead designer of the
standard GENI resource specification format.


