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Abstract—Accurate RF propagation modeling in urban envi-
ronments is crucial for developing high-fidelity digital spectrum
twins and optimizing wireless communication systems. This paper
introduces OpenGERT, an open-source automated Geometry
Extraction tool for Ray Tracing. OpenGERT automates the
collection and processing of terrain and building data from
multiple sources, including OpenStreetMap, Microsoft Global
ML Building Footprints, and USGS terrain elevation data. Lever-
aging the Blender Python API, the tool creates detailed urban
models necessary for high-fidelity ray-tracing simulations specif-
ically designed for NVIDIA Sionna RT. Moreover, we conduct
sensitivity analyses to assess the impact of variations in building
height, position, and electromagnetic material properties on the
accuracy of ray-tracing models. Specifically, we present pairwise
dispersion plots of channel statistics—such as path gain, mean
excess delay, delay spread, link outage, and Rician K-factor—in
response to perturbations to analyze the covariance of different
channel statistics. The analyses also explore how the sensitivities
of these statistics change as a function of distance from the trans-
mitters. Additionally, we provide visualizations of the variance
of the channel statistics within the scene for selected transmitter
locations to offer deeper insights. Our study reports results from
the Munich and Etoile scenes, each featuring 10 transmitter
locations. For each transmitter location, we apply perturbations
across five different types, 50 perturbations for each: material,
position, height, height and position combined, and all combined.
The findings reveal that, assuming the initial material properties
of buildings are roughly accurate, minor perturbations in per-
mittivity and conductivity do not significantly alter the channel
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statistics. In contrast, variations in building height and position
have a considerable impact on all the statistics, even with a noise
standard deviation of 1 meter for building heights and 0.4 meters
for building positions. These results highlight the importance of
precise environmental modeling in achieving reliable propagation
predictions, which are essential for the deployment of digital
spectrum twins and advanced communication networks. Finally,
we share the code for geometry extraction and sensitivity analyses
at https://github.com/serhatadik/OpenGERT/ to facilitate further
experimentation and development.

Index Terms—ray tracing, sensitivity analysis, geometry ex-
traction, digital spectrum twins

I. INTRODUCTION

A. Digital Spectrum Twins

The concept of a digital twin can potentially transform
many industries by providing dynamic, digital, and cloud-
based representations of physical assets, systems, and environ-
ments. These digital counterparts enable real-time monitoring,
simulation, and predictive analysis improving decision-making
and operational efficiency. In the context of wireless com-
munications, this concept has evolved into digital spectrum
twins (DST), which are high-fidelity digital replicas of the
RF spectrum that keep track of the RF activity in a region
through spectrum measurements and propagation modeling
[1]–[3] with applications in 5G, and 6G networks [4]–[10], and
multi-media streaming [11], [12]. DSTs are envisioned to play
an important role in designing, testing, and optimizing wireless
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Fig. 2: Geometry extraction pipeline.

networks, especially as the demand for low-latency, and high
data-rate connectivity and the complexity of communication
systems continue to grow. They can also be important enablers
of various spectrum-sharing and access technologies [13].

A fundamental challenge in developing accurate DSTs lies
in the detailed, accurate extraction and modeling of environ-
mental geometries, such as buildings and terrain. Traditionally,
this geometry extraction process has been manual, labor-
intensive and susceptible to large-scale inaccuracies, limiting
the scalability and adaptability of propagation models across
different regions and scenarios. Automating this process is
fundamental for accelerating the development and large-scale
adoption of DSTs.

Ray-tracing models are considered one of the best candi-
dates for use in DSTs due to their accuracy in simulating
electromagnetic wave propagation through interactions with
environmental features such as reflection, diffraction, and
scattering. However, the extent to which the accuracy of these
models relies on the precision of the environmental geometry
data and the electromagnetic properties of building and terrain
materials remains uncertain.

The contributions of this paper can be summarized as:
• An open source implementation of a method for au-

tomating the geometry extraction process for ray-tracing
propagation models specifically for the NVIDIA Sionna
Ray-Tracing tool [14] using multiple data sources in-
cluding OpenStreetMap [15], and Microsoft Global ML
Building Footprints [16] dataset for building data and
U.S. Geological Survey (USGS) [17] for terrain data.

• Open source implementation of building geometry and
material perturbation pipeline designed to introduce
Gaussian noise to building heights, positions, relative
permittivity, and conductivity, enabling the community
to explore the effects of uncertainty in these parameters.

• An extensive sensitivity analysis of the ray-tracing model
to perturbations in building heights, positions, and ma-
terial properties. Specifically, we analyze the impact on
key channel statistics such as path gain, mean excess
delay, delay spread, and link reliability. Additionally, we
examine how these statistics co-vary under identical per-
turbations and how they vary with different transmitter-
receiver separation distances.

B. Background

The precision of digital spectrum twins heavily depends
on the accuracy of environmental geometry data, including
building structures and terrain features. Several studies have
highlighted the significant impact that inaccuracies in urban
geometry databases can have on propagation predictions.

Early research by [18] emphasized that errors in building
shapes and positions lead to notable prediction inaccuracies
in propagation models. However, these inaccuracies were not
fully quantified or systematically analyzed.

To explore the influence of map inaccuracies, [19] based
their propagation predictions on outdated two-dimensional
(2D) building layouts derived from various map types. They
introduced artificial random errors by displacing building walls
and corners using normal distributions. While this approach
highlighted the limitations of using obsolete maps and uncon-
ventional perturbation techniques, it did not accurately reflect
realistic urban changes.

Further investigating the sensitivity of ray-tracing models,
[20] examined factors such as wall characteristics, antenna
position offsets, and inaccuracies in building databases. Their
findings indicated that displacements greater than one meter
can significantly degrade model performance. Notably, re-
ceiver positions at the boundaries of line-of-sight (LOS) areas
and in deep shadow regions experienced the highest power
deviations.

Studies focusing on indoor environments have also provided
valuable insights into the effects of geometric inaccuracies.
[21] modeled lateral wall positions as random variables to
investigate their impact on ray-tracing results. They found
that while received power is significantly affected by wall
position uncertainties, the rms delay spread remains largely
insensitive. However, their analysis was limited to controlled
indoor settings and did not extend to the complexities of urban
outdoor environments.

In efforts to enhance prediction accuracy through material
properties, [22] improved deterministic channel models by cal-
ibrating optimal material parameters using pilot measurements
and simulated annealing techniques. Although this method en-
hanced accuracy across various positions, it relied on manual
calibration and extensive measurements.



Fig. 3: Transmitter Locations Used for Sensitivity Analysis on the Munich and Etoile Scenes

Another indoor study by [23] examined the sensitivity of
ray-tracing results to inaccuracies in the dielectric constants
of building materials. By treating these constants as random
variables and employing Monte Carlo analysis, they observed
that path gain remains relatively unaffected, whereas rms
delay spread is significantly sensitive to material property
uncertainties. This emphasizes the importance of accurate
electromagnetic parameters but also highlights the limitations
of focusing solely on indoor environments.

Extending the focus to outdoor settings, [24] investigated
the impact of adjusting permittivity values for building walls,
roofs, and street floors in 3D ray-tracing models. Their study
revealed that fine-tuning these material properties improves the
accuracy of path loss estimations despite the heterogeneity of
real-world materials.

Efforts to improve geometry extraction methods have also
been explored. [25] proposed extracting 3D building struc-
tures from single-view internet images by combining height
measurements with 2D projective transformations. While this
method demonstrated accurate path-loss calculations in ray-
tracing models, it also revealed that inaccuracies in build-
ing footprints and heights can impact path-loss predictions.
Despite errors remaining within typical ranges between ex-
perimental measurements and simulations, relying on single-
view images may not capture the full complexity of urban
environments, highlighting the need for more robust geometry
extraction techniques.

Collectively, these studies highlight the importance of ac-
curate environmental geometry data and material properties in
propagation modeling. However, limitations persist, including:

• Reliance on outdated or incomplete data sources: Using
obsolete maps or limited views may not accurately rep-
resent current urban environments.

• Focus on controlled indoor environments: Many studies
do not address the variabilities inherent in urban outdoor
scenarios.

• Limited sensitivity analyses: There is a need for more
comprehensive investigations into how uncertainties in
geometry and material properties affect key channel
statistics both individually and collectively.

Our work addresses these gaps by introducing an auto-

mated geometry extraction process designed for ray-tracing
propagation models, specifically utilizing the NVIDIA Sionna
Ray-Tracing tool [14]. By leveraging multiple data sources
including OpenStreetMap [15], the Microsoft Global ML
Building Footprints dataset [16] for building data, and the U.S.
Geological Survey (USGS) [17] for terrain data we enhance
the accuracy and scalability of environmental representations.

Additionally, we present an open-source implementation of
a building geometry and material perturbation pipeline. This
pipeline introduces Gaussian noise to building heights, posi-
tions, relative permittivity, and conductivity, enabling a sys-
tematic exploration of how uncertainties in these parameters
affect propagation modeling. Our extensive sensitivity analysis
examines the impact of these perturbations on key channel
statistics such as path gain, mean excess delay, delay spread,
and link reliability. We also investigate the co-variation of
these statistics under identical perturbations and their variation
with different transmitter-receiver separation distances.

II. METHODOLOGY

A. Geometry Extraction

The geometry extraction process for ray-tracing propagation
models is automated through a pipeline depicted in Figure 2
that transforms user-specified region corner coordinates into
detailed 3D scenes suitable for electromagnetic simulations.
This automation enhances efficiency and consistency in cre-
ating models by reducing manual intervention. There are two
primary workflows in this pipeline, each integrating different
data sources and tools to generate accurate geometries.

In the first workflow, the process begins with the user
specifying the corner coordinates of the desired outdoor re-
gion. The Blender Python API is employed to automate tasks
within Blender, an open-source 3D modeling software. Using
this API, the Blosm add-on is activated to interface with
OpenStreetMap (OSM), from which it retrieves comprehensive
building footprint data for the specified region. This building
data is imported directly into Blender as meshes. Subsequently,
terrain elevation data is obtained by Blosm from a GitHub
repository that aggregates information from various sources
covering numerous countries. In the U.S., this data is provided
by the 3D Elevation Program of the United States Geological



Survey (USGS). The terrain data is then imported into Blender
and converted into a mesh to represent the region’s topography,
achieving a resolution of 10 meters in the U.S. (excluding
Alaska) and varying resolutions in other countries.

Within Blender, the building and terrain meshes are re-
fined to ensure they meet the requirements for ray-tracing
simulations. This includes assigning ITU materials to ob-
jects and arbitrarily selecting colors for different materials.
Currently, the pipeline assigns default ITU-based materials
to all structures. In future iterations, we plan to explore
methods for automatically associating more specific material
properties based on available metadata. After the meshes are
prepared, the Mitsuba-Blender add-on is used to export the
entire scene as an XML file. The final step involves importing
the XML file and associated meshes into NVIDIA Sionna
RT [14], a framework for simulating RF propagation using
ray-tracing techniques. Three example scenes generated using
this automated geometry extraction pipeline are displayed in
Figure 1.

The second workflow offers an alternative approach by
bypassing the Blosm add-on and instead using external data
sources and Python scripting for mesh creation. One potential
advantage of this alternative workflow is its ability to provide a
more accurate representation of rural buildings without relying
on OpenStreetMap, which is often infrequently updated in
rural areas. As in the first workflow, the user provides the
corner coordinates of the target region to define the area of
interest. Building data is sourced from the Microsoft Global
ML Building Footprints repository [16], which offers detailed
building structures derived from satellite imagery processed
through computer vision algorithms. High-resolution terrain
data is again obtained from the USGS digital elevation maps
this time with 1-m resolution.

Custom Python scripts are developed to process the building
and terrain data, generating triangular meshes without the need
for Blender’s Blosm add-on. Once the meshes are generated,
they are imported into Blender for consolidation and any ad-
ditional adjustments including material and color assignments
to objects. Blender serves as a platform to unify the building
and terrain meshes and to leverage the Mitsuba-Blender add-
on for scene export. The generated XML file along with the
meshes can now be imported into Sionna RT for ray-tracing
simulations.

B. Sensitivity Analysis

In the second part of the work, a comprehensive ray-tracing
sensitivity analysis was conducted using two representative
urban scenes provided in Sionna RT: the Munich and Etoile
scenes. Within each scene, ten transmitter (Tx) locations
were selected at random. For each Tx location, the original
scene geometry and material properties were systematically
perturbed 50 times, producing a series of modified environ-
ments. In these perturbed environments, numerous receiver
(Rx) positions were evaluated, and the resulting channel
characteristics were extracted and statistically analyzed. The
channel statistics considered included path gain, mean excess

delay, delay spread, link outage, and the Rician K-factor. For
each of these statistics, the standard deviation across the 50
perturbations was computed to assess sensitivity.

Perturbations were introduced to reflect plausible uncertain-
ties in geometric and material parameters. For geometric per-
turbations in building heights, Gaussian noise with a standard
deviation (σ) of 1 meter was added to the z-coordinates of the
buildings’ upper vertices. Similarly, building positions were
perturbed by adding Gaussian noise with σ = 0.4 meters to the
x and y coordinates of the vertices. Material properties, such
as relative permittivity and conductivity, were also altered to
simulate uncertainty in electromagnetic parameters. Assuming
that initial material parameters were approximately correct,
Gaussian noise with a standard deviation equal to 10% of
the initial values was added. A 10% standard deviation was
selected as a baseline to illustrate the impact of moderate mate-
rial variability. We acknowledge that actual material properties
(e.g., for brick versus glass) can vary more widely; however,
our open-source code allows users to adjust these parameters
based on the specific materials present in their scenario.

The scene and perturbation configuration parameters are
summarized in Table I. While simulations are conducted at
3.5 GHz using isotropic antennas with a single element for
both Tx and Rx to establish a clear baseline, the proposed
methodology is adaptable to other frequencies and antenna
models, including those relevant for mmWave or directional
communications.

Parameters Values

Number of Unique Tx Locations
per Scene 10
Number of Perturbations per
Type of Perturbation 50
Considered Scenes Munich, Etoile
Types of Perturbations Material, Height, Position, Height

& Position, Material, Height & Po-
sition

Frequency of Operation 3.5 GHz
Tx & Rx Radiation Patterns Isotropic
Tx & Rx Antenna Polarization Vertical
Number of Tx & Rx Elements 1
Std. Dev. of Gaussian Noise
Added to Building Heights

1 m

Std. Dev. of Gaussian Noise
Added to Building Positions

0.4 m

Std. Dev. of Relative Permittivity
Added to Building Materials

10 % of the Initial Value

Std. Dev. of Conductivity Added
to Building Materials

10 % of the Initial Value

Coverage Map & Path Configu-
ration

Line-of-sight (LOS), up to 5 reflec-
tions, diffraction and edge diffrac-
tion, no scattering, 1 million sam-
ples

TABLE I: Scene & Perturbation Configuration Parameters

III. RESULTS & ANALYSIS

This section presents a detailed examination of how environ-
mental perturbations, specifically building height, position, and
material properties, impact channel statistics in complex urban
environments. We first focus on how channel metrics vary
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Fig. 4: Analysis of Path Gain, Mean Excess Delay, and Delay Spread Standard Deviations and Link Outage Frequency with
Height Perturbation in Etoile Scene

under height perturbations, then analyze the interrelationships
among the metrics under all types of perturbations combined.
Finally, we compare the effects of different perturbation types,
highlight scene-specific observations, and discuss the implica-
tions of these results for accurate propagation modeling and
DST development.

A. Influence of Height Perturbations on Key Channel Metrics
1) Path Gain Variability and Distance-Dependent Effects:

Figure 4 reveals important insights into how height perturba-
tions affect certain channel statistics, including path gain (PG),
link outage frequency, mean excess delay (MED), and delay
spread (DS). Specifically, Figure 4a shows that the standard
deviation of path gain becomes especially large when the
link between the transmitter and receiver is not achievable
through line-of-sight (LOS) or multiple layers of reflections.
In such cases, diffraction and edge diffraction are the primary
contributors to path gain and are significantly affected by
changes in building heights which in turn makes the path
gain standard deviation large at those locations. The overall
effect is visible through dark traces of reflection rays and

a dark corridor that is in direct LOS with the transmitter,
contrasted by brighter diffraction regions. However, when the
distance from the transmitter exceeds a certain threshold, even
receivers with a direct LOS begin to experience significant
deviations. This happens because the power of the LOS ray
decreases with distance, making the overall received power
more dependent on reflection and diffraction rays. Although
reflections near the transmitter are less affected by height
perturbations, at larger distances, reflection rays are influenced
considerably. This is due to the cumulative effect of height
changes on multi-layer rays that undergo numerous reflections
and diffractions. As the distance from the transmitter increases
even further, the variance reduces potentially due to ”left-
censored data” [26] because powers lower than the receiver
sensitivity threshold are not included in variance calculation
and the link is considered to be broken as also encountered in
[27].

2) Link Outage Frequency and Height Sensitivity: Some
areas with frequent link outages, as shown in Figure 4b,
correlate with regions containing shorter buildings. Under sig-
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Fig. 5: Histograms of Broken Links for Different Types of Perturbations in Munich and Etoile.

nificant (though unlikely) negative height perturbations, these
buildings may no longer block rays, occasionally allowing a
weak connection to form beneath the fixed receiver height of
1.5 meters. This rare reconnection inflates the observed outage
frequency.

The resulting U-shaped distribution of link outages, seen
in Figures 5a and 5b, reflects these threshold effects. Large
outage segments occur where substantial height changes open
or close paths that are normally absent due to building ob-
struction or distance-related signal weakening. In these zones,
even small vertical adjustments to building heights critically
influence whether any signal reaches the receiver.

3) Mean Excess Delay (MED) and Height-Driven Thresh-
old Effects: If a building is just tall enough in its original
configuration to block a near LOS path, lowering its height
may allow that path to slip through, shortening the MED. Con-
versely, increasing building height might introduce additional
blocking of previously available multipath routes, changing the
structure of the delay profile. Such threshold-like effects are
particularly pronounced when receivers are near boundaries
that determine path availability. These boundary conditions
make MED highly sensitive to height perturbations.

Locations that depend primarily on ground-level reflections
or are in unobstructed LOS to the transmitter are much less
sensitive to vertical changes in building structure. In those ar-
eas, modifying building heights slightly does not significantly
alter the primary arrival time or the set of dominant multipath
components. This is visible in Figure 4c.

On the other hand, environments dominated by complex
vertical scattering mechanisms such as reflections from slanted
rooftops, diffraction around building crowns, or energy guided
along elevated canyons are inherently more ”vertically sensi-
tive”. Such regions amplify the effect of small height pertur-
bations, resulting in higher MED variability as observed at
bright locations in Figure 4c.

The clear, positive MED variability trend with increasing
distance as depicted in Figures 6b and 6e is typically due to the
signal traversing more diverse and heterogeneous urban terrain
at longer distances. Different building materials, varying den-

sities of structures, and changes in topography all factor into
the complexity of multipath generation. When uncertainties
such as slight variations in building height are introduced,
their effects can be magnified as the signal has passed through
a richer set of scatterers and obstacles. This accumulated
complexity increases the sensitivity of delay characteristics.

4) Delay Spread (DS) and Limited Complexity Growth:
The DS standard deviations depicted in Figures 6c and 6f
however do not follow the same monotonically increasing
trend with distance. Without scattering, and with a cap of five
reflections per ray, the complexity of multipath propagation is
inherently limited in the simulations. At very short distances,
the absence of scattering and few low-order reflections yield a
stable delay spread, resulting in minimal sensitivity to building
height perturbations. As distance increases, the finite number
of allowed reflections temporarily boosts complexity, making
the delay spread more sensitive and possibly increasing its
variability. However, because there are no scattered paths and a
strict reflection limit, this complexity cannot grow indefinitely.
At larger distances, many potential multipath components are
either too weak or geometrically unavailable, causing the DS
standard deviation to plateau or taper off rather than continue
increasing.

B. Interrelationships Among Channel Metrics
Another important analysis is to examine how the channel

statistics considered vary in response to perturbations. Figure
7 displays the aggregate dispersion plots across all transmitter
locations for all pairs of channel statistics. These include path
gain, MED, DS, Rician K-factor, and link outage frequency
for the Munich scene. Among the examined channel metrics,
three pairs stand out with strong or considerable correlations:
DS versus MED, MED versus Rician K-factor, and PG versus
link outage. It is important to note that, since many receiver
locations can be considered to be at intermediate-distance from
a given transmitter, the fitted ellipses to aggregate dispersion
plots effectively show the behaviors at intermediate distances
as well.

The strong positive correlation between DS and MED
implies that environments encouraging longer average arrival
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Fig. 6: Combined Analysis of Path Gain, Mean Excess Delay, and Delay Spread Standard Deviations for Munich and Etoile
Across All Perturbation Types

times naturally develop a more dispersed multipath profile. As
it was previously noted, at intermediate distances small pertur-
bations and geometric complexities can cause both the MED
and DS to increase in variance. This suggests that sensitivity
to height, position and material changes can produce regions
where the timing of multipath arrivals becomes both later and
more spread out.

The strong negative correlation between MED and Rician
K-factor points to a trade-off between temporal complexity
and the dominance of a single strong path. When the average
multipath arrival times increase, the channel tends to rely
less on one standout component, which lowers the K-factor.
In previously discussed scenarios, at intermediate distances,
multiple reflections emerge, making the channel more sus-
ceptible to perturbations. These conditions not only increase
timing variability but also weaken the strength of any one
dominant path, reflecting the interaction between geometry-
driven complexity and the resulting temporal structure.

Finally, the considerable negative correlation between path
gain and link outage shows the straightforward relationship
between the two metrics as well as the importance of adequate
received power for maintaining connectivity. Across varying
distances, even as timing metrics become more sensitive,
the probability of a link failing depends largely on whether
sufficient power reaches the receiver. This shows maintaining
adequate path gain emerges as a key factor that mitigates
outage, highlighting how power-related metrics remain crucial
despite increased temporal complexity in the channel.

C. Comparing Different Perturbation Types and Scenes

Figures 5a and 5b show that adjustments to building heights
can have a larger effect on completely severing links, as
compared to similarly scaled perturbations in building posi-
tions or material properties. One likely reason is that verti-
cal modifications directly influence whether a LOS or key
reflected path remains available: even a small elevation in
building height can block a critical path segment, causing a
direct communication failure. In contrast, horizontal shifts or
slight variations in material properties might alter path timing
and power levels but often do not eliminate the fundamental
geometric feasibility of a link. Consequently, changes in height
stand out as the most critical factor when evaluating link
stability under uncertainty.

Table II compares the sensitivity of channel metrics across
scenes and perturbation types: material, position, height, height
and position combined, and all three combined. Comparing the
two scenes and the different types of perturbations using this
Table, it is evident that modifications to building geometry
(height and/or position) have the most substantial impact on
all channel metrics, while material perturbations alone tend to
have a more modest influence. For instance, when looking at
Munich, purely material-based changes result in an average PG
standard deviation of around 2.6 dB, but introducing pertur-
bations in building height alone pushes this figure to 4.2 dB.
Similarly, for Etoile, material perturbations affect MED and
DS only slightly (13.4 ns and 9.9 ns on average, respectively),
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Fig. 7: Pairwise Dispersion of Channel Metrics for Combined Perturbations of All Types in the Munich Scene

TABLE II: Standard Deviations of Channel Metrics for Different Scenes and Types of Perturbations. The average columns
represent the square root of mean variance across all 10 transmitter locations. The min and max columns indicate the square
root of mean variance for the transmitters exhibiting the minimum and maximum variations, respectively.

Scene Perturbation σPG,avg(dB) σPG,min σPG,max σMED,avg(ns) σMED,min σMED,max σDS,avg(ns) σDS,min σDS,max σK,avg(dB) σK,min σK,max

Munich Material 2.6 1.8 3.3 10.0 5.2 14.9 6.5 3.8 11.0 0.6 0.4 0.8
Munich Position 3.1 2.4 3.9 144.4 105.6 217.5 60.0 33.1 92.0 6.6 4.9 8.3
Munich Height 4.2 3.1 5.2 136.0 101.0 202.7 60.8 38.0 83.0 6.5 5.3 8.4
Munich Height and Position 4.2 3.0 5.1 165.3 121.6 232.0 67.4 38.3 102.2 7.9 5.6 9.8
Munich Material, Height, Position 4.2 3.0 5.3 166.7 117.0 239.8 67.4 37.2 105.6 7.8 5.5 9.7
Etoile Material 2.0 1.5 2.7 13.4 2.1 15.5 9.9 1.4 11.9 0.6 0.3 1.0
Etoile Position 2.6 1.7 3.3 163.1 28.0 204.0 75.4 11.7 90.1 5.1 3.2 6.0
Etoile Height 4.0 3.1 6.1 143.9 21.9 182.5 76.8 15.5 99.5 5.6 4.7 7.0
Etoile Height and Position 4.0 3.2 5.9 182.3 28.1 228.1 87.0 12.1 104.9 6.7 6.1 7.6
Etoile Material, Height, Position 4.0 3.0 6.2 181.2 32.4 229.4 86.0 9.9 106.0 6.7 6.1 7.8

but the inclusion of building height or position variations
increases these values dramatically, pushing MED beyond 140
ns and DS beyond 75 ns on average. In both scenes, the
Rician K-factor exhibits a similar pattern, where geometric
perturbations increase its standard deviation significantly more
than adjustments in electromagnetic material properties.

Furthermore, while combining multiple types of perturba-
tions—such as height and position, or material, height, and
position—does not substantially increase the standard devia-
tions of path gain beyond those seen with height or position
variations alone, other metrics are more sensitive. Notably,
MED and DS show increases that can approach or exceed the
highest levels observed under single-type perturbations. This
heightened sensitivity is particularly evident in the maximum
values across different transmitter locations, where stacking
multiple perturbations can push standard deviations to even
greater extremes. Overall, these findings show that geometric
fidelity is very important for achieving stable and reliable
propagation predictions, while material accuracy, though less
impactful for path gain variability, still plays a non-negligible
role in shaping other critical channel statistics.

Examining the differences between position and height
perturbations, it becomes clear that the magnitude of the

perturbation matters: smaller positional uncertainties (0.4 me-
ters) generally induce less variation in channel statistics than
larger height uncertainties (1 meter). For both Munich and
Etoile, height-only perturbations tend to produce higher stan-
dard deviations for all metrics compared to position-only
changes. For instance, in Munich, position perturbations yield
an average PG standard deviation of about 3.1 dB, whereas
height perturbations increase the PG standard deviation to
approximately 4.2 dB. A similar pattern holds for Etoile,
where position perturbations result in an average PG standard
deviation of 2.6 dB, while height perturbations reach 4.0 dB.
This indicates that vertical adjustments to building structures,
even if they seem minor (on the order of a meter), can more
significantly alter the propagation environment than slightly
shifting the horizontal positioning of the same structures.

D. Spatial Variability and Transmitter Location Dependence
The minimum and maximum standard deviations reported in

Table II reveal that transmitter placement also matters. Certain
transmitter locations are relatively stable, showing minimal
sensitivity to perturbations. Others are ”hotspots” where small
geometric or material modifications cause substantial varia-
tions in PG, MED, DS, and K-factor. This emphasizes the
importance of spatial context in predicting channel behavior



and the need for careful transmitter siting and environmental
modeling.

IV. CONCLUSION

In conclusion, the geometry extraction process for ray-
tracing propagation models is automated through a pipeline
depicted in Figure 2, which transforms user-specified region
corner coordinates into detailed 3D scenes for electromag-
netic simulations. By integrating various data sources (Open-
StreetMap, Microsoft Global ML Building Footprints, and
USGS elevation data) and automating the workflow via the
Blender Python API, this pipeline reduces manual intervention
and ensures consistent scene generation.

Our findings also show that accurate geometric modeling is
crucial for reliable urban RF propagation predictions. While
adjusting material properties can influence the temporal and
power-related characteristics of the channel, even minor height
or position changes often have a much stronger impact,
especially in areas close to path-availability thresholds or
in complex urban layouts with significant vertical scattering.
Over intermediate transmitter-receiver distances, these height-
driven changes can markedly increase variability in path gain,
mean excess delay, delay spread, and link outage frequency.

Moreover, when the general material class of buildings is
known, introducing a modest 10% uncertainty in their relative
permittivity and conductivity does not significantly change the
resulting channel statistics. However, if the initial material
parameters are largely unknown or mischaracterized, the re-
sulting variability would likely be much greater. Therefore, it
is important to have at least a baseline understanding of mate-
rial properties to maintain stable and predictable propagation
outcomes.
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