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ABSTRACT

The WebAssembly System Interface (WASI) enables WebAssembly (Wasm) programs

to interact with the facilities of the computer on which the Wasm program runs. This

greatly expands Wasm’s utility and power outside of the browser, but greater capability

increases the risk of vulnerabilities that arise when Wasm runtimes are not implemented

correctly. This is especially important given Wasm’s emphasis on security. It is therefore

necessary to thoroughly test implementations of WASI. We evaluate the effectiveness of

random testing for finding bugs in implementations of WASI. We create a system to per-

form differential testing on Wasm runtimes. This system randomly generates Rust test

cases that invoke system calls and compiles them to x86 assembly and Wasm. If the

runtime behavior of these executables differ, we expect that there is a bug in one of the

systems under test (SUT). We evaluate the effectiveness of our random testing framework

by analyzing the bugs it discovers in WASI-compliant runtimes.
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CHAPTER 1

INTRODUCTION

In this study, we evaluate the effectiveness of random testing for identifying bugs in

WASI-compliant runtimes. Specifically, we use differential testing to identify randomly

generated test cases that trigger bugs.

WebAssembly, or Wasm, is a portable compilation target that has been widely adopted

in web browsers [17]. Recently, interest in using Wasm outside of the browser led to the

creation of WASI. WASI is a system interface for Wasm that enables interaction with the

operating system. It serves a similar purpose as C’s standard library.

Wasm prioritizes security by employing a memory-safe, sandboxed execution envi-

ronment [25]. WASI attempts to uphold Wasm’s security guarantees by sandboxing I/O

operations. Prior to execution, a Wasm program must be given explicit permission to use

a feature of WASI. For example, WASI programs can only modify directories that are

specified from the command line.

An incorrect implementation of WASI could undermine the security of Wasm. In ad-

dition, WASI greatly increases the capability of Wasm programs, so the consequences of

vulnerabilities caused by bugs in WASI can be more severe. It is therefore necessary to

thoroughly and effectively test WASI-compliant runtimes. At the time of writing, no efforts

to apply random testing to WASI have been documented.

We achieve this by creating a differential testing framework for WASI. Testing WASI is

a distinct goal from testing Wasm. To test Wasm, one would generate Wasm programs that

maximize coverage of Wasm’s syntax and semantics. In contrast, effectively testing WASI

involves generating interesting and varied calls to the WASI API. This does not necessarily

require all of the features of Wasm.

Differential testing is a software testing technique that attempts to detect bugs by pro-

viding the same input to different implementations of a software system and comparing
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their behaviors [14]. If the specification of the systems allows only a single possible out-

come, and the behaviors of the systems differ, then at least one of them must be inconsistent

with its specification. Differential testing offers a solution to the test oracle problem: the

challenge of distinguishing correct and incorrect behavior in software [1]. With differen-

tial testing, any test case can be fed to a software system as long as it does not contain

unspecified or non-deterministic behavior. This combines powerfully with a random test

case generator, for which determining correct behavior would otherwise be difficult.

In this study, we compare the behaviors of a Wasm program and an x86 binary. To get

executables that we expect to behave equivalently, we take advantage of the fact that they

are both compilation targets of Rust. Thus, given a Rust test case that invokes system calls,

a pair of executables can be generated that is suitable for performing differential testing on

WASI.

In the current version of WASI [6], API calls are provided for generating random num-

bers and interacting with the file system, clocks, and sockets. Our test case generator

produces programs that maximize coverage of the file system, clock, and random APIs.

We hypothesize that random testing is an effective method for testing implementations

of WASI. We evaluate this claim by analyzing the kinds of bugs discovered by our differ-

ential testing framework.

With our differential testing framework, we were able to find bugs in multiple imple-

mentations of WebAssembly.

WASI, like WebAssembly, is an evolving standard. Our differential testing framework

can be used as a development tool for Wasm runtimes as WASI changes and becomes more

widely implemented. Over the course of this project, many WebAssembly runtimes were

updated to support WASI. We expect this trend to continue.



CHAPTER 2

BACKGROUND

Differential testing is widely used to find bugs in software systems. Differential testing

can be applied to compilers using test cases from random program generators. Csmith is a

well-known example of a test case generator that was used to perform differential testing

on C compilers [26].

Creating a random program generator can be a complex process. For instance, the

development of Csmith required hundreds of hours and nearly 40,000 lines of code [10].

There is particular difficulty in generating programs that are suitable as test cases for dif-

ferential testing. These programs must avoid unspecified and non-deterministic behavior.

Otherwise, one cannot be confident that differences in behavior between systems under

test are due to the existence of a bug.

Recently, Xsmith was introduced to make the development of random program gener-

ators, especially those intended for differential testing, simpler [10]. Xsmith is a domain-

specific language built within Racket [9] for defining random program generators. It

allows the user to specify a grammar that is used to randomly construct an abstract syntax

tree (AST) representing a program. Xsmith also allows the user to define choice methods

and attributes to arbitrarily guide the generation of the AST. Xsmith contains predefined

properties to make adding common programming language features easier.

Xsmith has been used to implement several random program generators that have

been used to identify bugs in compilers [11, 24]. One of these program generators is

Wasmlike [24], a generator of random Wasm programs. Wasmlike is an inspiration for this

project, and one method of testing WASI implementations would be to extend Wasmlike

to make use of the WASI API. This would result in the direct generation of WASI test cases,

rather than obtaining them by compiling Rust test cases.

Instead, we chose to obtain the test cases indirectly so that our test case generator can
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still be used as WASI evolves. We test targets that implement WASI Preview 1 [6], but

more versions of WASI are in development. If future versions of WASI are supported

by the Rust compiler, our test case generator can be used to test them as well. Another

reason we chose to obtain test cases indirectly was to have multiple targets for differential

testing. When we began development of our test case generator, we were only aware of

one reliable implementation of WASI. Therefore, it would have been impossible to perform

differential testing if our generator produced Wasm programs. By the end of our project,

we had selected five implementations of WASI as targets.



CHAPTER 3

METHODS

We built a framework for performing differential testing on WASI runtimes. Figure 3.1

illustrates our differential testing pipeline. A test case is first obtained from our test case

generator. The test case is subsequently compiled to Wasm and x86 assembly. The Wasm

program is given to one or more WASI-compliant runtimes. The x86 binary is executed

natively. The results of each execution of the test case are compared. If there is divergent

behavior, the test case is logged as potentially bug-triggering. This process repeats for the

duration of a testing campaign. Additional work is needed to reduce and verify test cases

that are marked as bug triggering. More detail about each of these steps is provided in the

following sections.

3.1 Test Case Generation
To obtain Rust test cases, we built a test case generator called Wasimilar. We created it

using Xsmith. Xsmith allows the user to define a grammar and arbitrary functions to guide

generation of random abstract syntax trees (ASTs) representing programs. Typically, the

user defines a grammar that mirrors the grammar specification of a programming lan-

guage. Instead, we generate relatively flat ASTs because our goal is to generate interesting

calls to the WASI API. This does not require all of Rust’s semantics and syntax. The ASTs

we generate consist of a single top-level ”program” node with a configurable number of

children, each representing an interaction with the WASI API. An example of an AST

generated by Wasimilar is shown in Figure 3.2.

Wasimilar generates Rust programs that contain random sequences of operations sup-

ported by WASI. Every generated operation is wrapped inside a node. The Rust code

generated for a node performs any necessary setup for the operation and checks that

the operation will succeed given the current state of execution. For example, the code

generated for a file-write node checks if there are any file descriptors that can be written
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Figure 3.2. Example of AST generated by Wasimilar
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to and randomly selects one if so. If there are none, no file-write occurs and execution

continues with the next node. As a result, there are no dependencies pertaining to the

order of generated nodes.

Although packaging operations into nodes ensures that they can be generated in any

order, operations can still affect one another. One way they do this is through shared

buffers. Operations can read from and write to buffers. In this way, operations without

visible effects, such as requests for random numbers, can be made visible by other oper-

ations, such as a file-write. Below is a snippet of a generated test case. It demonstrates

two operations, a file-read and a file-write, and their containing nodes. Through a shared

buffer, lift 1, the result of the file-read affects the input to the file-write.

// shared buffer

let mut lift_1 = String::from("mpvlprcxqsb...");

// file read node

if open_file_ptrs.len() > 0 {

let mut fp = open_file_ptrs.choose(&mut rng).unwrap();

fp.read_to_string(&mut lift_1).unwrap();

}

// file write node

if open_file_ptrs.len() > 0 {

let index: usize = rng

.gen_range(0..open_file_ptrs.len() as i32)

.try_into()

.unwrap();

write!(open_file_ptrs[index], "{}", lift_1.to_string()).unwrap();

}

This code snippet demonstrates another property of the test case generator: file op-

erations select their file operands at run time. In contrast to buffers that are assigned to

operations during generation, operations dynamically select a file to operate on. Such

operations include writing to a file, reading from a file, closing a file, reopening a file,

and deleting a file. In addition, the locations of newly created files and directories are

determined randomly at run time. All random choices are made with a seeded random

number generator in order to avoid non-deterministic behavior.

An AST is turned into a test case by placing the code snippets of each node sequentially



8

in the main function of a Rust program. At the start of the main function, a seeded random

number generator and data structures to store the state of the file system are initialized.

Wasimilar generates test cases that contain operations with the filesystem, random

number generation, and clocks. Although WASI Preview 1 supports some operations with

sockets, there is no support for creating a socket and connecting it to a server. In addition,

workarounds exist only for some implementations of WASI and do not have a uniform

interface. Thus, our test cases do not contain operations with sockets.

3.2 Test Harness
We created a configurable test harness to automate the process of differential testing.

The harness first queries Wasimilar for a test case. Next, it compiles the test case to Wasm

and x86 assembly. The x86 binary is executed natively, while the Wasm binary is given

to the WASI runtimes. Each of these execution environments is a test target. Each target

executes its test case in an empty directory. The standard output of each target is captured

in a special log file. A predicate script is used to detect any difference in behavior of

the targets. If a difference is detected, the seed of the test case is recorded. The harness

proceeds to clear the effects of executing the test case and repeats this process until a

specified number of test cases have been evaluated.

We carried out testing campaigns on CloudLab [8], a cloud computing testbed for

research. This allowed us to run extended campaigns and have our test harness running

on multiple machines. This helped us evaluate a large number of test cases.

3.3 Bug Detection
The predicate script compares the results of each WASI runtime with the results of

running the x86 binary natively. First, it compares all the files and subdirectories created

by the test case, including the logged standard output, to ensure they are equivalent. Next,

it makes a special comparison for a file containing all requests made for the current time.

Since this is inherently a non-deterministic operation, direct comparison will fail. Instead,

a regular expression is used to count the number of times the current time was successfully

queried. This quantity is compared instead. If no difference is detected through either

comparison, the test case is discarded because no divergent behavior (arising from a bug
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in a target) has been detected.

3.4 Test Case Reduction
When a test case is determined to cause different behavior among the targets, further

work is needed to determine if it is bug-revealing. We use C-Reduce, a tool for simplifying

C programs while preserving interesting behavior [16]. C-Reduce has been found to work

well for test cases in other languages, including Rust. After automated reduction with

a tool, it is often necessary to further reduce the test case by hand. If we reduce a test

case and determine it does not contain non-deterministic or unspecified behavior, we can

conclude that a bug has been found and submit the reduced test case in a bug report.



CHAPTER 4

EVALUATION

To get an accurate assessment of the effectiveness of our random testing framework, we

ran large scale testing campaigns. This was facilitated by CloudLab, a cloud computing

testbed for research. CloudLab allows users to reserve machines for various purposes. We

allocated one to three machines and installed our testing harness and test case generator

on each of them. We ran testing campaigns on these machines ranging from 1 to 5 days

in duration. At the end of a testing campaign, we collected the list of seeds that yield

test cases exhibiting divergent behavior when input to our random program generator.

We tested the following WASI-compliant runtimes in our testing campaigns: Wasmtime

version 18.0.1 [2], Wasmer version 4.2.5 [23], WasmEdge version 0.13.5 [5], WAMR ver-

sion 1.3.2 [4], and Wasmi version 0.31.2 [15].

Each machine carried out a testing campaign independently from the others. Therefore,

it is possible that some seeds were redundantly evaluated by multiple machines.

4.1 Results
Our testing campaigns identified two bugs in implementations of WASI. The first was a

bug in the WasmEdge runtime [5]. The Rust test case, shown below, is simple and attempts

to create a new directory.

use std::fs;

fn main() {

fs::create_dir("foo/").unwrap();

}

The bug is a result of the trailing slash in the name of the new directory. WasmEdge

raised an exception, which is inconsistent with the specification. This bug was confirmed

and fixed by the developers [20].
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The second bug was found in the Wasmer runtime [23]. Its test case is shown below.

use std::fs::OpenOptions;

use std::io::prelude::*;

use std::io::SeekFrom;

fn main() {

let mut fp = OpenOptions::new()

.append(true)

.read(true)

.create(true)

.open("file")

.unwrap();

write!(fp, "{}", "a").unwrap();

let _ = fp.rewind();

write!(fp, "{}", "b").unwrap();

println!("{}", fp.seek(SeekFrom::Current(0)).unwrap());

}

This test case opens a file in append mode and subsequently performs write and seek

operations on it. Wasmer has an incorrect file offset after the second write operation, and

this is made visible with the print statement. This bug was confirmed by the developers

but has not been fixed at the time of writing [21].

A summary of these bugs can be found in the table below.

System Link to report Fixed
WasmEdge v0.13.5 https://github.com/WasmEdge/WasmEdge/issues/3231 Yes

Wasmer v4.2.5 https://github.com/wasmerio/wasmer/issues/4469 No

4.2 Discussion
Both of the bugs identified by our random testing framework were related to WASI.

Therefore, we have evidence that our testing framework is capable of finding WASI-related

bugs in Wasm runtimes.

Our test case generator involves systems other than the subset of each target imple-

menting WASI. For example, our test cases are compiled using the Rust compiler. They

are given to runtimes that implement the syntax and semantics of Wasm. We also execute

binaries natively. Thus, it is possible that a bug-revealing test case might not be related to
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WASI. This makes the task of verifying bug-revealing test cases more challenging.

This issue arose when analyzing the test case shown below, which was flagged by our

testing harness for exhibiting divergent behavior.

use rand::{Rng,SeedableRng};

use rand::rngs::StdRng;

fn main() -> std::io::Result<()>{

let mut rng = StdRng::seed_from_u64(568596);

let open_file_ptrs = vec![0];

rng.gen_range(0..open_file_ptrs.len());

println!("{}", rng.gen_range(0..2));

Ok(())

}

This test case prints a different random value when compiled to x86 and Wasm. Ulti-

mately, this was due to platform-specific behavior in the Rust specification, not a bug in an

implementation of WASI. The size of the usize type, which is returned by open file ptrs.len(),

is dependent on the compilation target [18]. This caused the pseudo-random number

generator (PRNG) to consume a different number of bits across different targets, because

the representation of the range passed to rng.gen range() was different across those targets.

This affected subsequent queries to the PRNG, which was detected as divergent behavior.

This is an example of the more general problem of avoiding platform-specific, unspecified,

and non-deterministic behavior in randomly generated test cases, exacerbated by the fact

that our test cases adhere to multiple specifications.
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RELATED WORK

The technique of compiling to x86 and Wasm from a high level language was pre-

viously used by Stiévenart et al. to evaluate the security risks of porting C programs to

Wasm [22]. They evaluated the equivalence of the binaries by comparing their return codes

and standard output. We use these same comparisons, but we extend them to include the

effects on the file system.

A major component of this study is developing a random program generator to provide

Rust test cases. Several Rust program generators already exist [19], [7]. Sharma et al. intro-

duced RustSmith, a Rust language fuzzer for differential testing implemented with Kotlin.

RustSmith was used to find historical and previously unreported bugs in various Rust

compilers. Dewey et al. created a Rust test case generator to demonstrate how constraint

logic programming can be used to generate well-typed programs [7]. With this tool, they

tested the Rust typechecker by generating programs that either adhere to or subtly violate

Rust’s type rules. Our test case generator differs from both of these program generators

because it prioritizes generation of interesting sequences of system calls over stressing a

compiler’s adherence to Rust’s semantics.

To our knowledge, no prior attempts to perform random testing on implementations

of WASI have been documented. However, they have been tested in other ways. Users

of Wasmtime regularly submit bug reports related to WASI [3]. These reports were re-

cently categorized by Zhang et al. when they developed a taxonomy of bugs discovered

in Wasm implementations [27]. They created a testing framework by collecting known

bug-revealing test cases into a test suite. This was effective at finding bugs in Wasm imple-

mentations. However, it is still beneficial to have a framework for generating an arbitrary

number of test cases, rather than having to update a test suite by hand. Additionally, a

random testing framework can reveal bugs before they are encountered by users.
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WASI can be viewed as a runtime library for Wasm. Li et al. introduced PyRTFuzz,

a random testing framework for detecting bugs in Python runtimes, including runtime

libraries [13]. They develop a system to automatically extract API descriptions of runtime

libraries and use the extracted API descriptions to make diverse and valid calls to the

runtime APIs, ensuring that they are fully covered. Mutational techniques are used to

generate inputs for test cases. Although our test cases do not accept any input, WASI pro-

vides support for command line parameters and reading from standard input. Thus, their

strategy of using mutation to generate interesting inputs could enhance the bug-finding

power of our random testing framework. Ultimately, developing a system to automatically

extract API descriptions for WASI would not be useful, as it is a single, relatively simple,

API. This contrasts with Python runtimes, which have a large and growing number of

APIs.

Many of the WASI operations supported by our test case generator involve the file

system. Thus, it is important for our generator to produce interesting and varied interac-

tions with the file system. Kim et al. introduce Hydra as a solution for this problem [12].

Hydra is a framework for fuzzing file systems that works by mutating both the sequence

of system calls and the image of the file system. Any code checker can be connected to

Hydra to serve as a test oracle. We take a generative approach to fuzzing WASI rather than

a mutational approach. We also do not pre-populate our file system before executing a test

case. Thus, we have no file system image to mutate. Our test cases also contain operations

with clocks and random numbers in addition to the file system.
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CONCLUSIONS

In summary, we developed a random testing framework and used it to find two bugs

in implementations of WASI. Thus, we can conclude that random testing is effective for

finding bugs in implementations of WASI. We also showed that it is possible to specifically

test the subset of Wasm runtimes that implement the WASI API.

We found that Xsmith is a useful tool for generating test cases even if they are not

generated according to the grammar of a language. Although our test cases are in Rust,

our test case generator was minimally concerned with the syntax and semantics of Rust.

We generated shallow and deterministically sized ASTs, which is another unusual use case

for Xsmith. Despite this, our test case generator benefited from Xsmith’s framework for

randomly constructing an AST, pairing reference nodes with binding nodes, and rendering

a test case from an AST.

We conclude that the results of this study are promising, and we consider several

avenues for future work. First, we could increase the power of our current random testing

framework. This could include incorporating more WASI-runtimes into our testing har-

ness, increasing the number of API calls supported by our test case generator, or generating

test cases with more sophisticated control flow, e.g., incorporating functions, loops, and

more conditional expressions. Second, we could employ a different approach to randomly

test WASI runtimes. For example, one could develop a grey-box fuzzer that mutates test

cases based on coverage feedback from an instrumented runtime. Another approach is to

directly generate Wasm programs that make use of the WASI API. This would allow more

fine-grained testing of WASI.

We expect that random testing will continue to be an effective tool for testing WASI

runtimes as the API evolves and becomes more complex. Differential testing becomes a

more powerful technique as the number of WASI-compliant runtimes grows. We hope that
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our random testing framework will be a useful tool for developers implementing WASI

runtimes.
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