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Abstract
SSH (Secure Shell) is widely used for remote access to

systems and cloud services. This access comes with the per-
sistent threat of SSH password-guessing brute-force attacks
(BFAs) directed at sshd-enabled devices connected to the
Internet. In this work, we present a comprehensive study of
such attacks on a production facility (CloudLab), offering
previously unreported insight. Our study provides a detailed
analysis of SSH BFAs occurring on the Internet today through
an in-depth analysis of sshd logs collected over a period of
four years from over 500 servers. We report several patterns in
attacker behavior, present insight on the targets of the attacks,
and devise a method for tracking individual attacks over time
across sources. Leveraging our insight, we develop a defense
mechanism against SSH BFAs that blocks 99.5% of such
attacks, significantly outperforming the 66.1% coverage of
current state-of-the-art rate-based blocking while also cutting
false positives by 83%. We have deployed our defense in
production on CloudLab, where it catches four-fifths of SSH
BFAs missed by other defense strategies.

1 Introduction

The Secure Shell [72] is widely used for remote administra-
tion and command execution. Due to this popularity, it is com-
mon for SSH servers to be targeted for password-guessing
Brute-Force Attacks (BFAs). In such attacks, a malicious
party attempts to connect to an SSH server using one or
more {username,password} pairs, guessing values for both
fields. Attempting to brute-force SSH may seem like an “out-
dated” attack: best practices recommend key-based authen-
tication [29], many IPv4 devices are behind NAT [28], and
scanning for hosts on IPv6 is notoriously difficult [36]. Yet,
our experience shows that BFAs are still prevalent– in fact,
increasing—on the IPv4 Internet. Such attacks are leveraged
to exploit poorly configured and poorly secured SSH servers
to build botnets [56]. If the attack against a machine succeeds,
the attackers can use the machine to carry out further attacks
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Figure 1: Failed SSH attempts on CloudLab (in millions).

as part of the botnet [11, 13, 19, 43, 46] or steal its computing
resources (e.g., for cryptomining [24, 59]).

While others have studied SSH attacks, existing studies
involve smaller timescales [10, 30, 58, 71], examine fewer
hosts [10, 58], use honeypots that do not include legitimate
users [10, 30, 58, 71], or cover periods that are not recent [10,
58]. In contrast, we captured real-world BFAs mixed with
the activities of legitimate users in a live production facility
by capturing sshd logs for four years across ≈500 servers in
CloudLab [27]. Due to this unique characteristic, our dataset
provides a rare opportunity to understand changing attacker
behavior over a longitudinal span and to compare it with the
practices of legitimate users. Our analysis shows that SSH
BFAs are evolving. As Figure 1 illustrates, BFA attackers are
becoming more aggressive, with daily attempts increasing,
particularly in recent years.

By “fingerprinting” usernames, we were able to track many
attackers over time and across IP addresses. Our analysis
revealed a wide range of attacker behaviors. Many attack
quickly and then disappear, while others persist in their at-
tacks for months or years; some focus on one username,
while others attempt thousands. We found that attackers tar-
get a wide variety of devices (e.g., servers, Internet of Things
[IoT] devices, routers) and software (e.g., databases, games,
chat servers), shifting from typical administrator usernames



(root and admin) to those associated with cloud images,
network and IoT devices, and specific software. Based on
observing that username fingerprints are a strong differen-
tiator between attackers and legitimate users, we designed
Dictionary-Based Blocking (DBB)—a novel technique
for blocking SSH BFAs with high effectiveness. DBB blocks
traffic based on dictionaries of usernames attempted by attack-
ers. The low false positive rates of DBB ensure that legitimate
users retain reliable access.

With our research, we make the following contributions:
• We present an analysis of the properties of the SSH

brute-force attacks going on today, including insights
about their methodology, inferences about their targets,
investigations into their network sources, and analysis
of attackers’ persistence. (Sections 4, 5, 6)

• We develop a method for creating username dictionaries
that allow us to track attacks across IP addresses and over
time, even when data is incomplete or attackers make
small adjustments to their username lists. (Section 7)

• We present a new method, Dictionary Based Blocking
(DBB), for blocking SSH brute-force attacks using these
dictionaries. (Section 8)

• We evaluate DBB using real-world data, showing it to
be highly effective at blocking attackers while allowing
legitimate users access. (Section 8.3)

• We present results from a production deployment of
DBB, showing that it performs exceptionally well in
practice. (Section 8.5)

We begin with an overview of related literature in Section 2
and data collection setting and method in Section 3.

2 Related Work

The literature most relevant to our work analyzes SSH BFAs
and examines approaches to block them.

Analyzing SSH BFAs: An analysis of 103K login attempts
from 271 IPs on three honeypots over 11 weeks revealed
that the attacks target administrator as well as user accounts
and can be thwarted with strong passwords and key-based
logins [58]. More recently, researchers found that such attacks
employ root and admin as popular usernames (95% and 3%
of attempts, respectively) [10]. Complimentary research has
focused on the use of stolen credentials and botnets when
carrying out SSH BFAs [17, 71].

SSH BFAs have been captured by honeypots deployed via
IoT hardware and software as well and demonstrated that
attackers who gain access engage in diverse activities, such
as bitcoin mining, UDP/TCP flooding, SSH scans, and SSH
port forwarding [24]. In a larger-scale deployment via 102
medium-interaction honeypots across three continents, re-
searchers monitored 12 million connections originating from
38K unique IPs and examined how attacker behavior is in-
fluenced by the location of the honeypot, the difficulty of

compromise, and the variety of files available on the hon-
eypot [15]. Use of cipher suites and SSH version strings to
fingerprint the mechanisms used in the attacks has identified
that attackers use popular tools off-the-shelf software, such
as Ncrack [6] and Hydra [4], as well as custom tools [30].

A recent deployment of medium-interaction honeypots for
five protocols captured 73K IP addresses, noting an increasing
frequency of SSH attacks throughout the period. More lon-
gitudinal honeypot deployments have observed a significant
number of IP addresses engaged in multiple activities over
15 months [47] and two years [40]. The data covered various
attacks, including SSH BFAs and non-standard port accesses,
and the researchers observed that attacker preferences were
relatively stable [40]. The studies mentioned above mostly
use honeypots that collect only attacks. In contrast, we exam-
ined data from a production system, enabling us to compare
attackers and legitimate users accessing the same system.

Blocking SSH BFAs: Researchers have proposed various
approaches to detect and block BFAs, including network flow
analysis [26, 32–35, 42, 67] and machine learning/deep learn-
ing techniques [31,37,38,45,48,49,62]. However, employing
network flow data to detect SSH BFAs can result in a high
number of false positives.

Alternately, defenses against SSH BFAs can employ
host-based approaches to track user/IP characteristics, such
as failed attempts and interarrival time. Tools such as
Fail2ban [3], denyhosts [1], and sshguard [9] use host-based
blocking of suspicious traffic. They analyze authentication
logs to compute relevant features, such as the number of failed
login attempts, and block corresponding IP addresses with
host-based firewalls such as iptables [7]. Fail2ban is one
of the most widely used tools for stopping BFAs: it blocks
IP addresses exceeding a threshold number of failed attempts
within a specified period. Tuned time- and rate-based block-
ing mechanisms have been used to improve blocking strate-
gies [63]. A simulation with synthetic data showed that a dis-
tributed active-response architecture can enable the sharing
of relevant information—particularly attacking IP addresses—
among trusted hosts [44]. However, such an approach is not
privacy-preserving and requires a set of trusted hosts. By ana-
lyzing data from a production system, we were able to design
and deploy a novel defense and compare its effectiveness
(including false positives) with rate-based designs.

3 Data Collection

Our research is based on an analysis of sshd logs from Cloud-
Lab [27], a public facility used by academic researchers at
institutions around the world. CloudLab has a cloud-like user
model: the users are “tenants” who access servers temporar-
ily assigned to them. Although CloudLab has some policy
control, such as initial sshd and logging configurations, the
users are not under direct control of CloudLab. Once users
acquire control of their assigned nodes, they may, and occa-



sionally do, alter the SSH settings without any supervision
or regulation from CloudLab. Therefore, an additional layer
of SSH security, beyond the defaults permitting only key-
based authentication and prohibiting username,password
authentication, is needed.

We used two sets of log files collected by CloudLab. The
first (Log1) was collected on a single cluster over four years
(October 2017 – August 2021) and contains a large number
of attacks that enabled us to study general trends in SSH
BFAs. The second (Log2) was collected at three different
CloudLab sites over ten weeks (November 2022 – January
2023) to evaluate our proposed blocking mechanism. The
three CloudLab sites are geographically dispersed and use
unrelated IP addresses owned by different networks.

SSH Logs: Each host (also called a “node” or “server”)
in CloudLab has a persistent public IPv4 address and runs
sshd for remote access—the primary way legitimate users
interact with the host. By default, CloudLab hosts do not run
other public-facing services, though users are permitted to
start their own services if they wish. All CloudLab hosts are
configured to log SSH login attempts to a central syslog
server from which we obtained our datasets. We parsed the
logs to extract various relevant features, such as source IP ad-
dresses, attempted usernames, authentication responses, etc.
The log files did not contain passwords. To get a view ap-
proximating the network boundary (e.g., firewall or bastion
host), we first removed any SSH attempts originating from
within CloudLab itself. After removing the internal attempts,
Log1 included ≈ 840K unique source IP addresses attempt-
ing ≈ 277K unique usernames and making ≈ 427M login
attempts Log2 contained≈ 91K unique source IPs attempting
≈ 98K unique usernames and ≈ 213M login attempts.

When analyzing the logs, we took into account that log
messages can be lost due to central server overload, network
congestion, misconfigurations on the hosts or the server, or
intentional configuration changes by users. We further consid-
ered that CloudLab hosts are responsive to SSH requests only
when in use, with usage periods of varying lengths distributed
unevenly. As a result, log data pertaining to any given host can
exhibit short-term gaps corresponding to periods in which it is
not in use. To avoid incorrect conclusions on account of such
short-term gaps, we used methods that support “fuzzy” match-
ing and looked at long-term trends. Of the hosts included in
Log1, 352 logged SSH connections every day of the logged
period, and the three sites in Log2 averaged connections from
1,322 hosts daily (616, 384, and 322 each).

Distinguishing Legitimate Users From Attackers: We
considered an IP address as belonging to a legitimate user if it
had at least one successful login. In other words, we assumed
that IP addresses associated only with failed logins belonged
to attackers. CloudLab’s default sshd configuration allows
only public-key authentication, and the CloudLab staff know
of no attacks using stolen private keys. Therefore, we assumed
that only legitimate users logged in successfully. On the other

hand, attackers typically attempt to log in using passwords.
Even though CloudLab is set to accept only key-based authen-
tication, password-based login attempts are logged despite
being disallowed. Although legitimate users may attempt (and
fail) to log in with passwords, nearly all failed login attempts
in our logs appear to be part of attacks rather than erroneous
password-based attempts from legitimate users.

Advantages of Production Facility over Honeypots: Un-
like honeypot logs that exclusively contain attacks, the Cloud-
Lab logs we analyzed contain actions of attackers along with
those of legitimate users. As a result, analyzing the data al-
lowed us to explore the practices of legitimate users in ad-
dition to those of attackers, thus facilitating comparisons be-
tween the two. One of the main challenges of honeypot logs is
the inability to test blocking strategies because of the absence
of legitimate users, resulting in a lack of false positives for the
assessment. In contrast, our data can serve the dual purpose of
aiding the development of blocking strategies and providing
a means to assess their effectiveness.

Metadata Limitations: In parts of our analysis, we used
data regarding network owners and geographic locations of
the attacker IP addresses [5,14]. Since we fetched this data in
Summer 2022, after collecting Log1, it is possible that some
IP addresses changed ownership after we had logged attacks
from them. In addition, the use of NAT and dynamic address
assignment on source networks may obscure the true number
of attacking devices captured in the logs.

Ethical Considerations: Collecting logs is a routine op-
eration in facilities like CloudLab. We have reported results
using large aggregates without identifying individual users. In
cases where mentioning specific users can provide illustrative
value, we have anonymized the usernames. At the same time,
we have assumed that attackers do not have a legitimate expec-
tation of privacy. Still, we have not mentioned IP addresses
since the devices may be compromised unbeknownst to their
owners, who may have no malicious intent.

4 The Anatomy of SSH BFAs

In this section, we cover the basic features of SSH BFAs,
attaching specific numbers and concrete behaviors from Log1
to illustrate the concepts in the general descriptions.

Source IP Addresses: An SSH BFA originates from a
source to a set of targets using a guessing vector of credentials.
Such attacks can come from a large number of IP addresses.
For instance, Log1 contains attacks from over 800,000 IP ad-
dresses, with at least one attack from 90% of the 249 countries
with ISO country codes [39]. However, few conclusions about
the individual or entity controlling an attack can be drawn
from source IP addresses alone. In many cases, the attacking
devices do not belong to malicious actors themselves but to
botnets composed of compromised machines [13, 46, 56] in-
fected with self-replicating worms [25] or used to mask the
locations of the actual attackers.
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Figure 2: Histogram of sequence bias.

Target Host(s): Attackers may select hosts to target with
several methods: scanning sequentially or randomly, checking
for specific vulnerabilities on a host, etc. In practice, nearly all
BFAs in Log1 seemed to be based on random scanning of the
IPv4 address space as seen in Figure 2, which is a histogram
of the sequence bias for the sources in Log1 that attacked at
least 50 hosts. For each source IP address, we calculated the
sequence bias as the fraction of successive target IP addresses
higher than the one previously attacked. The sequence bias
for a given sequence of IP addresses, S1, . . .SN is:

SB = 1
N−1 ∑

N−2
i=1


0 if Si+1 = Si

1 if Si+1 > Si

−1 if Si+1 < Si
A sequence bias of 1 indicates that the source moves from
lower-numbered addresses to higher ones 100% of the time,
with -1 indicating the reverse movement order. A sequence
bias of 0 means that each successive target is equally likely
to be ‘up’ or ‘down’ in the IP space. The density of sources
around zero—82% of the sources depicted in Figure 2 are
in the range [-0.25,0.25]—indicates that most traverse the IP
address space in random order.

Guessing Vectors: A BFA attacker attempts SSH login
with a set of usernames and passwords. A username can
be associated with multiple passwords and vice-versa. Each
{username, password} combination is called a credential
vector. Multiple such credential vectors are combined to con-
struct a guessing vector. A study published in 2015 found that
over 98% of BFAs contain the usernames root or admin [10].
Our more recent data shows that these usernames have be-
come less dominant over time (see Figure 3). As seen in Fig-
ure 3, root has fallen dramatically, and admin is used only in
a small fraction of attack attempts. Instead, as we present in
more detail in Section 5, attackers are switching to usernames
associated with cloud services and network devices.

5 Properties of SSH BFAs In Practice

After looking at the general structure of SSH BFAs, we used
Log1 to analyze specific aspects in more depth. We guided
our analysis with a series of questions that arose from the
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Figure 3: Percentage of BFAs with usernames root and
admin.
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Figure 4: Percentage of accepted attempts at CloudLab.

general observations in the preceding section.
How aggressive are individual attackers? A core reason

behind blocking attacking IP addresses is that attackers at-
tempt far more logins than real users. Log1 shows that Cloud-
Lab is no exception, with only 10% of the login attempts being
successful. On average, CloudLab experiences 25 successful
SSH logins per minute as opposed to 211 failed ones.

Our data contains exceptions where the number of failed
logins on a particular day did not outnumber successful ones.
For instance, on a specific day, accepted attempts reached
621K—2.2 times the number of failed attempts. This case
was mostly because of a single legitimate user, river,1 who
allocated numerous nodes and established thousands of SSH
connections to each allocated node. Figure 4 shows the per-
centage of accepted attempts in the data: accepted SSH at-
tempts were greater than failed ones on only 13 days in the
four-year period covered by Log1. We speculate that the dis-
crepant days may have resulted from the use of DevOps tools,
such as Chef or Ansible [60], that make heavy use of SSH.

A majority of the failed attempts belonged to a small frac-
tion of attacking IP addresses, with 1% accounting for 78%,

1Username changed for privacy.
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Figure 5: The number of usernames attempted vs. the number
of attacking IP addresses using that many usernames. Both
axes use a log scale to depict the extreme ranges.

2% for 85%, 4% for 90%, 8% for 95%, and 22% for 99% of
all failed attempts. Over the four years represented in Log1,
each attacking IP address performed 458 attempts on average.
On the one hand, these numbers demonstrate that blocking
by IP address is an attractive approach since blocking only a
modest fraction of active attackers can greatly reduce attack
volume. On the other hand, the numbers show that achieving
perfect coverage by blocking specific IP addresses is difficult—
moving from 99% to 100% coverage requires identifying and
blocking nearly five times as many offending IP addresses.

Can we assume that all login failures are attacks? Of
the ≈277K unique usernames in Log1, ≈99.995% were as-
sociated only with failed login attempts, but the remaining
≈0.005% had at least one accepted connection. For every
legitimate username in Log1, there were about 199 associated
only with failed attempts. Importantly, we found that every
legitimate username logged at least one failure. We suspect
failures associated with legitimate users are because of errors
such as forgetting to add SSH keys to their agent, typos in
hostnames, configuration errors on the servers, etc. The up-
shot is that administrators cannot deem an IP address to be
malicious solely because of one, or even a few, failed login
attempts. Since all legitimate users are likely to make the oc-
casional error, effective identification of SSH attacks requires
strategies more complex than simple failure-based blocking.

Do attackers try many usernames or focus on a small,
high-value set? We uncovered numerous strategies regarding
the number of usernames attackers tried. The number of user-
names employed by each source IP address varied from one to
≈14K. More than half (54%) of the attacking IP addresses at-
tempted only a single username in their guessing vectors. On
average, attackers attempted 28 usernames, with 75% of the
attackers using fewer than seven usernames and 90% using
fewer than 39. A high variance ( ≈15170) in the distribution
of usernames per source IP address shows that the number of
usernames attempted by attackers is highly dispersed.

Figure 5 shows the number of usernames attempted against
the number of attackers who attempted that many usernames.

It can be seen in Figure 5 that a large number of attackers
tried relatively few usernames (from one up to a few hundred).
Only a small number of attaackers attempted a large number
of usernames (in thousands). Those who tried the smallest
number of usernames (i.e., 1 or 2) tended to go after admin-
istrator access with the usernames root and admin. The sets
of usernames attempted in BFAs form the basis for our novel
blocking strategy (described in Sections 7 and 8).

Are attackers successful at guessing legitimate user-
names? We found a significant overlap between the user-
names in guessing vectors used by attackers and those of
CloudLabusers, indicating that attackers are somewhat suc-
cessful at guessing legitimate usernames. Overall, 609 user-
names belonging to legitimate CloudLab users appeared in the
attacks. Although small, this is a non-trivial fraction (3%) of
the ≈20,000 CloudLab users.2 However, we saw no evidence
that the guessing vectors targeted CloudLab specifically (e.g.,
via a leak of CloudLab’s user database) since guessing vec-
tors of substantial size were composed mostly of usernames
not used by CloudLab’s userbase. Instead, the presence of
real usernames in the guessing vectors seems to be because
of attackers attempting common names that are likely to be
present in any sizable user base. Regardless, the overlap with
legitimate usernames underscores the need to enforce good se-
curity practices (e.g., key-based login and/or strong passwords
or passphrases).

What types of devices or software are targeted for at-
tacks? Some Internet-connected devices have specific, known
usernames, allowing us to infer that attackers trying those
usernames were targeting devices of that type (regardless
of whether such devices are present in CloudLab). Simi-
larly, some usernames are commonly associated with spe-
cific software or operating system images intended for cloud
platforms. Therefore, we split the usernames in Log1 into
three groups: non-administrator usernames, generic adminis-
trator usernames, and device- or software-specific usernames.
We then manually classified the top 100 usernames, which
collectively represented 83% of the failed logins. Of the top
100 usernames, 17% were non-administrator usernames, 67%
were generic administrator usernames, and 16% targeted spe-
cific devices or software. Appendix E provides the full detail
of these usernames and their classifications.

Non-administrator usernames consisted mostly of
generic roles or common personal names containing no in-
formation about a specific targeted device or software. Most
non-administrator usernames (66% of attacks in this user-
name category) were based on specific user roles, such as
support, user1, profile1, and demo. The rest were either
personal names (e.g., john, vivek, zhang) or unattributable
to particular attacker intentions (e.g., default, ts, etc.).

Generic administrator usernames were dominated by the
username root, which accounted for 86% of all attacks in

2Not all CloudLab users logged in during the logged period.



this category of usernames, with admin being a distant sec-
ond with 7%. Other generic administrator usernames included
administrator, admin1, and sysadmin. Such generic ad-
ministrator usernames are used broadly by UNIX-like sys-
tems, including servers, desktops, and even IoT devices, thus
providing little information about specific targets.

Device- or software-specific usernames can be used for
devices and software with default usernames (and sometimes
default passwords). The largest set of such usernames (37%)
targeted devices or software associated with network ven-
dors Ubiquiti, Mikrotik, and Huawei. The nature of these
attacks suggests that attackers attempt to gain access to entire
networks by compromising routers and switches. Such an
approach is particularly concerning because these vendors
run the gamut from home to enterprise and from telecommu-
nications to backbone networks. Another large set of attacks
(30% of attacks in the category of device- or software-specific
usernames) seemed to be leveraging usernames that match
well-known software packages to target hosts with that soft-
ware installed. While most of these usernames corresponded
to typical server software such as oracle, mysql, hadoop,
and nagios, there was a significant subset targeting gaming-
related software, such as minecraft, csgoserver (Counter-
Strike), and teamspeak3 (used for in-game voice chat). Ad-
ditionally, 23% of attacks employing device- or software-
specific usernames tried usernames associated with common
server services (but not necessarily specific implementations
of those services), such as web, ftp, and git.

Finally, 10% of attacks with device- or software-specific
usernames appeared to target specific Linux distributions with
usernames such as ubuntu, debian, and centos. Such user-
names are often used by default in the disk images produced
by these distributions for cloud use. Interestingly, the second-
most-popular distribution-based username was pi, the default
username for Raspberry Pi OS (formerly known as Raspbian),
likely because, until 2022, this account had a well-known
default username/password pair if sshd was enabled [61].

Do usernames become more popular when vulnerabili-
ties are publicized? We noted that certain usernames in guess-
ing vectors rose in volume with the release of corresponding
Common Vulnerabilities and Exposures (CVEs) or breaking
news about specific vulnerabilities. For instance, after a public
disclosure that particular devices are affected by vulnerabili-
ties, we found that a set of usernames associated with those
devices surged among the attacks. Specifically, in mid and
late 2019, it became known that vulnerabilities in products
from video-centric IoT manufacturer Dahua [20] could be
exploited for unauthorized remote access, device restart, or
arbitrary code execution [21,22,52]. As Figure 6 shows, right
after the public disclosure, there was a sharp spike in SSH
attempts with two of Dahua’s default usernames, 888888 and
666666 [23]. The two usernames follow a similar pattern,
suggesting they belong to the same guessing vector. Notably,
attacker interest in these usernames dwindled after the initial

Jan
-20

18

Apr-
20

18

Jul
-20

18

Oct-
20

18

Jan
-20

19

Apr-
20

19

Jul
-20

19

Oct-
20

19

Jan
-20

20

Apr-
20

20

Jul
-20

20

Oct-
20

20

Jan
-20

21

Apr-
20

21

Jul
-20

21
0
2
4
6
8

10
12
14
16

Fa
ile

d 
At

te
m

pt
s i

n 
th

ou
sa

nd
s 666666

888888
acer
bamboo
ceph

Figure 6: Spikes in usernames associated with CVEs.

spike, possibly because of lower-than- expected exploitability
or the ban on these devices imposed by the US government
due to security concerns [66]. Figure 6 also shows similar
spikes in attacks for three other usernames acer, bamboo and
ceph, when corresponding CVEs [51,54,55] were announced.
Interestingly, none of these CVEs are directly related to SSH.

Sometimes, there was a direct or potential indirect connec-
tion between vulnerabilities and SSH access. In other cases,
no such connection was obvious. It does appear that CVEs
increase attacker use of related usernames, but it is not al-
ways clear why. Overall, however, attacker behavior shows
the need to react relatively quickly when new usernames be-
come more prevalent. An effective blocking strategy must be
able to discover and block new usernames quickly.

6 Attacker Distribution and Persistence

SSH BFAs are highly distributed, but the persistence of attack-
ers varies greatly. We examined trends in attacker distribution
across countries and networks, along with their persistence
across time. It is important to note that attackers often use
compromised machines [24], so we cannot draw strong con-
clusions that the entity controlling an attack is based in the
same country/network as the device launching the attack.

How widely are the attackers and legitimate users dis-
tributed? Only 1% of the IP addresses in Log1 were used
by legitimate users, with the other 99% (831K) used exclu-
sively by attackers. These addresses were associated with 223
country codes and 18.5K network providers.

Most attacking IP addresses were from China (23%), fol-
lowed by the United States (14.2%), Russia (5.8%), and
Brazil (5.2%). Conversely, most legitimate IP addresses were
from the United States (64%), followed by Indonesia (7.3%),
Pakistan (5.2%), China (2.8%), and Brazil (2.8%). A majority
of attacking IP addresses captured by honeypots have sim-
ilarly been reported as originating from the United States
and China [47, 64]. IP addresses from 21% of the country
codes had at least one legitimate user, while those from the
remaining 79% of the country codes were only sources of



attacks. The number of IP addresses from a country was not
always correlated with the number of attacks from that coun-
try. For instance, IP addresses from China were responsible
for 44.7% of failed SSH login attempts, followed by those
from the United States with 8.4%. IP addresses from China
and the United States made up more than half of all failed
login attempts. The distribution fell off quickly, with 99% of
the failed logins coming from just 5.2% of all countries.

The number of attacks per network provider was similarly
skewed. About half of the failed attempts were associated
with just six network providers: China Telecom (26.8%),
China Unicom (6.1%), DigitalOcean Cloud (6.0%), Tencent
Cloud (5.5%), OVH Cloud (2.9%), and the Vietnam Posts and
Telecommunications Group (2.7%). IP addresses from the top
100 network providers contributed 79.9% of the failed login
attempts, with the top 13% contributing 99% of the failed
attempts. Among the network providers seen in our data, 99
were used only by legitimate users, 431 by legitimate users as
well as attackers, and the remaining 18,067 only by attackers.
Such a distribution indicates that flagging entire networks as
malicious is a poor strategy because most legitimate users are
on networks that are also the sources of attacks.

Similar to prior research [16,64], we observed a significant
number of attacking IP addresses (at least 15.3%, responsible
for 20% of the failed attempts) hosted by cloud providers. Of
the top ten network providers based on the number of failed
attempts, three were cloud providers. Six among the top 15
networks—and ten among the top 25—were cloud providers.

Further detail on the network providers and countries for
IP addresses in Log1 is included in Appendix F.

Are there instances of concentrated attacks from spe-
cific networks? The growth in the attacking IP addresses in
CloudLab was generally steady over time. About 1–2% of the
attacking IP addresses were new each month. At the high end,
CloudLab experienced 4–6% new attackers in some months.

However; there were period during which there were large
spikes in new addresses from specific networks or countries.
To quantify this aspect, we calculated the month-to-month
growth ratio for IP addresses from each country and network
provider. We defined the growth ratio for a month as the num-
ber of new IP addresses seen that month divided by the aver-
age number of new IP addresses per month over the four-year
logging period. The growth ratio enabled us to examine those
network providers whose IP addresses exhibited high growth
ratios at some point. Figure 7 shows growth ratios for four net-
work service providers with Comcast (a large US ISP) as the
baseline compared with Lumen/CenturyLink [69] (another
large US ISP), Selectel [70] (a Russian cloud company that
others have identified as an attack source [18]), and LG Up-
lus [68] (a South Korean mobile network operator). While
there were many attackers from Comcast, they appeared at a
fairly constant rate, with the growth ratio staying close to 1.0
as seen in Figure 7 In stark contrast, the IP addresses from
the other three network providers exhibited large spikes, i.e.,
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Figure 7: Growth ratios for four networks with Comcast as
the baseline.

months during which there were far more new attackers from
these networks than typical. We typically observed 82 new
attacking IP addresses from Comcast per month, with a max-
imum of 170 new IP addresses in a month. In comparison,
there were an average of 657 new attacking IP addresses per
month from Lumen/CenturyLink, but the spike in January
2021 was composed of 28,640 new Lumen/CenturyLink IP
addresses involved in attacks. Such concentrated attacks from
a single network can have diverse causes, such as attackers
forming botnets from vulnerable routers or cable modems
specific to an ISP [50, 53], or gaining legal or illicit access to
cloud or hosting services [12, 57]. Regardless of the reason,
detecting spikes can help uncover and investigate anomalies.

How long do individual IP addresses persist? The IP
addresses of most attackers and legitimate users had an active
duration of less than one day, vanishing on the same day they
first appeared. Figure 8 compares the IP addresses of attackers
and legitimate users in terms of the active durations, i.e., the
differences between the last and the first days on which the
respective IP addresses were seen, in days. Although there
were more IP addresses of legitimate users with short drua-
tions, the overall shapes of the distribution curves for the two
groups are remarkably similar.

What metrics distinguish attackers and legitimate
users? The ability to block attacks based on metrics, such
as the number of attempts, relies mainly on finding metrics
that clearly distinguish attackers from legitimate users. Fig-
ures 9 and 10 are scatter plots for three pairs of quantitative
metrics, with each point in the plots representing one source
IP address. Since there are far more attacking IP addresses
than legitimate ones, the plots depicting the latter are sparser.

In all cases, legitimate users were “embedded” within the
portions of the space covered by attackers. This can be clearly
seen in Figure 9, which is a plot of the length of time between
observing an IP address for the first and last times vs. the frac-
tion of days within that span that the IP address was active.
While legitimate users are clustered more around the axes
of the plot, there are enough outliers such that few regions
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Figure 9: Duration (i.e., the span between the first and last
connection) vs. activity ratio (i.e., the fraction of days in the
span with connections) for IP addresses used by attackers and
legitimate users.

of the plot are occupied exclusively by attackers. Practically
speaking, using these metrics to mark IP addresses as attack-
ers can catch a significant number of them, but at the expense
of falsely flagging a number of legitimate users as attackers.

Plots (a) and (b) in Figure 10 show the total number of login
attempts from each IP address vs. the number of usernames
attempted. There is a clear region in each plot (above 100 user-
names) containing a substantial number of attackers but only
a single legitimate user. Still, these plots highlight the diffi-
culty of trying to identify attackers with either metric because,
like most attackers, a substantial number of IP addresses of
legitimate users appear to use tens of usernames (likely due to
NAT). In terms of the number of attempts, there is complete
overlap on the X axis. Plots (c) and (d) in Figure 10 show
similar observations for the number of hosts attacked by each
source IP address vs. the number of usernames attempted.

7 Tracking Attacks With Dictionaries

As we saw in previous sections, BFAs come from a variety of
locations, with attackers exhibiting a wide range of behavior.
In addition, we showed that quantitative metrics alone cannot
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Figure 10: Plots (a) and (b) show the number of attempts vs.
the number of usernames. Plots (c) and (d) show the number
of hosts vs. the number of usernames for IP addresses used
by attackers and legitimate users.

easily differentiate attackers from legitimate users. Therefore,
we turned to identifying attacks by using the sets of usernames
attempted by each source IP address as its fingerprint.

Constructing dictionaries and dictionary groups: We
found that many individual source IP addresses had the same—
or similar—fingerprints. We therefore compiled dictionaries
of usernames, with each dictionary being a set of usernames
used by a set of (more than one) source IP addresses. These
dictionaries served two purposes. First, they enabled us to
find the sets of usernames prevalent among attackers, form-
ing the basis of DBB. Second, they helped us infer potential
relationships between attacking IP addresses.

For an accurate count, we needed to find fingerprints that
were not only identical but also similar. Such matching was
required for two reasons. First, the data from production sys-
tems can be incomplete (as discussed in Section 3) so we
needed a mechanism that can tolerate some amounts of miss-
ing data. Second, we hypothesized that attacker dictionaries
would drift over time, with small additions of new usernames
and/or removal of unfruitful ones, similar to dynamic cre-
dential fetching seen in recent malware [13]. Therefore, we
developed a method for grouping similar dictionaries by de-
termining the Jaccard Similarity (JS) [41] between username
sets. The JS for two sets X and Y is defined as the ratio of
length|X ∩Y | to length|X ∪Y |. JS ranges from 0 to 1, being
0 when there is a null intersection between sets and 1 when
the intersection and the union are the same.

Our method captures the transitive similarity between dif-
ferent dictionaries in two steps. First, we constructed an undi-
rected graph G = (V, E) where each dictionary is repre-



sented as a vertex in V. An edge is added to E for every pair
of vertices (v, v’) if JS(v,v′)≥ ĵ, where JS(. . . ) is the Jac-
card similarity of the pair of dictionaries and ĵ is a selected
threshold. Second, we determined all connected components
in G. i.e., groups of vertices Ṽ ⊂V for which every v ∈ Ṽ can
be reached from every other v′ ∈ Ṽ via the (undirected) edges.
Note that individual dictionaries may form their own con-
nected singleton components if they have no edges (i.e., they
are not similar to any other dictionaries), and groups of dictio-
naries can become transitively included in larger components
(e.g., if a dictionary A is similar to B, and B is in turn similar
to C, the three dictionaries form one connected component).
We selected a threshold value for ĵ of 0.88 by considering
a range of values and selecting the one that maximized the
number of non-trivial (i.e., larger than size one) connected
components. Intuitively, our choice of the threshold value is
reasonable because it is large enough to group together only
those dictionaries that are similar yet small enough for modes-
sized dictionaries (e.g., with ten usernames) to pass the bar
despite differing by one or two usernames.

Attacker Use of Dictionaries: Our construction of indi-
vidual dictionaries from Log1 resulted in 829 dictionaries
covering 64% of the attacking IP addresses. After applying
the similarity determination method above, we ended up with
48 non-trivial connected components, reducing the initial set
of 829 dictionaries to a set of 682 Dictionaries Groups (DGs).
As the numbers indicate, most DGs are singletons. A list of
the most frequently encountered usernames in the DGs is
included in Appendix D. Across the 682 DGs, the number of
usernames per DG varied from one to ≈ 4.6K, with a median
of four, and the number of attackers using the same DG varied
from two3 to ≈ 158K, with a median of 27.5. The numbers
show that several DGs were large enough to make it highly un-
likely that multiple sets of attackers independently stumbled
upon them by coincidence. For dictionaries of non-trivial size,
the use of the same dictionary intuitively suggests a potential
connection between the attacking IPs—those employing the
same set of usernames may be controlled by the same entity,
using the same tool, following the same strategies, or sourcing
the username lists from a common origin.

The DGs with a smaller number of usernames included
mainly generic administrator or device/software-specific user-
names as described in Section 5, while those with a larger
number of usernames tended to contain guesses for usernames
of regular users. Figure 11 depicts the number of IP addresses
using a DG and the number of usernames in the DG. The
pattern in Figure 11 shows that a large number of attackers
use small DGs and vice versa. For instance, only two attackers
used the largest DG with 4.6K usernames.

Attackers differed in the sequences in which they try user-
names. The username sequences were random in some DGs,
such as one with 18 usernames used by 3,447 attackers at-

3The definition of a dictionary precludes the creation of dictionaries used
by a single source.
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Figure 11: Usernames in a DG vs. attacking IP addresses
using that DG. Both axes are on log scales.

tempted in 3,342 unique sequences. The sequences were
mostly the same in some other cases, such as a DG with just
41 unique sequences of 16 usernames used by 31,249 attack-
ers. Such sequencing information can be used to fingerprint
specific tools or scripts used by the attackers.

Can dictionary-based blocking stop attacks? As we
noted earlier, a small set of usernames dominated the BFAs in
Log1. Most attackers used at least one username from a dictio-
nary. We identified 9,819 unique usernames in the dictionaries.
Blocking source IPs that used one of these usernames caught
100% of the attackers who used a complete dictionary and
84% of those who did not. We noted that a blocklist of around
10K usernames (fewer than 4% of all usernames) effectively
captured 94% of the attackers (the 64% of using a dictionary,
plus 84% of the remaining 36%). Based on this observation,
we designed a blocking approach called Dictionary-Based
Blocking (DBB). As we describe in Section 8, we found the
actual effectiveness of DBB to be even higher than expected:
at timescales smaller than four years, only a few hundred user-
names are needed at a time, and attackers employing these
username lists are more active than average.

8 Dictionary-Based Blocking (DBB)

As we have shown in the previous sections, the usernames at-
tempted by attackers are fundamental to BFAs. We leveraged
this observation to devise DBB as an easy-to-apply technique
to identify and block attackers and prevent SSH BFAs. We
first evaluated DBB on Log2, which has no intersection with
Log1, and later deployed it in production on a distinct cluster.
By demonstrating the effectiveness of DBB over various sets
of nodes, we highlight its general-purpose applicability for
deployment on diverse machines over the Internet.

8.1 Threat Model

DBB is intended to counter attacks such as BFAs that target
a large number of hosts and/or username/password sets. The
threat model further assumes that an attacker may be aware



of the presence of DBB and the dictionaries shared among
the cooperating parties. Although we have described the use
of DBB to protect individual hosts, it can be applied network-
wide by using log files from individual hosts to generate
rules for a border firewall. That said, DBB is not intended to
defend against targeted attacks in which only a single facility
is attacked for a short period. Further, DBB cannot defend
against stolen credentials, which allow attackers to succeed at
logging in on the first attempt. Defending against such attacks
would require additional protective mechanisms [65, 71, 73].

8.2 Design of DBB

DBB involves a set of collectors that observe SSH login at-
tempts. In the simplest cases, the collectors can be production
machines that harvest their logs for usernames and source
IP addresses associated with failed logins. Alternately, SSH
honeypots or machines can be set up specifically as collec-
tors. As described in Section 7, the collectors create a set
of dictionaries by formulating a union of all usernames in
their dictionaries. A Username Block List (UBL) is created by
removing any locally valid usernames from the union. Each
collector sends its UBL to a central coordinator that com-
bines them with those received from other collections and
distributes the union to any defending hosts, i.e., hosts that
wish to defend themselves against SSH BFAs. DBB involves
employing UBL to identify attacker IP addresses and blocking
them at the defending host and/or at a network-wide firewall.
When a defending host receives a failed login attempt for any
username in the UBL that is not a local user4, it blocks all
further traffic from that source (e.g., by adding a local fire-
wall rule [7]). We envision a deployment of DBB in which
volunteers worldwide contribute UBLs from collectors on
their networks to a trusted central coordinator that publishes
a global UBL that any host can use for defense.

It is crucial to note a couple of important properties of
DBB. First, no IP addresses are exchanged. As a result, unlike
IP-based blocklists, DBB preserves the privacy of users and
facilities and prevents “false accusations” against specific
IP addresses. Second, DBB removes legitimate usernames
when creating and applying UBLs since legitimate usernames
can end up in dictionaries (as we showed in our analysis).
Removal of legitimate usernames avoids information leakage
from the collectors and prevents defending hosts from locking
out unlucky users whose usernames end up in the UBL.

8.3 Effectiveness of DBB

We evaluated DBB using Log2, which was collected for nearly
ten weeks—from November 2022 to January 2023—on three
CloudLab sites: Site-A, Site-B, and Site-C. While Site-B and

4We recommend root be deemed an invalid username even if a facility
permits its use.

Site-C have characteristics similar to Site-A, they are geo-
graphically distributed and use distinct IP addresses on differ-
ent networks. We simulated DBB on the data from these sites
to derive and distribute new UBLs once a day using their log
files as traces. In addition, we deployed DBB in production
for three weeks at the Emulab [2] cluster in CloudLab.

Evaluating DBB: We simulated DBB at each site inde-
pendently to determine its effectiveness by measuring the
fraction of attack attempts blocked and the number of false
positives (i.e., the number of blocked IP addresses of legiti-
mate users).5 We have reported false positives using absolute
numbers rather than percentages because each false positive
corresponds roughly to a single blocked user and/or one sup-
port ticket for the staff to resolve. For the same reason, we
have reported false positives with respect to the number of
blocked source IP addresses belonging to legitimate users.

We identified legitimate user IP addresses in Log2 with the
same method used for Log1, finding that Site-A, Site-B and
Site-C had 2,952, 1,733, and 1,504 IP addresses of legitimate
users, respectively. At Site-A, Site-B and Site-C DBB blocked
99.58%, 99.59%, and 99.39% of the BFAs with 17, 18, and
5 false positives, respectively. As we showed earlier, most
attacks use a dictionary. Therefore, DBB achieved uniformly
high block rates, with only 0.5% of BFAs going unblocked.
The false positive rates for all sites were remarkably low, with
an average of one false positive every five days.

Comparing DBB to Fail2ban: We ran simulations us-
ing Log2 to compare DBB with Fail2ban [3], a widely de-
ployed state-of-the-art tool for blocking SSH BFAs at the
host. Fail2ban has three adjustable parameters: Maxretry—
the number of failed attempts from the same IP address that
activate blocking; Findtime—the period during which failed
attempts are counted; and Bantime—the duration of the block.
In comparison, DBB employs a single parameter equivalent
to maxretry. Since we recommend blocking with DBB at the
first failed login attempt, i.e. maxretry = 1, this can serve as
the default configuration.

Trying every one of the numerous possible combinations of
Fail2ban parameters is practically infeasible. Therefore, we
tuned the parameters to conduct a fair comparison between
Fail2ban and DBB without favoring either technique.We com-
pared the performance of Fail2ban with DBB with three differ-
ent settings variations: S1: Default settings for DBB (maxretry
= 1) and Fail2ban (maxretry = 5, findtime = 10 minutes, ban-
time = 10 minutes); S2: Default settings for DBB (maxretry
= 1) with Fail2ban adjusted to use the same maxretry value
(maxretry = 1, findtime = 10 minutes bantime = 10 minutes);
and S3: No unblocking in Fail2ban (bantime = ∞) and vary-
ing values of maxretry from [1,45] for both techniques. All
variations used the default Fail2ban findtime of 10 minutes.

5Even though defending hosts remove local usernames from the UBL,
false positives can occur if a legitimate user tries to log in using a wrong
username that happens to be in the UBL or shares an IP address with an
attacker (e.g.. due to NAT).
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Figure 12: S3: DBB and Fail2ban for maxretry ∈ [1, 45].

With default settings, DBB outperformed Fail2ban by a
large margin. Across all sites, DBB blocked an average of
99.5% of the attacks, while Fail2ban blocked only 66.1%.
One reason for this difference was the more aggressive default
setting of DBB, with a lower value for maxretry compared to
Fail2ban. Moreover, DBB generated only one-fifth as many
false positives as Fail2ban (DBBFP=40, F2BFP=217). In other
words, DBB locked far fewer legitimate users out of their
accounts. When maxretry for Fail2ban was set to the DBB
default of 1, the attacks blocked by Fail2ban increased from
66.1% to 85.20%. Appendix B illustrates site performance for
expirement S1 and S2 . The tradeoff is in the number of false
positives: the increase in blocked attacks was accompanied
by a corresponding increase in false positives for Fail2ban
from 217 to 1051, which was 26 times the rate for DBB.

To check if there is any setting for Fail2ban in which
it meets or exceeds the performance of DBB, we varied
maxretry for both from 1 to 45. In addition, we configured
Fail2ban to mimic DBB by permanently blocking IP ad-
dresses. As Figure 12 shows, DBB achieved a better blocking
rate than Fail2ban for all values of maxretry except 1, i.e.,
when Fail2ban was set to block an IP address on the first
failed attempt and never unblock it. Moreover, DBB gener-
ated fewer false positives across all values of maxretry for all
three sites. With increasing maxretry, the false positive rate
of Fail2ban did progressively reduce to converge with that
of DBB. However, the improvement came at the expense of
reduced blocking effectiveness.

Overall, DBB’s dictionary-based approach outperformed
Fail2ban’s rate-based approach. DBB can thwart nearly all
incoming BFAs by blocking more aggressively without incur-
ring many false positives because the approach is based on
specific attacker behavior.

8.4 Number of Collectors

To examine the effect of the number of collectors on block-
ing performance, we computed dictionaries from Cn number
of collectors Cn ∈ {[1,10]∪{20,30,40,50}} at each site in
Log2. We then performed simulations using these reduced
dictionaries as the UBLs of the hosts at the respective sites.

For each Cn, we ran the simulation nine times with
randomly-selected collectors from all available nodes. Across
these runs, the minimum and maximum blocked BFAs for
Site-A, Site-B, Site-C were (98.2%, 99.5%), (97.7%, 99.5%)
and (97.6%, 99.3%), respectively. All minima occurred at Cn
= 1 and maxima at Cn = 50. DBB achieved most of its benefit
with just one collector, with results within 1-2% of the perfor-
mance when using all nodes as collectors. While there were
slight increases in blocking with an increase in the number of
collectors (full graphs are in Appendix C), the overall results
show that DBB does not need a large number of collectors to
achieve high performance. Over ten weeks, the UBL grew by
only a few usernames per day, starting at≈200 usernames per
site and ending with 460 at the conclusion of the experiment.

Next, we checked whether UBLs created at one site are
effective at other sites by testing all combinations in which
each of the three sites was either a collector or deployment
site. In all cases, DBB blocked at least 99.41% of the BFAs
with at most 19 false positives (full details are provided in
Appendix A). These results demonstrate that defending sites
can implement DBB by simply using UBLs obtained from a
trusted third party.

8.5 Deployment of DBB

We deployed DBB for three weeks on the Emulab [2] clus-
ter of CloudLab (which consists of ≈400 nodes) with the
three sites Site-A, Site-B, and Site-C as collectors. A single de-
fending host removed locally valid usernames from the UBL
and collected SSH logs from the other hosts in the cluster.
Upon receiving a login attempt with any username in the local
sanitized UBL, the defending host added the corresponding
IP address to the blocklist. The blocklist was copied to the
Emulab-wide firewall to block all further traffic from that IP
address. For practicality, we updated the firewall blocklist
on an hourly basis. The consequent gap between identifying
attackers and subsequently blocking their access at the fire-
wall can result in allowing attackers to keep trying SSH BFAs
without restrictions for up to an hour in the worst case.

Before deploying DBB, we recorded the SSH traffic on Em-
ulab for three weeks. Defense mechanisms already in place
during this period consisted of two strategies: lazy-fail2ban
and a firewall subscribing to a variety of public IP-address
blocklists recommended by pfSense [8]. lazy-fail2ban adds
an IP address to the blocklist at the firewall if the number
of failed SSH login attempts from it crosses a threshold (i.e.,
maxretry=10). Unlike Fail2ban in standard configuration, lazy-



fail2ban operates without a finite findtime, instead using find-
time=∞ and bantime=24 hours. When an IP address success-
fully logs in, the maxretry counter is reset to zero. Emulab’s
firewall blocks all access from any IP address contained in
the IP-address blocklists; this proactive measure is taken not
only to counter SSH BFA but also to defend against attacks
attempting to exploit other protocols and vulnerabilities.

Operational Effectiveness: It was possible to compute the
precise percentage of BFAs blocked when assessing DBB per-
formance in the simulation because we knew the total number
of failed SSH attempts. However, blocking IP addresses in
an operational system prevents subsequent failed attempts
from that source, making it challenging to count the precise
number of attack attempts that would have been logged with-
out DBB. We therefore relied on the three-week record of
failed attempts from Emulab to establish a baseline for esti-
mating the proportion of attacks blocked. Importantly, these
constraints mean that measurements of DBB performance
blocking BFAs in operation provide lower bounds.

We found that DBB is significantly more effective than the
existing blocking mechanism at Emulab during DBB deploy-
ment. DBB reduced failed SSH login attempts by 79.5%—
from 80.6K to 16.5K per day—suggesting that it blocked
four-fifths of the attacks not caught by the other defenses
at Emulab. During the DBB deployment period, no legiti-
mate user contacted the administrators about being blocked
by DBB while two users contacted them because of blocking
by lazy-fail2ban. One of the two blocked by lazy-fail2ban had
mistakenly attempted to log in with a username resembling a
university identification number, surpassing the lazy-fail2ban
threshold and getting blocked. However, DBB did not block
the user because the identification number used as the user-
name was not in the UBL. The incident illustrates that the
design of DBB has the advantage of minimizing the chances
of blocking legitimate users because of inadvertent errors
such as usernames with typos or those from other services.

8.6 Practical Considerations

DBB is a lightweight mechanism that involves negligible
overhead for collectors or coordinators. The only requirement
for DBB is that defending hosts have the ability to check
username membership in a relatively small set. Moreover,
the compact size of the UBL makes it well-suited for deploy-
ment on resource-constrained devices such as IoT devices.
As a result, DBB can be easily deployed at larger scales by
appropriately considering several practical factors.

Dictionaries Distribution: We propose hashing usernames
before sharing with the coordinator. The approach permits
easily testing membership in the UBL but avoids leaking valid
usernames, thus making it difficult to use public UBLs to
target high-value usernames. Moreover, hashed usernames
prevent broader dissemination of newly discovered vulnerabil-
ities pertaining to a username known only to a few attackers.

Dictionary Collection: Since dictionaries do not include
IP addresses and locally valid usernames are removed before
sharing, collectors can be set up anywhere on the Internet
without raising privacy concerns. A collector need not reveal
its own IP address and can be easily moved elsewhere to pre-
vent adversaries from discovering it. However, DBB functions
well even if the adversaries know the identities of some, or
even most, collectors as long as there are a few collectors that
are not known to the attackers. Since DBB does not place a
high degree of trust in dictionary providers, attempting to deny
service by inducing false inclusion of a username in a dictio-
nary is ineffective. Therefore, a large network of volunteer
collectors can operate with fairly light oversight.

Block Evasion: To evade DBB, an attacker must avoid
high-value usernames in the public UBL, likely reducing the
effectiveness of the attack. Attacking with a username not in
the UBL requires that the username not be present in any dic-
tionary. In other words, evading DBB requires avoiding every
collector or avoiding using the same set of usernames from
any source. The safest strategy for attempting to evade blocks
is to mix high-value new usernames with unique “chaff” user-
names in every attempt. Such an approach would slow the
attacker down. Moreover, it would not help to have multiple at-
tacking sources. In fact, it would require greater coordination
or increased chaff to avoid reusing username sets.

9 Conclusion

While new cyberthreats emerge daily, attackers across the
world continue to rely on simple, traditional approaches such
as SSH BFAs. Yet, existing approaches face challenges in
blocking such attacks with high accuracy without also block-
ing sizable numbers of legitimate users. The observed trends
indicate an evolution of attacks on various accounts, software
and devices, with attackers shifting from traditional generic at-
tacks. Analyzing multi-year login attempt logs enables the ef-
fective identification of malicious activity by discerning differ-
ences in attacker and legitimate user behavior. We have shown
that such insight can be applied for designing a lightweight
blocking mechanism that can be deployed at scale with little
overhead. Our approach outperforms the state-of-the-art in
host-based SSH blocking, pointing the way to a new class of
more effective defenses against BFAs.
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A Cross collector performance

Table A.1 shows the performance of DBB when the collector
is not at the deployed site. We conducted simulations for all
possible combinations of our sites.

Table A.1: Performance of DBB when collector and deployed
site are different.

Deployed Collector % Attacks False
Site Site Blocked Positive

C A 99.45 4
C B 99.41 4
A C 99.55 17
A B 99.56 19
B C 99.58 17
B A 99.61 18

B Individual site performance in experiments
S1 and S2

Figure B.1 presents the performance of DBB and F2B in
experiments S1 and S2.
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Figure B.1: DBB and F2B using settings S1 and S2.

C Cn : Number of Collectors

Figure C.1 depicts how the performance of DBB varies based
on the number of collectors (Cn).
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Figure C.1: Performance of DBB as the number of collectors
increases.



D Top usernames in DG

Table D.1 shows the usernames present in at least 5% of the DGs.

Table D.1: Usernames in ≥ 5% of all DGs.
Username Percentage of DGs Username Percentage of DGs

root 69.94 debian 8.65
admin 55.87 centos 8.65
user 36.07 demo 8.65
test 30.21 minecraft 8.36
support 26.83 zabbix 7.92
ubnt 24.93 odoo 7.92
oracle 23.02 server 7.92
ubuntu 22.87 ts3 7.92
postgres 20.38 apache 7.77
ftp 20.09 teamspeak 7.77
pi 19.21 dev 7.62
guest 18.48 vagrant 7.33
git 16.42 web 7.33
service 15.54 mother 7.33
usuario 14.96 test1 7.04
mysql 14.22 administrator 6.89
nagios 13.49 system 6.74
hadoop 12.76 weblogic 6.30
tomcat 11.88 steam 6.16
jenkins 11.29 svn 5.43
user1 10.12 ansible 5.28
www 9.82 test2 5.28
student 9.38 kafka 5.13
supervisor 9.24 alex 5.13
deploy 8.80 webmaster 5.13

E Username Classification

Table E.1 contains our manual classification of the 100 most-attempted usernames. (Usernames colliding with real CloudLab
usernames have been omitted for privacy.)

Username Percentage of Attempts Cumulative Percentage Category Sub-category

root 47.81 47.81 admin –
admin 3.97 51.78 admin –

support 2.66 54.44 non-admin role
ubnt 1.82 56.26 specific network
user1 1.79 58.06 non-admin role

default 1.78 59.83 non-admin misc
MikroTik 1.72 61.56 specific network

administrator 1.71 63.26 admin –
admin1 1.70 64.97 admin –
profile1 1.70 66.67 non-admin role
demo 1.70 68.37 non-admin role



Username Percentage of Attempts Cumulative Percentage Category Sub-category

web 1.70 70.07 specific service
tech 1.59 71.66 non-admin role

telecomadmin 1.54 73.20 specific network
oracle 0.78 73.98 specific software
ubuntu 0.64 74.62 specific distribution

ftp 0.58 75.20 specific service
postgres 0.50 75.70 specific software

pi 0.40 76.10 specific distribution
git 0.35 76.45 specific service

guest 0.31 76.75 non-admin role
test1 0.29 77.05 non-admin role

export 0.28 77.33 non-admin role
usuario 0.28 77.61 non-admin role

test2 0.26 77.86 non-admin role
mysql 0.21 78.07 specific software
hadoop 0.20 78.28 specific software
deploy 0.18 78.45 non-admin role
nagios 0.17 78.62 specific software
jenkins 0.16 78.78 specific software

dev 0.15 78.93 non-admin role
www 0.14 79.07 specific service
debian 0.13 79.20 specific distribution

minecraft 0.12 79.32 specific software
odoo 0.11 79.44 specific software

ansible 0.11 79.55 specific software
teamspeak 0.11 79.66 specific software

student 0.11 79.76 non-admin role
tomcat 0.10 79.87 specific software

ts3 0.10 79.97 specific software
server 0.10 80.07 non-admin role
centos 0.09 80.16 specific distribution

es 0.09 80.24 specific software
zabbix 0.08 80.32 specific software

weblogic 0.08 80.40 specific software
steam 0.07 80.47 specific software

vagrant 0.06 80.54 specific software
elasticsearch 0.06 80.60 specific software

elastic 0.06 80.66 specific software
webadmin 0.06 80.72 specific service

kafka 0.06 80.78 specific software
ftpadmin 0.06 80.84 specific service

webmaster 0.06 80.90 specific service
vnc 0.06 80.96 specific software

system 0.06 81.01 admin –
contador 0.06 81.07 non-admin role
ftptest 0.06 81.13 specific service
service 0.06 81.18 non-admin role
baikal 0.06 81.24 specific software

ts 0.05 81.29 non-admin misc
duni 0.05 81.34 non-admin misc
temp 0.05 81.40 non-admin misc
spark 0.05 81.45 specific software



Username Percentage of Attempts Cumulative Percentage Category Sub-category

svn 0.05 81.50 specific service
docker 0.05 81.55 specific software

developer 0.05 81.60 non-admin role
jira 0.05 81.66 specific software
app 0.05 81.70 non-admin misc

sinusbot 0.05 81.75 specific software
apache 0.05 81.80 specific software

sysadmin 0.05 81.84 admin –
nexus 0.05 81.89 specific software
uftp 0.04 81.93 specific service
ec2- 0.04 81.98 non-admin misc
bot 0.04 82.02 non-admin misc

butter 0.04 82.06 specific software
mcserver 0.04 82.10 specific software

teamspeak3 0.04 82.14 specific software
nginx 0.04 82.18 specific software
csgo 0.04 82.22 specific software

backup 0.04 82.25 non-admin role
vbox 0.04 82.29 specific software

csgoserver 0.04 82.33 specific software
gpadmin 0.04 82.36 specific software

info 0.03 82.40 non-admin misc
hd 0.03 82.43 non-admin misc
a 0.03 82.46 non-admin misc

db 0.03 82.50 specific service
teste 0.03 82.53 non-admin misc
user2 0.03 82.56 non-admin role

deployer 0.03 82.59 non-admin role
daniel 0.03 82.63 non-admin name
nvidia 0.03 82.66 specific software

db2inst1 0.03 82.69 specific software
ethos 0.03 82.72 specific distribution

manager 0.03 82.75 non-admin role
www-data 0.03 82.78 specific service

wp 0.03 82.81 specific software
redis 0.03 82.84 specific software

testing 0.03 82.87 non-admin role
Table E.1: Username classification

F Top 50 Countries And Network Providers

Figure F shows the top 50 countries and network providers based on the percentage of attackers and attempts.
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