
OZTrust: An O-RAN Zero-Trust Security System
Hao Jiang∗, Hyunseok Chang†, Sarit Mukherjee† and Jacobus Van der Merwe∗

∗ School of Computing, University of Utah, Salt Lake City, United States
† Network Systems and Security Research Department, Nokia Bell Labs, Murray Hill, United States

Abstract—The Open Radio Access Network (O-RAN) has
gained significant attention as a future RAN framework. How-
ever, its architectural characteristics introduce unprecedented
security challenges from expanded attack surface and increased
risk for proprietary data theft and RAN control manipulation.
Despite extensive security analysis from industry, concrete se-
curity solutions for the evolving O-RAN framework are still
lacking in the literature. In this paper, we propose OZTrust, a
Zero-Trust security system tailored for the O-RAN environment.
OZTrust comprises two components: access control module
and policy management module. The former performs per-
packet tagging and verification for each xApp as dictated by
its access control policy, while the latter automatically derives
necessary access control policies by discovering xApp’s commu-
nication patterns through distributed tracing. Our prototype-
based evaluation demonstrates that OZTrust provides more fine-
grained access control for xApps than existing Role-Based Access
Control (RBAC) and Container Network Interfaces (CNIs) and
outperforms its predecessor.

I. INTRODUCTION

The Open Radio Access Network (O-RAN) has emerged
as a prominent framework for future RAN systems [1], [2].
Its disaggregated architecture allows flexible deployment and
management of virtualized components in cloud-native envi-
ronments, while its open and standardized interfaces enable
interoperability among diverse vendors. However, alongside
these benefits, O-RAN also introduces a host of unprecedented
security challenges, as highlighted in recent studies [3]–[5].
The main reason is that, compared to the traditional mono-
lithic RAN systems, its disaggregated architecture exposes
additional entry points into the system, expanding its attack
surface. Moreover, the ORAN’s Near-Real-Time RAN Intelli-
gent Controller (Near-RT RIC), which manages critical RAN
functions while storing sensitive data like RAN configuration,
subscriber identities, Machine Learning (ML) models and
performance metrics, can become an ideal target to attackers
due to devastating consequences from any security breaches.

In a recent study, the O-RAN Alliance Work Group 11
(WG11), which is dedicated to O-RAN security, identifies
unauthorized use of APIs as one of the primary threats in
the Near-RT RIC [6]. This attack could potentially grant
attackers the ability to manipulate RAN controls or access
sensitive data. WG11 recommends authentication and RBAC
as mitigation solutions. However, these measures alone are
insufficient, as authentication and authorization credentials
and tokens can be stolen. Notably, credential or token leaks
are not uncommon, even among prominent organizations like
Facebook and GitHub [7], [8].

Additionally, the increasingly prevalent threat of lateral
movement, described as one of the major tactics in the threat
matrix summarized by Microsoft [9], poses a significant risk to
the Near-RT RIC as well. Lateral movement involves attackers
navigating deeper into a network after gaining initial access,
seeking high-value assets and network controls. It enables
attackers to evade detection and maintain access even if the
initial entry point is discovered, making detection highly
challenging. Consequently, existing proposals to mitigate lat-
eral movement in cloud-native environments often lead to
noticeable overhead due to heavy computation of complex
algorithms or ML-based approaches [10], [11], rendering them
inapplicable for time-critical Near-RT RIC operations.

Unfortunately, up to this point, no O-RAN-specific solution
has been put forward to effectively address the security threats
targeting the O-RAN Near-RT RIC. In this paper, we propose
OZTrust, a Zero-Trust security system for O-RAN. OZTrust
effectively addresses the issues pertaining to unauthorized API
access and lateral movement in the O-RAN Near-RT RIC,
ensuring the protection of sensitive and proprietary data from
theft and preventing malicious manipulation of RAN controls.
Moreover, OZTrust achieves these security objectives while
incurring minimal overhead on the system.

OZTrust comprises two components: access control module
and policy management module. The access control module
builds upon eZTrust [12], an eBPF-based Zero-Trust access-
control mechanism built for containerized environments. Its
core concept involves tagging each outgoing packet and ver-
ifying each incoming packet based on the tag. We adapt and
optimize eZTrust-based approach for the O-RAN environment.
In O-RAN context, a unique tag represents the identity of an
xApp, derived from its authentic contexts. Therefore, we ex-
tend eZTrust’s generic context discovery mechanism to cover
xApp-specific contexts. In addition, unlike eZTrust, where
packet verification involves expensive slow path to populate
local context maps on demand, OZTrust pre-populates the
context maps by leveraging predictable xApp communication
patterns, thereby avoiding expensive slow path processing.

The policy management module is responsible for populat-
ing xApp’s access-control policies to be enforced by the access
control module. For this purpose, instead of solely relying on
vendor-supplied information, we independently discover and
verify xApps’ communication patterns via existing distributed
tracing libraries and tools [13], [14]. Once their communi-
cation patterns are discovered, the policy management mod-
ule combines the information with xApp contexts acquired
through the access-control module to automatically derive



access-control policies for xApps. This approach reduces the
risk of using accidental misinformation supplied by third-
party vendors or open-source developers, and minimizes the
possibility of human-induced errors during network policy
creation process. Furthermore, the communication pattern trac-
ing process enables us to optimize the context population
mechanism of the access control module as described earlier.

Our contributions can be summarized as follows. First, we
present the design and implementation of OZTrust’s access-
control mechanism, which we adapt from eZTrust for the
O-RAN environment. Second, we design and implement a
mechanism that automates the access-control policy generation
process, which can mitigate the risk associated with relying
on untrustworthy vendor-supplied information and minimize
human errors that may arise during the manual policy config-
uration process. Finally, to the best of our knowledge, we are
the first to propose and implement a practical security system
tailored for the O-RAN Near-RT RIC. Our evaluation demon-
strates that OZTrust delivers more fine-grained protection than
widely-used RBAC and CNIs and outperforms eZTrust.

II. RELATED WORK

Several surveys [2]–[5] offer comprehensive analyses and
evaluations of O-RAN security, but they do not present con-
crete solutions. WG11, a dedicated working group for O-
RAN security, released several specifications and studies that
outline potential attacks and provide suggestions for mitigat-
ing risks [6]. They recommend authentication and RBAC to
mitigate unauthorized use of APIs in the Near-RT RIC, which
are responsible for data accesses and RAN controls. However,
authentication and RBAC measures alone are insufficient due
to potential risk for credential and token leaks [7], [8].

O-RAN Near-RT RIC is commonly deployed in container-
ized environments, and therefore it is susceptible to tactics
and techniques outlined in the threat matrix provided by
Microsoft [9]. Among these tactics, lateral movement stands
out as a serious threat for the Near-RT RIC. It empowers
attackers to elude detection and retain access even if the initial
entry point is detected, making detection highly challenging.
Several strategies to mitigate lateral movement in cloud-native
environments are proposed [10], [11]. However, these ap-
proaches often incur noticeable overhead due to their reliance
on complex algorithm computations or ML-based techniques.

There are Zero-Trust security solutions for Kubernetes [15]–
[17]. However, these solutions provide access control only at
the pod/container-level, and hence are inadequate when pods
or containers are compromised with malware.

OZTrust is designed to prevent unauthorized use of APIs
and lateral movement with sufficient granularity, as will be
described in the rest of the paper.

III. OZTRUST ARCHITECTURE DESIGN

A. Threat Model

1) Trusted vs. Untrusted: We assume that the infrastructure
provider is reliable and free from vulnerabilities. Furthermore,
we assume that the OZTrust framework is securely integrated

with the provider’s infrastructure, ensuring the secure collec-
tion of contexts and non-compromised packet tagging and
policy enforcement. This integration also guarantees the secure
storage and distribution of Zero-Trust access control policies
and contexts. On the other hand, we do not trust xApps,
containers housing them, and container images themselves.

2) Threat Surface: We outline possible threats for the O-
RAN Near-RT RIC. Attack targets can be broadly classified
into two categories: RAN controls and data. Examples of
control-related attacks include: (i) Unauthorized access to dis-
aggregated RAN components with the intent of deteriorating
network performance. (ii) Manipulation of RAN controls such
as mobility management of mobile users, resource allocation
or scheduling, spectrum or infrastructure sharing, where the
goal is to induce network malfunctions. (iii) Gaining unre-
stricted control over one or more O-RAN nodes to produce
synthetic data, which can mislead ML-driven RIC operations
to cause erroneous control decisions, performance degradation,
or even service outages [3], [4]. Examples of data-related
attacks encompass: (i) Obtaining sensitive information trans-
mitted over O-RAN interfaces for RAN controls, manage-
ment, and configuration purposes. (ii) Stealing proprietary data
utilized for ML model training and testing. (iii) Exfiltrating
subscriber’s private data such as identities. (iv) Acquiring
cryptographic keys deployed across network elements [2], [5].

3) Attackers and Their Capabilities: We consider that an
attacker possesses malicious intent and seeks to execute the
aforementioned control- or data-related attacks. Potential at-
tackers may include: (i) Open-source xApp developers or those
affiliated with xApp vendors who deliberately introduce back-
doors or malware into the code. (ii) Developers responsible
for upstream libraries that are beyond the control of xApp
vendors or open-source developers. (iii) Individuals outside
open-source organizations or vendors, who have knowledge
of intentionally or unintentionally embedded backdoors or
vulnerabilities in xApps [2]–[5].

An attacker can compromise an xApp container by exploit-
ing vulnerabilities, backdoors or pre-existing malware in the
container. The attacker can then exploit the compromised state
to acquire authentication and authorization credentials and
tokens, thereby enabling unauthorized access to APIs in the
O-RAN Near-RT RIC. Moreover, upon successfully gaining
initial access to the system, the attacker may employ lateral
movement techniques, as summarized in [9], in an attempt to
obtain unauthorized access to other deployed xApps.

B. OZTrust Architecture

In the following we describe the OZTrust architecture
highlighted in Figure 1.

1) Access-Control Module: The access-control module in
OZTrust is adapted from eZTrust, an eBPF-based access-
control solution originally designed for containerized environ-
ments [12]. We first briefly summarize the original eZTrust
design, and then describe how we adapt its design for the
O-RAN Near-RT RIC environment.



Fig. 1: OZTrust architecture.

eZTrust design. eZTrust is characterized by three design
features: context tracing, packet tagging, and packet verifi-
cation. Context tracing in eZTrust is carried out by dedicated
tracing components which discover, upon the launch of each
microservice, a set of contexts associated with it and its run-
time environment (e.g., app name, version, SSL version, ge-
ographic location, filesystem image, OS version). Discovered
contexts are stored in the global/local context maps as <tag,
set of contexts>, where the tag serves as a globally unique
key in the context maps. The tag is added to each outgoing
network packet on sender-side and is used on receiver-side
to retrieve a set of contexts associated with the microservice
that has generated the packet. To verify (i.e., access control)
each tagged packet on receiver-side, eZTrust looks up the
sender’s contexts in the local context map by using the tag,
derives the intended receiver’s contexts from the packet, and
performs verification based on these identified contexts and
pre-configured access control policies.

OZTrust adaptation. As a Zero-Trust security solution for
generic microservices, eZTrust is not designed to trace xApps
in the O-RAN environment. To address this limitation, we
extend its context tracing mechanism to support xApp-specific
contexts. OZtrust’s extended context tracing component (called
“Context Tracer”) runs in both kernel space and user space.
With the OSC’s Kubernetes-based O-RAN Near-RT RIC im-
plementation [18], in-kernel Context Tracer can trace contexts
such as an xApp’s name, version, inode number, pod’s name
and its UUID, and container’s name and its UUID. Context
Tracer in user space can further collect an xApp’s subscribed
message types in the RIC Message Router (RMR), subscribed
service types in the E2 termination, and control capabilities.

Unlike eZTrust, OZTrust pre-populates local context maps
with relevant xApp contexts retrieved from the global context
map, instead of relying on on-demand population. Such pre-
population is possible because OZTrust performs distributed
tracing prior to system launch to learn each xApp’s communi-
cation patterns (see Section III-B2). From distributed tracing,
OZTrust can predict what other xApps will communicate with
a given xApp, and hence pre-populate contexts of those xApps
in advance. As a result, when an xApp receives a tagged

Fig. 2: Context populating mechanism comparison.

packet, the contexts associated with the tag can be immediately
retrieved locally without querying the global context map,
which significantly speeds up the packet verification process.
This approach solves the trade-off dilemma between excessive
memory usage (i.e., pre-copying all contexts from the global
context map to local maps on all nodes) and degraded perfor-
mance (i.e., on-demand retrieval of required contexts from the
global context map upon context lookup miss). Since eZTrust
is a general Zero-Trust security solution without any prior
knowledge of microservices’ communication patterns, it opts
for the latter approach, sacrificing performance. In contrast,
OZTrust eliminates the need for “slow path” by exploiting
know communication patterns of xApps. Figure 2 illustrates
the difference between the two.

In eZTrust, packet verification occurs at the physical NIC
interface (PIF) of a worker node. This approach has two
drawbacks. First, it incurs additional overhead for discovering
a target xApp for each incoming packet. More importantly, it
ends up setting protection boundaries at the node level, and
hence cannot enforce access control policies among the xApps
co-located on the same node. To address these drawbacks,
OZTrust moves packet verification to the virtual interface
(VIF) of each xApp. This enhances flexibility in xApp deploy-
ment and improves verification performance. One downside is
that OZTrust must deploy as many instances of Verifier as
the number of deployed xApps, resulting in more memory
usage. However, since the eBPF implementation of Verifier is
lightweight, the additional memory usage is negligible. Thus,
the benefits of this approach easily outweigh the cost.

2) The Policy Management Module: The policy manage-
ment module, a new component in OZTrust, handles two key
functions: auto-discovery of xApps’ communication patterns
and auto-generation of access control policies. Figure 3 shows
its internal design.

Auto-generation of access control policies is motivated by
three concerns. First, as advocated by Zero-Trust principles, it
is imperative to not bestow any trust upon xApps and xApp-
related information supplied by their vendors or developers
since these xApps are commonly sourced from various third-
party entities or open-source repositories [2], [5]. Second,
when a large number of xApps are deployed with complex
access control policies in place, manual configuration pro-
cesses often result in errors [19]. Finally, the on-demand
context population mechanism of eZTrust, triggered by context
lookup misses, leads to degraded performance if many xApp
communication flows are short-lived. Driven by these factors,



Fig. 3: OZTrust policy management module.

the policy management module carries out two key functions:
traffic pattern tracing and access-control policy generation.
Traffic pattern tracing. Automatic traffic pattern tracing
is facilitated by leveraging distributed tracing libraries and
tools [13], [14]. Distributed tracing is originally designed
to trace distributed microservice workflows as part of per-
formance troubleshooting. We re-purpose this technique to
obtain a comprehensive view of actual traffic patterns among
deployed xApps. To enable distributed tracing in an xApp,
we need to instrument it, which involves inserting tracing
APIs and their dependencies into the xApp’s source code.
OpenTelemetry [14] already provides tracing support for a
wide range of libraries used for application communication,
which are written in popular programming languages such as
Python, C++, Go, and Java. This includes support for libraries
handling HTTP, gRPC, database operations (e.g., Mongo DB,
Redis, Memcached). If an xApp is developed with one of those
supported libraries, no manual instrumentation is necessary.

The traffic pattern tracing is conducted as a pre-deployment
procedure taking place before the commercial launch of
xApps. It is reasonable for carriers to require that third-party
xApp vendors collaborate in the instrumentation and automatic
traffic pattern tracing process. When xApps are obtained from
open-source repositories, the process becomes even simpler,
as carriers have the option to perform automatic or manual
instrumentation themselves.

Once distributed tracing is enabled in xApps, it automat-
ically generates telemetry data, referred to as Spans [14],
whenever the instrumented libraries are invoked by xApp
communication. Traffic Pattern Tracer gathers these Spans
from the xApps and stores them in the shared database in the
O-RAN Near-RT RIC. Subsequently, these Spans are utilized
to generate access-control policies as described next.
Policy generation. Once xApps’ traffic patterns are traced, the
policy generation process proceeds as follows.
Step 1. The collected Spans stored in the shared database
are pre-processed to trim non-essential metadata to produce
concise traffic pattern information.
Step 2. The resulting traffic pattern information is cross-
checked with xApp’s vendors-supplied information. In case
of a mismatch, the results are logged, and the process is
terminated. Otherwise, we proceed to the next step.
Step 3. xApps’ access-control policies are generated based

Fig. 4: Policy generation procedures.

on traffic patterns, policy template, and xApp contexts. The
policy template, prepared by carriers, contains <sender xApp’s
name, receiver xApp’s name, sender’s context keys, receiver’s
context keys> tuples. Essentially this template indicates which
set of xApp contexts are used by carriers to define their
access control policies. The policy generator iterates through
each entry in the policy template. It looks up global context
map for the sender and receiver using their tags, fetches their
corresponding contexts, and retrieves the context values based
on the context keys specified in the template. It then creates a
policy entry by populating it with the retrieved context values.
Next, the policy generator examines the traced traffic patterns
to determine if communication is expected between the sender
and the receiver. If it is, the policy action of the entry is set to
ACCEPT. Otherwise it is set to DROP. Generated policy entries
are stored in global policy map.
Step 4. The newly created policies are distributed to the respec-
tive local policy maps on worker nodes. It selectively populates
the local policy maps with relevant policies, considering xApps
deployed on each node and their communication requirements.
Carriers have the flexibility to define multiple policies for
each xApp based on various subsets of xApp contexts. This
enhances the versatility of policy creation. Section IV provides
a concrete example of policy generation.

IV. IMPLEMENTATION

We implement an OZTrust prototype and integrate it
with the OSC’s Kubernetes-based Near-RT RIC implemen-
tation [18]. We highlight key aspects of the prototype.

We implement packet tagging and verification with eBPF,
based on eZTrust implementation. Unlike eZTrust, we attach
corresponding eBPF programs to ingress and egress of the
same VIF of an xApp by leveraging clsact qdisc.

To adapt xApp contexts in the O-RAN Near-RT RIC en-
vironment, we extend the OZTrust’s context-tracing mech-
anism as follows. Context Tracer in kernel space captures
essential events such as xApp deployment and TCP/UDP
sockets-related activities using relevant eBPF hooks. The
context-collecting routines are implemented in Python, utiliz-
ing client.CoreV1Api() from the Kubernetes Python client
library. Upon xApp-related events detected by eBPF hooks,
these routines collect xApp-specific contexts such as the
xApp’s name, version, pod’s name and UUID, and container’s
name and UUID. Context Tracer in user space is a Python



Policy Template Entry Sender’s Contexts Receiver’s Contexts Traffic Generated Policy Entry
<AD, TS, <UUID>, <UUID>> {Name: AD, UUID: abc, ...} {Name: TS, UUID: xyz, ...} AD → TS <abc, xyz, Accept>

<AD, TS, <UUID, Version>, Inode> {Name: AD, UUID: abc, Version: 0.2, ...} {Name: TS, Inode: 123, ...} AD → TS <<abc, 0.2>, 123, Accept>
<QP, AD, A1 RMR SUB, TS RMR SUB> {Name: TS, A1 RMR SUB: 10, ...} {Name: QP, TS RMR SUB: 20, ...} QP → TS <10, 20, Drop>

TABLE I: An example of policy generation.

program that gathers xApp-specific contexts from the runtime
information in xApp containers, such as xApp’s subscribed
message types in the RMR, subscribed service types in the
E2 termination, and control capabilities.

We integrate the OZTrust prototype with O-RAN Near-RT
RIC OSC implementation to demonstrate real-world use cases.
In Section V, we will show how OZTrust can protect commu-
nication among three real-world xApps: Anomaly Detection
(AD), Traffic Steering (TS), and QoE Predictor (QP). AD
retrieves user equipment (UE) data from the shared database
(InfluxDB) and applies ML-based algorithms to detect anoma-
lous UEs based on the data. AD then sends to TS the infor-
mation about anomalous UEs along with their corresponding
degradation type. Upon receiving messages from AD, TS
sends a prediction request to QP, which includes the list of
detected anomalous UEs. QP retrieves the most up-to-date
UE and cell metrics for the identified anomalous UEs. Using
ML-based algorithms, it predicts the expected throughput in
the neighboring cells for these UEs. The prediction results are
then sent back to TS. Based on the received prediction results,
TS makes a final decision on whether to perform a handover
for the identified anomalous UEs.

We instrument these xApps with OpenTelemetry [14] for
automatic traffic pattern tracing which is then used by the
policy management module. AD and QP are developed in
Python, while TS is written in C++. We manually instrument
them with OpenTelemetry SDK since the RMR library used by
these xApps for communication is not supported for automatic
instrumentation. To collect the traced Spans, we utilize the
Jaeger collector [13].

The Policy Manager application, implemented in Python,
serves as the central module responsible for policy generation.
Table I provides a concrete example illustrating the generation
of policy entries for the anomaly detection use case.

Our extensions, new developments and manual xApp instru-
mentation amount to approximately 600 SLOC of Python, 300
SLOC of C, and 50 SLOC of C++.

V. EVALUATION
Our evaluation aims to address the following key questions:

(i) Does OZTrust effectively prevent unauthorized use of
APIs? (ii) Does it successfully prevent lateral movement in the
O-RAN Near-RT RIC? (iii) What is its performance compared
to other schemes? To answer these questions, we deploy the
prototype and conduct experiments on AMD EPYC Rome
servers, each equipped with 16 CPU cores and 128GB mem-
ory, provisioned in the POWDER testbed infrastructure [20].

A. Functional Evaluation

To evaluate OZTrust’s effectiveness for preventing unau-
thorized API access and lateral movement, we conduct experi-
ments with the real-world anomaly detection use case shown in

Section IV and compare OZTrust with Kubernetes RBAC [15]
and two popular CNIs: Cilium [16] and Calico [17].

1) Unauthorized use of APIs: We configure the following
access control policies for OZTrust, along with equivalent
network policies for Cilium and Calico: AD and QP have
legitimate access to InfluxDB, whereas TS does not. For Ku-
bernetes RBAC, we specify “Pods” as the resource permitted
to be accessed by all the xApps. As shown in Figure 9,
at time 0–10s, all three xApps perform normally. Starting
from time 10s, we launch a malware process in AD, TS,
and QP containers one by one in this sequence with 10-
second intervals. This malware sends illegitimate API accesses
to InfluxDB. We assume that the malware is using a stolen
database access credential. Purely for visual aid (i.e., to show
whether traffic is blocked or allowed), we set baseline normal
traffic rate for OZTrust, Cilium, and Calico differently, and let
each malware process send traffic at 10Mbps fixed rate.

As shown in Figure 5, Cilium and Calico fail to prevent
unauthorized database access from malware in AD and QP at
time 10–20s and 30–40s. This is because, by default, both of
them enforce network policies at the pod/container level. In
contrast, OZTrust enforces access control policies via process-
level contexts, thereby effectively preventing unauthorized
database access by the unknown malware. At time 20-30s,
OZTrust, Cilium, and Calico successfully prevent unauthorized
database access from TS. Cilium and Calico succeed in this
scenario because their pod-level network policies prevent any
traffic from the TS pod to InfluxDB. However, Kubernetes
RBAC fails to prevent the attacks because the service ac-
count’s role grants access to all pods. If Kubernetes RBAC
is redefined at pod-level by leveraging Kubernetes Custom
Resource Definitions (CRDs), it could at best achieve the
same results as Cilium and Calico. To block unauthorized
access by malware in all scenarios like OZTrust, Kubernetes
RBAC, Cilium and Calico have to resort to additional entities
specifically responsible for process-level security [21], [22].

2) Lateral Movement: We conduct another series of exper-
iments depicted in Figure 10 with the same access-control and
network policies among AD, QP and TS. The experiments are
structured as follows: At time 0–10s, an attacker compromises
TS. At time 10–20s, the attacker transfers a piece of malware
to AD by exploiting its vulnerability. At time 20–30s, the
attacker installs the malware on AD and successfully initiates
lateral movement attack from its initial access point. Finally,
at time 30–40s, the malware in AD begins sending illegitimate
traffic to InfluxDB. Again, for visual convenience, we set
baseline normal data rates for OZTrust, RBAC, Cilium, and
Calico differently. We measure the aggregated data rates
(including malware traffic) on AD and InfluxDB. The results,
as shown in Figure 6, demonstrate that OZTrust effectively
prevents the lateral movement attack. In contrast, in case of



Fig. 5: Use of APIs. Fig. 6: Lateral movement. Fig. 7: OZ vs. eZ latency. Fig. 8: Tput and CPU.

Fig. 9: Scenario 1: Unauthorized use of APIs.

Fig. 10: Scenario 2: Lateral movement.

RBAC, Cilium, and Calico, additional traffic is shown at time
10s (caused by the transfer of malware code) and at time 30s
(caused by illegitimate access to InfluxDB).

B. Performance Evaluation

Finally, we compare OZTrust and eZTrust in terms of per-
formance. For this, we set up two simple Python-based xApps
based on the OSC O-RAN Near-RT RIC implementation and
deploy them across two back-to-back connected nodes. One
xApp sends messages to the other at a customizable rate, and
the other echoes the messages back to the sender xApp. In
case of eZTrust, since it lacks the ability to trace their xApp-
specific contexts, we deploy two simple containers for eZTrust,
running simply Python-based client and server apps. Then we
configure eZTrust to alternate between “fast path” and “slow
path” at 10-second intervals to emulate multi-flow handling.

Figure 7 shows latency comparison between eZTrust and
OZTrust, while Figure 8 presents throughput and CPU usage
comparison. The results indicate that OZTrust outperforms
eZTrust in terms of latency and throughput. This performance
improvement is due to the OZTrust’s context pre-population
mechanism which eliminates inefficient slow path. There is no
substantial difference in CPU usage, as both solutions utilize
the eBPF technology for packet tagging and verification.

VI. CONCLUSION
In this paper, we present OZTrust, a Zero-Trust security

system designed to address security challenges in the O-RAN
Near-RT RIC. We show how OZTrust can effectively mitigate
unauthorized API access and lateral movement, ensuring the
protection of RAN controls and valuable data. Our evaluation
demonstrates that OZTrust offers fine-grained protection with
low overhead. As part of future work, we plan to develop
tracing support for the RMR library of OSC xApps to easily
integrate OZTrust in the existing O-RAN platform.
Acknowledgements. This material is based upon work sup-
ported by the National Science Foundation under Grant Num-
ber 1827940.

REFERENCES

[1] “O-RAN Alliance,” https://www.o-ran.org/.
[2] M. Polese et al., “Understanding O-RAN: Architecture, Interfaces,

Algorithms, Security, and Research Challenges,” IEEE Communications
Surveys & Tutorials, 2023.

[3] D. Mimran et al., “Evaluating the Security of Open Radio Access
Networks,” arXiv preprint arXiv:2201.06080, 2022.

[4] M. Liyanage et al., “Open RAN Security: Challenges and Opportuni-
ties,” Journal of Network and Computer Applications, vol. 214, 2023.

[5] D. Mimran et al., “Security of Open Radio Access Networks,” Comput-
ers & Security, vol. 122, p. 102890, 2022.

[6] “O-RAN alliance specifications,” https://orandownloadsweb.
azurewebsites.net/specifications/.

[7] C. Guan et al., “Dangerneighbor attack: Information leakage via
postmessage mechanism in html5,” Computers & Security, vol. 80, 2019.

[8] M. Jackson, “How hackers used stolen github tokens to access
private source code,” https://blog.gitguardian.com/how-hackers-used-
stolen-github-oauth-tokens/, 2022.

[9] Y. Weizman, “Secure containerized environments with updated threat
matrix for kubernetes,” 2022, Microsoft Security Blog.

[10] B. Bowman et al., “Detecting Lateral Movement in Enterprise Computer
Networks with Unsupervised Graph AI,” in Proc. RAID ’20, 2020.

[11] A. Bohara et al., “An unsupervised multi-detector approach for identi-
fying malicious lateral movement,” in Proc. 2017 IEEE SRDS, 2017.

[12] Z. Zaheer et al., “eZTrust: Network-Independent Zero-Trust Perimeter-
ization for Microservices,” in Proc. ACM SOSR ’19, 2019.

[13] “Jaeger,” https://www.jaegertracing.io/.
[14] “OpenTelemetry,” https://opentelemetry.io/.
[15] “Kubernetes RBAC,” https://kubernetes.io/docs/reference/access-authn-

authz/rbac/.
[16] “Cilium,” https://cilium.io.
[17] “Calico,” https://docs.tigera.io/calico.
[18] “Non-RealTime RIC,” https://wiki.o-ran-sc.org/display/RICNR/.
[19] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi Commandments

of Kubernetes Security,” Proc. 2020 IEEE SecDev, 2020.
[20] “Powder: Platform for open wireless data-driven experimental research,”

https://powderwireless.net.
[21] “Tetragon,” https://github.com/cilium/tetragon.
[22] “Calico cloud – container threat detection,” https://docs.tigera.io/calico-

cloud/threat/container-threat-detection.


