
RESCue: A State-Disaggregated NFV System with
Resilience, Elasticity, and State Consistency

Hao Jiang∗, Hyunseok Chang†, Sarit Mukherjee† and Jacobus Van der Merwe∗
∗ School of Computing, University of Utah, Salt Lake City, United States

† Network Systems and Security Research Department, Nokia Bell Labs, Murray Hill, United States

Abstract—State-disaggregated Network Function Virtualiza-
tion (NFV) architectures decouple NF states from packet pro-
cessing logic to achieve elasticity and resilience in stateful NFs.
However, the existing state disaggregation approaches suffer from
either poor NF performance due to frequent remote state access
or potential inconsistencies in state updates when multiple NF
instances concurrently access shared states. Moreover, they do not
properly support state rejuvenation/expiration which is required
for resource scalability of stateful NF operations. This paper
presents a new state-disaggregated NFV system called RESCue
that addresses these problems. RESCue handles remote state
access differently for shared and private states. For efficient
and consistent access of shared states, it leverages a lightweight
custom control message protocol between NFs and a centralized
state server. For private state access, it adopts a remote-paging-
based interface to avoid introducing expensive blocking remote
access within the critical path of NF packet processing. Finally, it
utilizes non-blocking operations for state rejuvenation/expiration
handling to minimize its performance overhead. Our evaluation
of a RESCue prototype shows that it can handle NF scaling
and failure recovery well, while supporting consistent state
updates and state rejuvenation/expiration without compromising
performance.

I. INTRODUCTION

As a key component of modern data center infrastructure,
NFs perform a variety of processing on data center traffic,
such as packet header modification (load balancer, NAT),
filtering (firewall), security inspection (intrusion detection sys-
tem), encryption/decryption (SSL proxy), etc. NFV technology
enables data center operators to realize these NFs as virtualized
software instances running on general-purpose commodity
servers, thereby significantly improving flexibility and elas-
ticity in their deployments compared to dedicated hardware
middleboxes [1]–[3].

One major challenge in the successful adoption of NFV
in existing NFs is the need to support dynamic states within
NFs [4], [5]. Unlike static states (e.g., NAT translation rules,
firewall’s access control policies), which are created a priori
and do not change as traffic passes through NFs, dynamic
states (e.g., NAT mappings, firewall’s connection tracking
states, load balancer’s backend mappings, and usage statistics)
are created based on arriving traffic, are constantly updated by
NFs, either on a per-packet or per-flow basis, and may expire
based on the freshness of these states.

A successful NFV system is obliged to not only (i) handle
dynamic state updates in a highly performant manner for elas-
ticity and resilience, but also (ii) preserve the correctness of
the states when multiple NF instances concurrently update the

same shared states during scale-out periods, and (iii) handle
timely rejuvenation/expiration of the states as required by NFs.
Achieving all three requirements adds significant complex-
ity to state-disaggregated NFV realization but is critical for
performant and correct NF operation. Specifically, if multiple
NF instances read/write the same shared states concurrently
without proper synchronization, state inconsistency can occur,
possibly leading to incorrect NF operations. We will describe
this problem in more detail in Section III. State rejuvenation
and expiration are common requirements in modern NF imple-
mentations. After all, NF state capacity is not unlimited. States
not only take up NF memory but also, in some cases, can be
treated as scarce data center resources, e.g., a pool of available
public IP addresses or port numbers in NAT. Therefore, states
of old, inactive flows need to be constantly removed to make
room for new flows. When incoming flows are a mixture of
long-lived and short-lived flows, their corresponding states
need to be refreshed periodically (i.e., rejuvenated) so that
only those of short-lived flows age out.

There have been numerous research proposals that advance
the state-of-the-art NFV systems. Some early efforts [1], [2],
[12]–[14] achieve good performance, but do not support shared
states. Others [6]–[8], [15], [16] design NFV systems allowing
states to be migrated to newly created NF instances. However,
they must buffer traffic and incur extended service downtime
during state migration. Moreover, they are not resilient to
failures.1 StatelessNF [9] is the first attempt to disaggregate
an NF’s states from its packet processing logic. Although this
decoupled design easily achieves elasticity and resilience, it
suffers from increased per-packet latency and degraded packet
processing throughput in NFs because every state operation
requires blocking access to a remote memory store. Inspired by
StatelessNF, S6 [10] and DAL [11] utilize techniques adopted
from distributed systems to improve NF performance while
maintaining elasticity. However, S6 still introduces stop-the-
world downtime, and DAL has a long transient period during
state migration in scale-out events. Additionally, neither S6
nor DAL is resilient to failures when there is no scale-out
event, or when all NF instances of a given auto scaling group
reside on one server. All these state-disaggregated efforts fail
to address the state inconsistency problem and lack support
for efficient state rejuvenation and expiration.

1Throughout this paper, when referring to failures, we mean both node and
NF failures.



Proposal Elasticity Resilience Performance State consistency
E2 [2], SIMPLE [1] No No Good Yes

Split/Merge [6],
OpenNF [7],
ScaleFlux [8]

Yes No Extended downtime when migrating states Yes

StatelessNF [9] Yes Yes Significantly degraded latency/throughput performance No
S6 [10] Yes No Downtime when migrating states No

DAL [11] Yes No Transient period when migrating states No

TABLE I: Summary of previous NFV proposals.

In this paper, we propose a new state-disaggregated NFV
system called RESCue that not only provides Resilience
and Elasticity for NF deployments, but also guarantees State
Consistency and supports state rejuvenation and expiration
without sacrificing performance. To minimize the performance
implication of state disaggregation in RESCue, we rely on two
guiding design principles: (i) minimize the number of blocking
remote state accesses during which NF’s packet processing has
to be paused, and (ii) make each inevitable blocking remote
access as efficient as possible. Following these principles,
we categorize NF states into shared states (accessed by all
NF instances of each auto-scaling group) and private states
(accessed by only one NF instance). A typical NF instance
has both shared and private states.

With state disaggregation, concurrent read/write access to
shared states hosted by a remote state server is a major
hurdle to achieving good performance while ensuring cor-
rectness. Our key design approach to handling shared states
is to introduce indexing on shared states. We devise a state
manager on the remote state server, which manages indexes
for individual shared states and performs state operations such
as state assignment, updates, rejuvenation, and expiration on
behalf of NFs via these indexes. In this design, shared state
access does not involve transferring actual states between
NFs and the remote state server, but only introduces control
messages that carry the indexes. The state manager maintains
a dedicated thread for each NF instance to receive control
messages from the instance. The control messages encode
which state to assign or which state to update and how, and
the state manager performs corresponding actions on behalf
of NFs in their respective threads in a centralized fashion.
This approach allows the complex distributed synchronization
of shared states to be converted into thread-level local syn-
chronization within the state manager. The overhead of local
synchronization is negligible compared to that of its distributed
counterpart. The frequency of control message communication
can be adjusted based on the consistency requirements of
given state operations. For example, for state rejuvenation and
traffic statistics-related states which do not require strict per-
packet updates, NFs can rate-limit the transmission of control
messages. In summary, RESCue reduces the latency overhead
for shared state access via lightweight control-message-based
communication while ensuring consistency via synchroniza-
tion within the state manager.

Unlike shared states, private states do not involve blocking
remote interactions. RESCue adopts a remote-paging-based

interface for accessing private states, so that the states can be
accessed from local memory pages and automatically backed
up to the remote state server outside the critical path of NF
packet processing.

We utilize Remote Direct Memory Access (RDMA) to
realize state access interfaces for shared and private states.
For shared state access, we leverage the RDMA WRITE with
immediate in an unconventional manner: transmitting an empty
message with the four-byte immediate field to convey control
messages. Remote paging for private state access is achieved
via RDMA-backed network block device. We abstract low-
level RDMA operations into high-level APIs to simplify NF
developments for RESCue.

Our contributions are threefold. First, we present the design
of RESCue to meet the requirements of state-disaggregated
NFs in terms of correctness (state consistency) and features
(state rejuvenation/expiration). Second, we implement a proof-
of-concept prototype of RESCue for three popular NFs: NAT,
firewall, and load balancer. Third, we extensively evaluate
the prototype and show that RESCue achieves elasticity and
resilience for NFs with dynamic states while supporting state
rejuvenation/expiration and state consistency without compro-
mising performance.

II. RELATED WORK

For an NFV system to be deployable for real-world NF
implementations, it must fulfill the following requirements:
elasticity, resilience, high performance, and state consistency.
We already discussed prior NFV frameworks [1], [2], [8]–
[11] in terms of these requirements in the introduction and
summarize their differences in Table I. RESCue aims to satisfy
all these requirements.

Several earlier efforts focused on NF state management
for state-disaggregated NFs. FlexState [17] proposes a highly
configurable abstraction layer for NF states based on extended
key-value interfaces. Its goal is to reduce code refactor-
ing efforts in NF state management, thereby facilitating the
rapid development of NFs. RedKV [18] proposes an RDMA-
accelerated key-value store that facilitates elastic scaling for
stateful NFs. Instead of relying on restrictive key-value in-
terfaces, RESCue utilizes a more general memory-page-based
state store. RECANS [19] adopts hierarchical state sharing
for NFs, where NF state access can occur via either shared-
memory-based local access or RDMA-based remote access,
depending on the locality of data stores. Accordingly, access
to cross-flow shared states is coordinated based on local vs. re-
mote locking. On the other hand, RESCue avoids expensive



Fig. 1: RESCue architecture.

locking mechanisms for shared remote states and leverages
a custom communication protocol with reduced round trip
interactions. The proposed hierarchical sharing approach is
not exclusive to RECANS, but can be adopted by RESCue
as well. The authors of [20] consider algorithmic solutions for
deciding where to place NF states and how many copies of
states to maintain for short state access time and low network
utilization. This work is orthogonal to RESCue.

While not directly proposed for NFV systems, some recent
efforts [21], [22] present high-performance lock services for
distributed systems by exploiting RDMA-based fast network
transport. Instead of relying on such generalized and expensive
locking mechanisms, RESCue leverages a control-message-
based protocol specifically optimized for NF states supported
by RESCue to minimize remote interactions.

III. RESCUE ARCHITECTURE DESIGN

In this section, we present the design of RESCue. Its
overall architecture is depicted in Figure 1. We assume that
the NF orchestrator, which consists of the NF controller and
the SDN controller, is already in place and thus not part of
RESCue design. The NF controller deploys NF instances on
end-hosts and handles NF failover/auto-scaling (i.e., spawning
a new NF instance upon a failure in an existing instance
and adding/removing NF instances based on their workloads).
The SDN controller, in coordination with the NF controller,
performs flow-level load balancing among NF instances in
each auto-scaling group. Under this orchestration infrastruc-
ture, RESCue provides NF instances with custom state access
interfaces, through which the instances dynamically create and
place their shared/private states on state storage within the
centralized state server. The state manager on the state server is
responsible for conducting bookkeeping operations on hosted
states on behalf of NFs. In the rest of the section, we describe
these components in detail.

A. State Management

RESCue categorizes dynamic NF states into shared and
private states based on their access patterns. Examples of
shared states include a pool of shared resources distributed
to a group of NF instances (e.g., a pool of available public IP

addresses/ports in NAT) or global traffic statistics cumulatively
updated by all NF instances in each auto-scaling group. On
the other hand, private states are those accessed by only
one specific NF instance, typically related to flows assigned
to the instance (e.g., flow-level NAT mappings or firewall’s
connection tracking states). In the following, we describe how
RESCue handles these states differently.

1) Shared States: Shared states can be frequently accessed
and updated simultaneously by all NF instances in a given
auto-scaling group. In RESCue, we manage them at a cen-
tralized state server, as opposed to distributing and dynam-
ically migrating them across NF instances (e.g., [10], [11]).
The centralized placement of shared states has the following
advantages. First, since states do not need to be migrated
across NF instances, there is no migration overhead nor risk
of frequently bouncing shared states back and forth among
instances. More importantly, there is no need to sacrifice state
consistency for performance since the centralized state server
can handle proper synchronization, as will be described later.

As a downside, this approach requires that NF instances per-
form remote interactions with a centralized state server during
shared state access and during state rejuvenation/expiration
events. To mitigate this issue and enhance performance, we
minimize the frequency of these remote state accesses by
optimizing state access operations based on their requirements.
Table II summarizes the types of shared states maintained
by popular NFs. These states are largely broken down to
either shared resources or global statistics. Ensuring strict
consistency in updating shared resources among NF instances
is particularly important for correct NF operations. On the
other hand, updating global statistics does not require as strict
consistency since the statistics typically are not tied to the
correctness of NF operations. Recognizing these requirements,
we devise lightweight control-message-based communication
between NFs and the centralized state server to manage shared
states in an efficient and consistent fashion. Section III-B
provides more detail on this topic.

NF type Shared states Category
NAT Public IP address (port) pool Resources

Firewall Packet or flow counters Statistics
Load balancer Per-backend usage statistics Statistics

IDS/IPS Lists of malicious nodes,
infected servers, etc. Statistics

Traffic monitor Statistics for packets,
protocols, hosts, etc. Statistics

TABLE II: Shared states of popular NFs.
2) Private States: As described earlier, RESCue is designed

under the assumption that the SDN controller performs flow-
level load balancing among NF instances in each auto-scaling
group. Thus, flow-level states are not shared by multiple NF
instances, but remain private to each respective instance. To
support accessing such private states efficiently, we adopt a
remote-paging-based access interface. Remote paging allows
remotely hosted private states to be loaded to local memory
pages (after page faults) and subsequently accessed by NF
instances locally. Any state updates on dirty pages are auto-



Fig. 2: The state inconsistency problem with NAT. Fig. 3: State store comparison.

matically backed up to the remote state server on memory page
granularity outside the critical path of NF packet processing.
To avoid frequent small updates, RESCue allows batched
updates. Both the memory page size and batching interval
can be fine-tuned based on the size of per-flow NF states and
state access patterns. Compared to key-value-based interfaces
adopted by previous state-disaggregated efforts [9]–[11], this
interface, thanks to its memory access semantics, allows NFs
to export and access more complex types of NF states in a
more generalized fashion and with fewer round trips.

B. Consistency in Shared NF States

Maintaining consistency in shared states is highly chal-
lenging in NFV systems, especially with state-disaggregated
approaches. Early efforts [6], [7] sacrifice performance to
maintain state consistency, while other state-disaggregated
NFV proposals trade consistency for performance [10], or do
not address the problem at all [9], [11]. In Figure 2, we illus-
trate the state inconsistency problem with NAT as an example.
In this scenario, two NAT instances concurrently access a pool
of available public IP addresses/ports as a shared state stored
on a remote key-value store. Upon receiving a packet for a
new flow f1, instance 1 issues a read request to the key-
value store to obtain the list of currently available public IP
addresses/ports. At the same time, instance 2 issues the same
read request for a new flow f2. The key-value store replies
to both instances with the same public IP addresses/ports list.
Each instance selects an available public IP address/port from
the list and issues a write to update the list on the remote
store, one overwriting the other. Depending on the selection
algorithm used or the pool size, they may or may not pick
the same IP address/port. Even when they choose different
ones, instance 2 will still overwrite the update on the list
made by instance 1, allowing the IP address/port picked by
instance 1 to become available for other instances. Either way,
multiple outgoing flows may be mapped to the same public IP
address/port by NAT, leading to incorrect NAT operation. In
typical scale-out NFV deployments, correctness is as essential
as performance, so this type of state inconsistency is not ac-
ceptable. In the following, we describe how RESCue achieves
state consistency with minimal performance overhead.

To avoid data races that cause state inconsistency, syn-
chronization (e.g., using locking mechanisms) is necessary.

However, distributed synchronization in distributed systems
incurs a tremendous negative impact on performance. Our goal
in designing shared state management in RESCue is to offload
distributed synchronization overhead from NF instances and
pass it onto the centralized state server while minimizing
state transmission overhead. This motivates us to adopt custom
control-message-based communication between NF instances
and the state server for shared state management. In this
design, we introduce numeric indexes for individual shared
states. The custom control messages that carry the indexes
and an “instruction” (OpCode) are exchanged between NFs
and the state server in order to tell the state server which state
to assign or which state to update and how, thereby allowing it
to perform necessary state operations on behalf of NFs without
transmitting actual states between them. As already shown
in Table II, there are largely two types of shared states. For
shared resources, the state server handles their assignment,
rejuvenation, and expiration, while, for statistics, the state
server manages their update and lookup.

Control message handling on the state server is performed
by the state manager which is responsible for processing
consistent updates on shared states among deployed NF in-
stances. The state manager spawns a dedicated thread for each
NF instance, which interacts with the instance via control
messages to perform shared state processing on its behalf.
When multiple NF instances access the same shared state, their
respective threads within the state manager perform corre-
sponding state operations locally in a thread-safe manner. This
approach turns otherwise performance-demanding distributed
synchronization of shared states into lightweight thread-level
local synchronization.

The state manager performs two types of shared state op-
erations: passive and active. Passive operations are performed
upon receiving control messages from NF instances, such as
assigning and rejuvenating indexes for shared resources and
updating and reading traffic statistics. Active operations are
used to actively release expired resources and make them
available again for new assignments. More detail on state
rejuvenation and expiration is found in Section III-C.

C. State Rejuvenation and Expiration

Real-world NF implementations require old states to ex-
pire after a certain period of inactivity and active states to



be retained indefinitely via a state rejuvenation mechanism.
Without proper support for state rejuvenation and expiration,
it may lead to resource exhaustion in NFs (e.g., depleted
address pool in NAT) or sometimes incorrect NF operations
(e.g., long-lived flows accidentally dropped by NAT/firewall).
StatelessNF [9] uses TCP/FIN to signify the expiration of
a flow and its states. However, such a protocol-dependent
approach has the following drawbacks. If an attacker sends
TCP/SYN packets for a large number of flows, but without
corresponding TCP/FIN packets, the capacity of NF instances
will easily be exhausted, leading to a denial of services on
normal traffic. Without state expiration, the remote state stores
will be filled with stale states that will never be cleared. This
approach also cannot handle the expiration of UDP flows
without TCP/FIN-equivalent signaling packets. Other state-
disaggregated approaches like S6 [10] and DAL [11] do not
handle state expiration at all.

In RESCue, we adopt the following state rejuvena-
tion/expiration approach to solve the problem. First of all,
since private states are accessed transparently from local
memory pages, state rejuvenation and expiration for private
states can easily be handled by native NF implementation.
Thus, we focus on shared states managed via custom control
messages described earlier. In a nutshell, state expiration is
handled by the state manager, while state rejuvenation is
initiated by NF instances. In both cases, the state manager
and NF instances utilize control messages to communicate
the outcome of state rejuvenation/expiration to the other party.
Note that, among shared states, state rejuvenation and expi-
ration are only applicable to shared resources, not statistics-
related states. For state expiration, the state manager maintains
a table recording which index values (and corresponding
share resources) are assigned to which NF instances. When
the assignment of a given shared resource expires after a
configurable timeout, the state manager clears the index from
the table and communicates this event to an associated NF
instance. On the other hand, state rejuvenation is initiated by
NF instances. When a state needs to be rejuvenated, an NF
instance sends a control message carrying the corresponding
index to the state manager, instructing it to rejuvenate this
state on the state server.

Since state rejuvenation and expiration for shared states
increase the frequency of remote interactions between NF
instances and the state store, it can lead to degraded NF
performance. RESCue provides several optimizations to mit-
igate the impact of these operations. First, the shared state
interface for state rejuvenation and expiration (elaborated in
Section IV-A) is realized as non-blocking operations. Second,
RESCue allows the frequency of performing rejuvenation
operations to be configurable. State rejuvenation for a given
flow can be triggered by a mix of a packet count threshold
and the last rejuvenation timestamp. Since the goal of state
rejuvenation is to properly support long-lived flows (regardless
of state expiration threshold), reducing its frequency does not
impact the correctness of NF operations.

D. State Store

Our state server design for shared and private states is much
more than simple key-value stores which have limitations in
supporting different types of states [9]. Not all types of states
are suitable to be accessed via a key-value interface as adopted
by [9]–[11]. The state interfaces of RESCue for shared and
private states allow NF developers to store dynamic states in
a more consistent and generalized fashion.

In addition, the state manager on the state server simplifies
the way shared states are assigned to make it more efficient.
Figure 3 compares the ways per-flow states are accessed by
the architectures adopting key-value stores and our approach.
In the case of key-value stores, an NF instance has to issue a
remote read to check which resources are available, followed
by a remote write to obtain one. The process involves at least
one and a half round trip interactions with the key-value store.
In our design, on the other hand, an NF instance issues a
request for the next available resource, and the state manager
responds with either an assigned resource or a notification
that none is currently available. This process is completed in
only one round trip communication. In terms of state server
overhead, key-value stores have lookup overhead for both read
and write operations since each state access involves hashing
of the key. Whereas in RESCue, the state server simply loads
memory pages into NF instances, and private state access
operations are performed by NF instances locally as regular
memory accesses, saving computation power and time on the
state server.

IV. IMPLEMENTATION

As a proof of concept, we implement a RESCue prototype.
In the following, we highlight its key implementation details.

A. State Access Interfaces

The performance of RESCue is predicated on the efficiency
of state access interfaces described in Section III. To imple-
ment the interfaces with efficiency and low latency in mind,
we adopt RDMA as the underlying network transport. For the
shared state access interface, we devise a novel RDMA-based
messaging mechanism by applying unconventional use of
RDMA verbs. To enable RDMA-based remote paging for the
private state access interface, we explore several open-source
solutions, and in the end adopt the RDMA-backed network
block device (RNBD) [23] as it is the most efficient and
stable with community support from mainline Linux kernel
integration (starting from v5.8). The following subsections
describe the details.

1) Shared State Access Interface: In implementing control-
message-driven shared state access with RDMA, there can be
multiple options for underlying RDMA operations. Table IV
lists these options and their features. While one-sided WRITE
achieves the best performance with receiver-side CPU by-
pass [24], it is not an ideal choice for the following reason.
Without explicit notification for incoming WRITE, the receiver
has to allocate memory regions for incoming control messages
and constantly poll the regions to consume the messages.



OpCode (7 bits) Index list
(5 bits)

Indexes
(20 bits)

Action description

INDEX REQUEST (1) 3 0 Assign the next available index in list 3.

INDEX ASSIGNMENT (2) 3 7000 Index value of 7000 in list 3 is assigned in response to NF’s
INDEX REQUEST.

NO MORE INDEX (3) 3 0 If there is no available index to assign in list 3, reply this OpCode to an NF.
UPDATE STATISTICS (4) 5 36000 Add 1 to the statistics state indexed 36000 in list 5.

UPDATE FAILURE (5) 5 36000 Fail to update the statistics state indexed 36000 in list 5. Reply this OpCode
to an NF.

EXPIRE (6) 2 5000 The state indexed 5000 in list 2 has expired. Send this OpCode to the NF
that was previously assigned it.

REJUVENATE (7) 9 100001 Rejuvenate the state indexed 100001 in list 9.

TABLE III: Examples of control message encoding for OpCode and indexes.

RDMA
operation Features

SEND Receiver posts RECEIVE before Sender transmits
SEND. Receiver is notified.

WRITE No RECEIVE is posted. Receiver is not notified.
SEND
with

immediate

Receiver posts RECEIVE before Sender transmits
SEND. Receiver is notified with a four-byte

immediate field. RECEIVE is read.
WRITE

with
immediate

Receiver posts RECEIVE before Sender transmits
WRITE. Receiver is notified with a four-byte

immediate field. RECEIVE is not read.

TABLE IV: RDMA operations and their features.

When numerous control messages are received back to back,
both RDMA NICs and receiver-side CPUs will attempt to
update the same memory regions concurrently, and this can
lead to complicated race conditions. In that sense, WRITE
with immediate can be a better alternative to WRITE since
the former sends a message together with out-of-band im-
mediate data, which can trigger the receiver-side notification.
The immediate data field is normally used as metadata of a
transmitted message. In our implementation of the shared state
access interface, we leverage WRITE with immediate in a non-
traditional manner, where we transmit a zero-byte message
with immediate data. This approach is driven by our design,
where shared state communication does not transmit states
but only carries control messages that are small enough to fit
into four-byte immediate data. Compared with conventional
non-empty WRITE with immediate, this approach bypasses
two steps in the critical path of message transmission: (i)
the sender-side RDMA NIC reading a message from the
sender’s memory and (ii) the receiver-side RDMA NIC writing
a message into the receiver’s memory. Compared to SEND
with immediate, WRITE with immediate has a performance
advantage because, in the former case, the receiver not only
consumes an outstanding posted RECEIVE request but also
reads it. To the best of our knowledge, RESCue is the first
research work in the literature that applies the novel approach
of zero-byte RDMA WRITE with immediate.

Four-byte control messages exchanged between NFs and
the state manager carry not just a numeric index for a shared
state but also OpCode to instruct the state manager or NFs to
perform a specific action on the shared state. Table III shows
examples of control messages supported by RESCue.

2) Private State Access Interface: For remote-paging-based
private state access, we use RNBD as the underlying remote
block device. Upon start of an NF instance, it performs mmap

on an RNBD device to store and access private states of its
assigned flows within its address space. If the instance is
started due to NF failover, previously stored flow states can
be automatically loaded after page faults. On each NF server,
we create separate RNBD devices for individual NF types
(e.g., NAT, firewall, load balancer). When more than one NF
instances of the same NF type are deployed on a server for NF
scaling, the instances share the same RNBD device. Different
instances will then access different memory-mapped regions
of the device to store private states of their assigned flows.
That way, flows assigned to one NF instance can be flexibly
moved to another instance on the same server without affecting
their execution. Such flow reassignment may be needed to
minimize the impact of NF failover or due to dynamic flow
rate changes. To allow NFs to access memory-mapped private
states without significant code modification, we implement a
custom memory allocation API called rescue_malloc which
is to be used when developing NFs for RESCue. The standard
malloc API is not suitable since it can only assign memory
on the heap, and we cannot control the exact location of the
assigned memory. The rescue_malloc API allocates memory
for NF private states from the memory region mapped by
RNBD, and at specified locations (typically consecutively for
memory savings and efficient access).

B. Network Functions and State Server

We integrate the aforementioned state access interfaces
into three existing stateful NFs available from VigorNF [25]:
NAT, firewall, and load balancer. These NFs are userspace
implementations developed with DPDK [26]. Our extension
of the memory management library and APIs of VigorNF for
RESCue is written in ∼500 SLOC of C. The modification
of these NFs for RESCue integration comprises ∼900 SLOC
of C (300 SLOC per NF). Through the library and APIs,
we only need to add minor modifications to the original
NFs. We also implement the state manager to communicate
with each of these NFs via the shared state interface to
enable state assignment, rejuvenation, and expiration. The state
manager is written in ∼1500 SLOC of C. The state store



Fig. 4: Latency comparison with different flow types.

Fig. 5: Throughput comparison with different flow types.

where private states are stored via the RNBD server is set up
using RAMDisk. To evaluate the prototype, we also develop
a custom DPDK-based packet generator in ∼1300 SLOC of
C, which can generate various types of flows (e.g., based on
empirical flow distributions).

V. EVALUATION

In this section, we present our evaluation of the RESCue
prototype. In our evaluation, we aim to answer the following
questions with regards to RESCue: (i) How does its perfor-
mance compare with previous efforts? (ii) How does the sup-
port for state rejuvenation/expiration affect NF performance?
(iii) Does it guarantee state consistency? (iv) Does it support
NF scaling well? (v) Is it resilient to failures?

A. Experimental Settings

We deploy the RESCue prototype and run our experiments
on a testbed consisting of three AMD EPYC Rome servers,
each equipped with 16 CPU cores, 128GB memory, and
a 25GbE dual-port Mellanox ConnectX-5 NIC, provisioned
from the POWDER testbed infrastructure [27]. We designate
one server to run a traffic generator, another to run NF
instances, and the last one to run the state server. All three
servers run on Ubuntu 20.04 with kernel v5.8. For NF scaling
experiments, we enable SR-IOV on the NF server’s NIC to run
multiple NF instances on separate virtual function interfaces.

B. NF Latency/Throughput Performance

For state-disaggregated NFV systems like RESCue, NF
performance can vary significantly depending on the type
of traffic mix, especially for NFs with shared resources.
Short-lived flows require frequent remote access for resource
assignments and thus have a more significant impact on
performance compared to long-lived flows. We measure NF
performance in terms of latency and throughput under three
different traffic conditions: (i) long-lived flows only, (ii) short-
lived flows only, and (iii) an empirical mix of flows. We set
the properties of these flows based on real-world data center
traffic [28]. Each long-lived flow is composed of 1000 packets,

Fig. 6: Latency overhead of state rejuvenation/expiration.

while each short-lived flow carries 10 packets. Empirical
flows comprise 20% long-lived and 80% short-lived flows.
The scenarios (i) and (ii) serve as two extreme cases to
benchmark NF performance. We use three NFs to evaluate
performance: NAT, firewall, and load balancer. We compare
RESCue’s performance against two baselines. In “Vanilla”,
we use unmodified NFs from VigorNF [25], which perform
stateful packet processing locally without state disaggregation.
In “StatelessNF”, we extend VigorNF to support state disag-
gregation as described in StatelessNF [9].

Figure 4 compares latency performance among three
schemes. RESCue NFs exhibit comparable latency as vanilla
NFs without state disaggregation and perform significantly
better than StatelessNF. As expected, for both RESCue and
StatelessNF, NAT experiences longer latency than its vanilla
counterpart with short-flows due to more frequent shared
resource assignments, but the latency penalty of RESCue is
significantly smaller than StatelessNF due to its lightweight
control-message-based communication. Figure 5 evaluates NF
throughput performance. Firewall and load balancer on RES-
Cue retain comparable performance as vanilla NFs, while
RESCue NAT experiences a negative impact of remote re-
source assignments. The latter is because the VigorNF plat-
form we adopt does not support multi-threaded packet pro-
cessing. Thus the entire packet processing in NAT is blocked
during per-flow resource assignment for consistency. Even
with consistent assignments, RESCue significantly outper-
forms StatelessNF. The throughput difference is sizable be-
cause StatelessNF suffers more from the same single-thread
limitation of the VigorNF platform since StatelessNF requires
multiple remote state accesses for each new flow. State-
lessNF [9] reports higher NF throughtputs than our imple-
mentation because their implementation uses multiple threads
for parallel packet processing.

Unfortunately, we were unable to perform direct perfor-
mance comparison between RESCue and previous efforts such
as S6 [10] and DAL [11]. S6 cannot run on our platform due
to incompatibility in their system requirements and application
dependencies, and because they use different types of NFs than
RESCue and StatelessNF. DAL is not open-source. Unlike
RESCue, S6 and DAL distribute states to individual NF
instances. Therefore, when there is no scale-out event or when
all NF instances of a given auto-scaling group are co-located



Fig. 7: Elasticity upon NF scaling. Fig. 8: State consistency. Fig. 9: Resilience to failures.

on one server, S6 and DAL will have better performance than
RESCue since all states are served locally, while RESCue
incurs the overhead of remote handling of shared states.
However, S6 and DAL are not resilient to failures in this case
since all states will be lost if the server where NF instances are
hosted fails. When there are multiple NF instances deployed
across different servers, RESCue is expected to have com-
parable performance as S6 and DAL, although they will still
suffer from the overhead of migrating shared states among NF
instances. Moreover, with multiple NF instances, S6 and DAL
will be subject to potential state inconsistencies, and they do
not support state rejuvenation/expiration. RESCue addresses
all these issues.

C. Overhead of State Rejuvenation/Expiration

As described in Section III, RESCue supports state rejuve-
nation and expiration, and we realize this functionality with
non-blocking RDMA operations. To evaluate the impact of
state rejuvenation and expiration on performance, we measure
NF latency for NAT on RESCue with empirical flows. We
compare the following scenarios: (i) rejuvenation and expira-
tion are disabled (“None”), (ii) per-packet state rejuvenation is
enabled (“Rejuv”), (iii) per-packet state expiration is enabled
(“Exp”), and (iv) rejuvenation and expiration are triggered
for a batch of 10 packets (“Mixed”). Figure 6 shows that
both rejuvenation and expiration operations incur negligible
overhead on the latency of NAT due to their non-blocking
nature. State expiration introduces slightly higher latency than
rejuvenation. This is because the state expiration operation
involves searching and removing private states in a hash
table using a hashed key. This is more heavy-duty than the
rejuvenation operation, which merely finds and updates a
timestamp for an index.

D. NF Scaling

To explore how well RESCue supports NF scaling, we
deploy NAT, firewall, and load balancer with a scaling group of
up to six instances, each of which handles empirical flows. All
NF instances are deployed on one server. Due to the limited
number of NIC resources on the NF server, NF traffic and
remote state access traffic share the same 25GbE physical
link. We measure NF performance in terms of latency and
throughput as we increase the number of NF instances in the

scaling group. We do not observe a noticeable impact on la-
tency after scaling-out events. Thus we report only throughput
results. Figure 7 shows how NF throughput scales with the
number of instances for the three types of NFs. The linear line
labeled “Ideal” is a reference where the aggregate throughput
is computed as single-instance throughput multiplied by the
number of instances. Relative to this hypothetical reference
line, all three NFs experience throughput degradation after
scaling-out events. We believe that multiple factors cause the
throughput degradations. First, the overhead of supporting
state rejuvenation/expiration and ensuring state consistency
increases with the number of deployed NF instances. Second,
sharing the same physical link for NF traffic and shared state
access introduces additional contention on NIC resources.

E. NF State Consistency

Next, we deploy NAT function to demonstrate that RESCue
can support consistent state updates. As illustrated earlier in
Section III-B, without proper synchronization, multiple NAT
instances concurrently accessing the same pool of public IP
addresses and port numbers could result in a situation where
multiple incoming flows are assigned the same public IP
address/port. This will make returning (incoming) flows after
NATing be directed to the wrong source hosts, leading to
packet drops for these flows. In this experiment, we deploy up
to six NAT instances and measure the number of dropped flows
due to state inconsistency. Our packet generator generates
traffic based on empirical flow distributions at a data rate close
to the maximum throughput of NAT to each NAT instance.
For comparison, we repeat the experiment after disabling the
state consistency support, which emulates previous solutions
based on distributed shared object (DSO) such as S6 and
DAL. Figure 8 confirms that RESCue incurs no packet drop
for returning flows due to the state consistency guarantee. On
the other hand, DSO solutions suffer from non-negligible flow
drop events, which increase proportionally with the number of
flows.

F. Resilience to Failures

Finally, we demonstrate the ability of RESCue to recover
from failures by using load balancer available from VigorNF.
The load balancer NF has two types of private states: flow
connection contexts and backend information. In VigorNF



implementation, backend instances send heartbeat messages at
configurable intervals to the load balancer. Upon receiving a
heartbeat message from a backend for the first time, the load
balancer records information such as the IP/MAC addresses
of this backend, as well as the NIC port number connecting
to it. Then this backend is registered as an available one for
flow load-balancing until it expires. Future heartbeat messages
from the same backend rejuvenate its valid status. Upon
receiving incoming flows, the load balancer directs traffic
to available backends. If there are no available backends
to assign, the packets are dropped. We use the unmodified
load balancer without state disaggregation as the baseline for
comparison. To measure the effect of disruption caused by
failover, we assume perfect failure detection (i.e., restart a
load balancer instance immediately upon failure). We run six
rounds of experiments with RESCue-integrated load balancer
and the baseline counterpart. After each round is completed,
we terminate the currently running load balancer instance
and instantiate a new one. Figure 9 shows the impact of
failure events on data rates. For better visualization, we use
different data rates for RESCue and the baseline. At time 1,
both instances experience zero data rate because there are no
available backends in them. At time 2, after heartbeat messages
have been received, the load balancer in each case can process
packets at steady data rates for incoming flows. At times 11,
21, 31, 41, and 51, the baseline experiences disruptions in data
rate because a newly instantiated instance loses all backend
states during failures. The data rate recovers only after new
heartbeat messages have been sent at time 12, 22, 32, 42,
and 52. In the case of RESCue, there is no further disruption
after time 1 since all backend states are loaded from the state
server through the private state access interface after each
failure event.

VI. CONCLUSION

In this paper, we presented RESCue, a state-disaggregated
NFV system that provides resilience and elasticity, enforces
state consistency, and supports state rejuvenation/expiration
without compromising performance. We described how our
design addresses problems that previous efforts failed to do.
Our extensive evaluation of the prototype demonstrated its
advantages and capabilities. We believe that RESCue is a solid
advance of state-disaggregated NFV to make it more feasible
in modern data centers. In the future, we plan to apply RESCue
to a more diverse and comprehensive set of real-world stateful
NFs.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant Number 1827940.

REFERENCES

[1] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu, “SIMPLE-fying middlebox policy enforcement using SDN,” in
Proc. ACM SIGCOMM 2013, 2013, pp. 27–38.

[2] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for NFV applications,” in Proc. ACM
SOSP 2015, 2015, pp. 121–136.

[3] J. Hwang, K. K. Ramakrishnan, and T. Wood, “NetVM: High per-
formance and flexible networking using virtualization on commodity
platforms,” IEEE Transactions on Network and Service Management,
vol. 12, no. 1, pp. 34–47, 2015.

[4] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. ACM Symposium on
Cloud Computing, 2013, pp. 1–15.

[5] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” in Proc. ACM SIGCOMM ’15,
2015, pp. 227–240.

[6] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System support for elastic execution in virtual middle-
boxes,” in Proc. USENIX NSDI ’13, 2013, pp. 227–240.

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network
function control,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4, pp. 163–174, 2014.

[8] L. Liu, H. Xu, Z. Niu, J. Li, W. Zhang, P. Wang, J. Li, J. C. Xue,
and C. Wang, “ScaleFlux: Efficient stateful scaling in NFV,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 12, pp.
4801–4817, 2022.

[9] M. Kablan, “StatelessNF: A disaggregated architecture for network
functions,” Ph.D. dissertation, University of Colorado at Boulder, 2017.

[10] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. USENIX NSDI
’18, 2018, pp. 299–312.

[11] M. Szalay, M. Nagy, D. Géhberger, Z. Kiss, P. Mátray, F. Németh,
G. Pongrácz, G. Rétvári, and L. Toka, “Industrial-scale stateless network
functions,” in Proc. 2019 IEEE CLOUD, 2019, pp. 383–390.

[12] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “De-
sign and implementation of a consolidated middlebox architecture,” in
Proc. USENIX NSDI ’12, 2012, pp. 323–336.

[13] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions,” in Proc. ACM HotSDN ’13, 2013, pp. 19–24.

[14] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A network-aware orches-
tration layer for middleboxes in the cloud,” Tech. Rep., 2013.

[15] H. Jiang, N. Choi, M. Thottan, and J. Van der Merwe, “FestNet: A
flexible and efficient sliced transport network,” in Proc. 2021 IEEE
NetSoft, 2021, pp. 97–105.

[16] E. Keller, J. Rexford, and J. E. van der Merwe, “Seamless BGP migration
with router grafting.” in Proc. USENIX NSDI ’10, 2010, pp. 235–248.

[17] M. Pozza, A. Rao, D. Lugones, and S. Tarkoma, “FlexState: Flexible
state management of network functions,” IEEE Access, vol. 9, 2021.

[18] C. Chang, W. Yang, C. Zheng, P. Jiang, L. Zhan, and Q. Liu, “Ac-
celerate state sharing of network function with rdma,” in Proc. IEEE
GLOBECOM 2022, 2022, pp. 1–6.

[19] J. Zhao, S. Zhuang, J. Li, and H. Guan, “RECANS: Low-latency network
function chains with hierarchical state sharing,” in Proc. International
Symposium on High-Performance Parallel and Distributed Computing,
2020, pp. 209–220.

[20] M. Szalay, P. Mátray, and L. Toka, “State management for cloud-native
applications,” Eletronics, vol. 10, no. 4, 2021.

[21] D. Y. Yoon, M. Chowdhury, and B. Mozafari, “Distributed lock manage-
ment with RDMA: Decentralization without starvation,” in Proc. 2018
International Conference on Management of Data, 2018, pp. 1571–1586.

[22] Y. Chung and E. Zamanian, “Using RDMA for lock management,” arXiv
preprint arXiv:1507.03274, 2015.

[23] “Rdma network block device,” https://github.com/ionos-enterprise/rnbd.
[24] P. MacArthur and R. D. Russell, “A performance study to guide RDMA

programming decisions,” in Proc. 2012 IEEE HPCC, 2012, pp. 121–136.
[25] A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki,

and G. Candea, “Verifying software network functions with no verifica-
tion expertise,” in Proc. ACM SOSP ’19, 2019, pp. 275–290.

[26] “Data plane development kit (dpdk),” https://www.dpdk.org.
[27] “Powder: Platform for open wireless data-driven experimental research,”

https://powderwireless.net.
[28] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proc. ACM SIGCOMM conference on
Internet measurement, 2010, pp. 267–280.


