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ABSTRACT
The tremendous growth of wireless services has created an ever-
increasing demand for the radio frequency spectrum. However,
most of the spectrum, especially in the sub-6 GHz frequency ranges,
have been allocated. Given the observation that a large part of the
allocated spectrum remains unused in various locations and at dif-
ferent times, dynamic spectrum access technologies that allow for
opportunistic use of the allocated bands when they are idle are
being developed. In this paper, we study the spectrum usage in the
frequency range of 700 MHz to 2.8 GHz at Salt Lake City, Utah.
Our study indicates that several portions of these frequencies are
under-utilized, with an average of only 19% usage. Furthermore, we
observe that certain frequency bands demonstrate clear usage pat-
terns, e.g., show higher utilization during the daytime compared to
night-time, that can be exploited for opportunistic secondary usage
of the spectrum. We propose a spectrum prediction system using
Long Short-Term Memory (LSTM) neural networks to predict the
occupancy of a channel in future time slots. We further introduce
an LSTM based Window Selector to �nd the optimal window of
future forecasts that increase the utilization of the network while
minimizing the interference caused by the opportunistic user. Our
experiments show that the Multivariate LSTM model can be reli-
ably used to guide the choice of the channel for the opportunistic
user. The multistep LSTM models can be used to forecast spectrum
usage with approximately 96% accuracy on the frequency bands
exhibiting discernible usage patterns.
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• Networks ! Network properties; • Computing methodolo-
gies !Machine learning.
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1 INTRODUCTION
The tremendous growth of wireless services has created an ever-
increasing demand for the radio frequency spectrum. However,
most of the spectrum, especially in the sub-6 GHz frequency ranges
have been allocated. Given the observation that a large part of
the allocated spectrum remains unused in various locations and at
di�erent times, dynamic spectrum access technologies that allow
for opportunistic use of the allocated bands when they are idle and
are being developed. In this paper, we study the spectrum usage in
the frequency range of 700 MHz to 2.8 GHz at Salt Lake City, Utah.
Our study indicates that several portions of these frequencies are
under-utilized, with an average of only 19% usage. Furthermore, we
observe that certain frequency bands demonstrate clear usage pat-
terns, e.g., show higher utilization during the daytime compared to
night-time, that can be exploited for opportunistic secondary usage
of the spectrum. An opportunistic secondary usage of such frequen-
cies involves frequently scanning the bands and determining their
occupancy (spectrum sensing). An opportunistic user cannot trans-
mit in a channel before sensing and determining its occupancy, as
that may cause interference. This possesses a signi�cant challenge,
as these operations need to be performed in each time slot, causing
substantial delays before the user gains access leading to reduced
utilization. A system that can predict the state of the channel for
future time slots can reduce the delay and the energy consumed
in spectrum sensing and the decision making phase if the sensed
channels are free and �nalize the best channel for the opportunistic
use (spectrum decision). We propose a spectrum prediction system
using Long Short-Term Memory (LSTM) neural networks to predict
the occupancy of a channel in future time slots. We further intro-
duce an LSTM based Window Selector to �nd the optimal window
of future forecasts that increase the utilization of the network while
minimizing the interference caused by the opportunistic user. Our
experiments show that the Multivariate LSTM model can be reli-
ably used to guide the choice of the channel for the opportunistic
user. The multistep LSTM models can be used to forecast spectrum
usage with approximately 96% accuracy on the frequency bands
exhibiting discernible usage patterns.

Our contributions in this paper are summarized as follows: (i) We
build spectrum monitoring tools in the POWDER testbed and study
the spectrum usage pattern for several frequency bands in Salt Lake
City, Utah. (ii) We develop LSTM based models to forecast spectrum
power values using real-world power spectral density (PSD) data
that we collect. (iii) We also develop LSTM based architectures to
forecast multiple timestep spectrum usages at once using real-world

270

https://doi.org/10.1145/3571306.3571412
https://doi.org/10.1145/3571306.3571412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571306.3571412&domain=pdf&date_stamp=2023-01-04


ICDCN 2023, January 4–7, 2023, Kharagpur, India Ghosh et al.

PSD data that we collect. (iv) We use the data collected to evaluate
the performance of various deep learning models (Stacked LSTM,
Encoder-Decoder LSTM, Multivariate LSTM) and compare them
with the performance of two baseline approaches (Exponential
Weighted Moving Average (EWMA) and Zero Rule Algorithm). (v)
We introduce a novel LSTM based Window Selector to select the
best window to minimize interference and maximize throughput.

2 RELATEDWORK
The US Government is taking initiatives for allowing sharing of
the under-utilized frequency bands by supporting dynamic spec-
trum access technologies and facilitating further research on how
to e�ectively access the spectrum holes [1]. However, without a
proper understanding of the current and future spectrum usage,
these initiatives would not be able to achieve their goals. Spec-
trum survey is an essential tool to determine the current spectrum
usage and guide the policy makers to make the most informed deci-
sion. Spectrum surveys have been conducted in San Francisco [2],
Denver [3], and San Diego [4]. Spectrum survey in Singapore [5]
showed that except for the bands allocated for broadcasting (analog
TV, digital TV, HDTV, and DAB) services and cellular networks,
most are heavily underutilized, with only 4.54% average usage in
the entire frequency bands ranging from 80 MHz to 5850 MHz.
Spectrum surveys have indicated that the frequencies are being
under-utilized because of static allocation schemes [6]. Cognitive
Radio Network (CRN) has been introduced to enable unlicensed op-
portunistic users to communicate in idle time slots with no harmful
interference to the licensed user [7]. To accomplish this, spectrum
sensing must be performed to determine the current spectrum state,
and to avoid any harmful interference. Spectrum prediction can
alleviate the opportunistic user from conducting spectrum sensing
in every timeslot by predicting the future spectrum states. This
can save a lot of time and energy, thus improving the throughput
of the network [8]. A survey [9] on spectrum prediction shows
that most of the existing studies are based on classical statistical
techniques or shallow architecture models. While deep learning
has shown promising results in many applications of image recog-
nition, machine translation, natural language processing, target
detection, etc., its use in spectrum prediction is still in its budding
state [10]. Hochreiter et al. [11] introduced the Long Short Term
Memory (LSTM) network to learn long-term dependencies. Pre-
dicting the state of the channel is a time-series problem that can
leverage long-term dependencies learning. The study in [12] ap-
plies deep learning to predict spectrum availability in cognitive
aerospace communications; however, real-world data are converted
into binary channel states like other prediction algorithms. Yu et
al. [10] applies LSTM for spectrum prediction in the frequency hop-
ping communication where frequency hopping sequence is also a
binary time series arti�cially generated data. Spectrum prediction
of one timestep on the power spectral density (PSD) values using
LSTM is studied in [14], but one-time step prediction is not very
useful for the opportunistic user.

Our work di�ers from the existing work in the following sig-
ni�cant ways: First, we perform a spectrum usage study using the
POWDER platform in Salt Lake City, Utah and analyze spectrum
usage patterns. Second, we develop models for multiple timestep

spectrum usage forecasts using real-world power spectral density
(PSD) data that we collect. Third, we evaluate the performance
of various deep learning models (Stacked, Encoder-Decoder, and
Multivariate LSTM) and compare that with the performance of two
baseline approaches (Exponential Weighted Moving Average and
Zero Rule Algorithm). Last, we study the e�ects of the forecast
window size and introduce a novel LSTM based Window Selector
to select the best window to minimize interference and maximize
throughput.

3 SPECTRUM USAGE ANALYSIS
We study the spectrum occupancy in Salt Lake City, Utah, using the
the POWDER platform. POWDER [15] is a city-scale laboratory
with radio equipment, �ber infrastructure, edge-compute, and dat-
acenter/cloud resources for research on future wireless networks.
We collect data using the Fixed Endpoint installation of the POW-
DER Platform located at the University of Utah’s main campus. The
Fixed Endpoint experiment setup consists of an ensemble of Soft-
ware De�ned Radio (SDR) equipment from National Instruments
(NI) and a compute node. Figure 1 represents the high-level experi-
ment setup. The Fixed-Endpoint equipment used for this study is
NI USRP B210 SDR with its ports connected to dedicated Taoglas
GSA.8841 wideband I-bar antenna. This antenna has a frequency
range of 698-6000 MHz and has an approximately -2 dBi average
gain across the range. The USRP is also connected to an Intel NUC,
a small form factor PC, via USB 3.0.

Figure 1: Experiment setup

3.1 Spectrum Power Measurement
The USRP SDR device is accessed using the Python APIs provided
by the USRP Hardware Driver (UHD). These APIs are used to set
receive gain and to acquire I/Q samples from a speci�c channel
at the requested sample rate. The frequency range is divided into
bands, each having a frequency width of 30MHz. Each 30MHz band
is further divided into 200 points, i.e., the distance between two
consecutive frequency points is 150KHz. These frequency points are
represented by the center frequency of the 150KHz wide channel.
The raw data collected for each frequency point is the signal power
computed at the USRP. Figure 2 illustrates an example of how
frequency division is performed for the spectrum measurement.
The example frequency range 2300-2390 MHz is divided into three
sections, each of which spans 30 MHz. This 30 MHz band is further
subdivided into 200, 150 KHz channels, and the respective center
frequencies are used to represent them. The upper boundary of
each 150 KHz channel is shown in the top blocks of Figure 2.
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Figure 2: Illustration of frequency division in data collection

3.2 Energy Detector-Based Sensing
We use energy detector-based sensing for identifying the presence
of signal transmission [16]. Energy detector-based approach does
not need any prior knowledge of the signal. The signal is detected
by comparing the output of the energy detector to a prede�ned
threshold, T [19]. The decision metric of the energy detector can
be written as follows:

( =
#’
==1

|~ (=) |2 (1)

where N is the observation interval. The decision on the occupancy
of the band is made as follows:

⇡ =
⇢
0 ( < )
1 ( � ) .

(2)

The threshold, T, is determined as a function of the Johnson-Nyquist
thermal noise power (NP) [17, 18] and the noise �gure (NF).

) = 5 (#%,#� ) (3)

where,
#% = 10;>610 (:g�5 1000).

: is the Boltzmann constant, g is the temperature, and �5 is the
noise bandwidth given in Hz. The Noise Figure (NF) of the system
is de�ned as

#� = 10;>610 (
(#'8
(#'>

). (4)

(#'8 and (#'> are the input and output signal-to-noise ratios
(SNR), respectively. NF is obtained through calibrated measure-
ments of the RF Hardware [13]. NP is the electronic noise gener-
ated by the thermal agitation of the electrons inside an electrical
conductor at equilibrium. This noise is present in every electrical
circuit. The noise �gure represents the degradation in the signal
to noise ratio as the signal passes through a device in the dB scale.
Hence, these two quantities help determine the minimum power
needed for a signal to be detected.

3.3 Analysis of the Collected Data
We collected spectrum data for 5 days from March 8th, 2020, 11:00
PM to March 13th, 2020, 11:00 PM over the frequency range 700-
2800 MHz. Figures 3-5 show the spectrum usage patterns for three
di�erent frequency ranges. Each �gures shows usage for 300 fre-
quencies. The red dots indicate that the channel is occupied. We
also show the US Department of Commerce spectrum allocation
categories for each frequency range. From these �gures, it becomes
evident that a vast range of frequencies is either under-utilized or

Figure 3: Spectrum allocation and usage for 700-1000 MHz

Figure 4: Spectrum allocation and usage for 1000-1300 MHz

Figure 5: Spectrum allocation and usage for 1300-1600 MHz

not used at all. This behaviour is further illustrated in Figure 6,
where we show the allocation categories, the frequency range, and
their usage percentage. Additionally, Figure 7 shows that the usage
is signi�cantly low at night times in various frequencies. Speci�-
cally, from this �gure we observe that there are 12 frequency ranges
that show signi�cant usage di�erence between day and night times.
We consider 11:00 PM to 7:00 AM as our night hours. We make the
following observations from our spectrum usage analyses. First, low
or no occupancy is observed in bands allocated to radio navigation,
aeronautical radio navigation, earth exploration, space research,
amateur, and �xed satellite services. Second, the average usage
of the whole spectrum [700-2800 MHz] is only 19.08%. Third, the
majority (71.4%) of the bands have 0-20% usage, while only 5.7%
of the bands have 80-100% usage, as shown in Figure 8. Fourth,
relatively high occupancy is observed in bands allocated for broad-
cast services. Last, among the bands that have signi�cantly lower
night-time usage, �xed and mobile are the common services.

4 SPECTRUM PREDICTION
Spectrum prediction allows predicting the power of a channel and,
in turn, the occupancy state of the channel for future time slots. It
provides the following three key advantages:

• Conserves time and energy spent on spectrum sensing
• Gives an insight into the best frequency to be used
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Figure 6: Spectrum allocation category and usage percentage

Figure 7: Spectrum usage di�erence between day and night

• Shows the state of the frequency bands for a large number
of future slots

Without spectrum prediction, an opportunistic user (OU) must per-
form spectrum sensing for a large set of frequencies and determine
the presence of a signal in each of them before actually using the fre-
quency to transmit. Spectrum prediction also allows an OU to select
the best channel that has the highest potential to be available when
predicted by di�erent mechanisms. We consider a wireless commu-
nication system where transmissions are performed in well-de�ned

Figure 8: Usage percentage versus percentage of bands

time slots as in a time-division multiplexed system. The OU needs to
perform spectrum sensing and spectrum decision in each time slot
before the transmission. Our motivation for spectrum prediction
is based on the presence of temporal variations in the spectrum
usage, as shown in Section 3.3. We develop a spectrum prediction
framework with di�erent Long Short-Term Memory (LSTM) archi-
tectures in deep learning and present extensive experimental results
with real-world spectrum data that we collect. Deep learning has
proven to be a very valuable tool in various �elds, including image
processing and natural language processing. Applying deep learn-
ing methods for spectrum prediction remains an active research
area with the potential for signi�cant improvements [10]. Complex
LSTM models in deep learning with multilayered networks have
the ability to perform well on time-series prediction [21, 22]. LSTM
is an arti�cial recurrent neural network architecture that can learn
long-term dependencies. An LSTM unit is composed of a cell, an
input gate, an output gate, and a forget gate. The cell remembers
values over arbitrary time intervals, and the three gates regulate
the �ow of information into and out of the cell [11]. We explore the
following LSTM architectures for spectrum time-series prediction.

4.1 Multistep Univariate stacked LSTM (MSUL)
LSTM networks can learn to forecast long sequences in one shot.
We leverage this to predict multistep spectrum power values of a
selected frequency; i.e., given the historical power observations at
the time, (t-1, t-2, ..., t-k), the model predicts power values for time
(t, t+1, . . . , t+m) using only the power values as the input feature.

4.1.1 Supervised Data Creation. We collect data over consecutive
slots and predict the spectrum occupancy of the future slots based
on this data. Figure 9 shown an example where both input and
forecast window size selected as 5. The values in the slots, (t1, t2,
. . . , t5) of the �rst spectrum prediction point represent the power
values in the shown timeslot. The corresponding label of the data
point is represented by the values in the slots (t6, t7, . . . , t10). The
power values are received over time, so the dataset is created by
sliding a window with a �xed length, !. The power values are
normalized to values between 0 and 1. This normalization makes
the training and convergence faster and also helps in learning the
problem e�ectively. The results we present in this document are
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obtained using the input window size of 30 and the forecast window
size set to 100.

Figure 9: Dataset Collection and Prediction

4.1.2 Univariate Stacked LSTM Network. Our �rst model is based
on a univariate unidirectional stacked LSTM architecture consisting
of two hidden layers and one dense layer with 100 hidden states in
every layer (see Figure 10). We use the learning rate of 0.001, RELU
activation function, and mean squared error as the loss function.
For our experiments, we create the dataset by moving the window
one step at a time. In Figure 10, the input contains power value for
a frequency for 9-timesteps (t0 to t8). As we have set the input step
size or input window size as 3, the raw input data are reshaped into
four samples. We use 50% of the collected data for training, 20%
for validation, and the remaining 30% for testing. Each reshaped
sample contains the input data for 3-time steps. In the training
phase, we feed the next 3-time steps’ data as the label.

4.2 Single-step Multivariate Stacked LSTM
(SSML)

Neural Networks, like LSTM networks, can model problems with
multiple input features. This is a great bene�t of time-series fore-
casting over classical linear forecastingmethods.We predict a single
future power value for each of the input frequencies. This predic-
tion can help the OU gain insight on which frequencies can be
reliably predicted by the multistep forecast models.

4.2.1 Supervised Data Creation. The dataset is constructed using a
sliding window, as shown in Figure 11. Suppose the sliding window

Figure 10: Univariate stacked LSTM architecture

Figure 11: Dataset for single-step multivariate LSTM

Figure 12: Encoder-decoder LSTM

length is 3; the label for the training is the power value of all the
channels of time slot t4, and the model outputs the predictive power
values of corresponding channels for the same time slot t4. The
window is forwarded one timestep ahead to form the next datapoint.

4.2.2 Stacked LSTM Network. The structure of the LSTM network
constructed in this case has �ve hidden layers, all of which are
comprised of LSTM layers. The �rst layer has 300, the second layer
200 hidden, the third layer 100, the fourth layer 70, and the �fth
layer has 50 hidden units. Each layer has RELU as the activation
function, and the output of one layer is fed as the input to the next
layer. The output of the last hidden layer goes into a Dense layer.We
use Mean Square Error as the loss function, and the Adam optimizer
is used for updating network weights. With input frequencies from
�1, �2, . . ., �# , # input features are used, and the model predicts
one power value corresponding to each of the # input frequencies.

4.3 Multistep Encoder-Decoder LSTM
The Encoder-Decoder LSTM is a special type of Recurrent Neural
Network designed to solve sequence-to-sequence (seq2seq) prob-
lems. Given the multiple time steps as the input and multiple time
steps as the output, this type of problem is referred to as many-to-
many sequence prediction problem. The Encoder-Decoder LSTM is
proven to be very e�ective in seq2seq prediction problems.

4.3.1 Supervised Data Creation. The dataset is constructed using a
method similar to the one described in Section 4.1.1. Given the his-
torical power observations at the time (t-1,t-2,...,t-k) for a particular
frequency, the model predicts power values for time (t,t+1,. . . ,t+m)
using only the power values as the input feature. However, the
label, in this case, has three dimensions - samples, timesteps, and
features, unlike the previous case that had only two dimensions.
The sliding window mechanism is used to create the entire dataset.

4.3.2 Encoder-Decoder LSTMNetwork. This architecture comprises
of the encoder model and the decoder model. The encoder model
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Figure 13: Time unit circle

is used for reading the input sequence and encode it into a �xed-
length vector, and this �xed-length vector is then fed into the de-
coder model that outputs the predicted sequence. Let t1, t2, . . . , t4
be the input sequence that is fed into the encoder LSTMs and t5,
t6, . . . , t7 be the predicted sequence from the decoder LSTM. The
decoder model makes a one-step prediction for each element in the
output sequence. An example encoder-decoder model is shown in
Figure 4.4. This is the subtle di�erence from the previously seen
stacked LSTM architecture in Section 4.1; as in practice, both ap-
proaches predict an output sequence of power values.

4.4 Multistep Multivariate Stacked LSTM
(MSML)

So far, we have done multistep spectrum prediction with only a
single input power variable or feature. Real-world spectrum predic-
tion becomes more challenging when we need to include more than
one feature and yet be able to predict power/occupancy across mul-
tiple time steps. This speci�c architecture of multistep multivariate
stacked LSTM has the ability to handle multiple input variables and
be able to predict power values for more than one timestep.

4.4.1 Supervised Data Creation. We use the power and time fea-
tures to evaluate this architecture. Time, however, is cyclical in
nature; that is, hour 23 and hour 0 are closer to each other than
hour 0 and hour 3. We transform the time data such that this cycli-
cal property is preserved. The time feature is transformed into two
new features, x, and y where (x,y) represents a coordinate of a
unit circle. We compute the x and y components using the sine
and cosine trigonometric functions. Figure 13 shows an example
unit circle for hours, where x is the cosine component, and y is
the sine component. Midnight (0) is on the right, and the hour in-
creases counterclockwise. Thus, hour 23 is very close to hour 0. The
transformations (x,y) in our experiments are performed as follows.

G = 2>B (2c (∆s/()) (5)
~ = B8= (2c (∆s/()) (6)

where ∆s represents the seconds since midnight, and ( represents
the total number of seconds in a day.

We follow the sliding window approach to create the entire
dataset. Every data point has three features power, cosine trans-
formed, and sine transformed components. Our sliding window
approach is shown in Figure 14. In this �gure, three timesteps are
used to predict the next two time steps; t4 and t5 are predicted in
the �rst data point represented by the red dotted box. Similarly, t5,
t6, and t6, t7 are predicted in the second and third data points.

Figure 14: Data creation for multistep multivariate LSTM

Figure 15: Confusion matrix elements

4.4.2 Multivariate Stacked LSTM Network. The structure of the
LSTM network constructed in this case has three hidden layers,
which are all comprised of LSTM layers. Each layer has 100 hidden
units and RELU as the activation function, and the output of one
layer is fed as the input to the next layer. The output of the last
hidden layer goes into a Dense layer. We use Mean Absolute Error
as the loss function, and the Adam optimizer is used for updating
network weights. The model is trained for a particular frequency
to predict power values of 100 timesteps with three input features.

5 EVALUATION
We evaluate the performance of all the models based on a walk-
forward validation. The test dataset is provided to the model by
progressing one timestep each time. Thus, the model is always fed
with the latest : lag observations, where : is the input window size.

5.1 Evaluation Metrics
We use the Root Mean Square Error (RMSE) to evaluate the real-
valued output of the models. We use the following additional met-
rics to evaluate the performance of the binary occupancy output:
Accuracy, F-score, False Positives, False Negatives, True Positives,
and True Negatives. The RMSE imposes a severe penalty on large
errors in the prediction. In our evaluation, we calculate RMSE as
follows for each forecast window:

'"(⇢ =

sÕ=
8=1 (%A4382C438 � $1B4AE438 )2

=
.

We also convert the predicted power values to binary occupancy
states by applying an appropriate threshold. The binary values are
then validated using precision, recall, and F-Score as described in
Figure 15.

5.2 Baselines
We also establish the baseline performance of the spectrum pre-
diction problem. This baseline performance provides a point of
comparison when evaluating the more sophisticated LSTM models.
We use two types of baseline algorithms, one type for the regression
part of the problem and the other for the classi�cation part. The
two baseline algorithms are as follows:

(1) Exponential Weighted Moving Average for Regression
(2) Zero Rule Algorithm for Classi�cation
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5.2.1 Exponential Weighted Moving Average (EWMA). EWMA is
used to predict the label of the spectrum power data corresponding
to a frequency. EWMA for a spectrum power series,+C is calculated
recursively as follows:

+0 = 0 (7)
+C = V+C�1 + (1 � V)\C . (8)

Here, V represents the degree of the decrease in the weight of older
datum, a constant smoothing factor between 0 and 1. \C is the
current power value, and +C is the value of the EWMA at the time
C . Equation (8) shows that a single prediction can be made as the
value of the prediction is dependent on the current true value. Also,
the prediction is dependent on a single feature of power, so multiple
variables cannot be incorporated to predict future power values.
Therefore, to get a baseline for multistep models, we use the same
prediction value for all the predicted time steps.

5.2.2 Zero Rule Algorithm. In the Zero Rule Algorithm, we predict
the most common class label in the training set. This means that
if the majority of the label in the training set is label “1,” then this
algorithm uses a single rule of predicting only label “1” for the
testing set.

5.3 Evaluation of Frequency Bands using SSML
An opportunistic user needs to make the spectrum decision by
selecting the best frequency channel for its application. The Single-
Step Multivariate stacked LSTM (SSML) model can give insight
about the best frequency band of width 150 KHz by associating an
RMSE score with each frequency band. The OU can choose the best
frequencies for its application by selecting frequency bands, which
are lower than a required RMSE score. The selected frequency chan-
nel can be evaluated for multistep prediction by OU. Any choice of
bandwidth can be used to evaluate the SSML models. We evaluate
four di�erent frequency bands with bandwidths of 5, 10, and 12
MHz. There are, for example, 67 150KHz frequency bins in a 10MHz
band. Figure 16 shows the SSML model’s performance for the four
di�erent bands. These plots show how the future multivariate LSTM
models are likely to perform for various frequencies, and can guide
OU to make the best choice in its spectrum decision phase. The
red dot in the plots represents an example frequency, and it is the
corresponding RMSE given by the model. We have highlighted one
frequency from each of the range and its corresponding RMSE. We
use these representative frequencies to further study other models.

5.4 Frequency Selection for Multistep models
Our goal is to select frequencies that exhibit di�erent usage pat-
terns so that we can study the robustness of the multistep spectrum
prediction models. The selection of the representative frequencies
is guided by the visual inspection of the spectrum occupancy plots
and the result of the SSML models. Our selected frequencies include
2357.925 MHz (very high usage in the day and signi�cantly low
usage at night), 1790.775 and 704.125 MHz (high usage in the day
and relatively low usage at night) and 959.625 MHz (exhibits no
clear usage patterns). The spectrum prediction is applicable and can
be extended to any frequency. To be applied on a new frequency,
the multistep models need to be trained on the desired frequency’s
usage data. The usage pattern of selected frequencies is illustrated

in Figure 17. Each data point is collected every 6 seconds approxi-
mately. The red dot in these �gures indicates the observed power
value.

5.5 Evaluation of Multistep Models
In this section, we present our regression experiment results of the
three multistep LSTM models and the EWMA base model. All the
multistep models are based on 30 lag windows and a prediction
length of 100 windows. Figure 18 illustrates the RMSE performance
of 3 LSTM based models and the EWMA model across four repre-
sentative frequencies. We compare the performance of all the LSTM
models with that of EWMA in Figure 19. We see an improvement
of almost 2% to 15%. From Figure 18, we observe that the 2357.925
MHz frequency band has the best forecast performance. This can
be attributed to the fact that this band has regular high daytime
usage and signi�cantly low night-time usage, as shown in Figure ??.
However, given that frequency 959.625 MHz does not have any
particular usage pattern, the LSTM models perform signi�cantly
poorly when compared to other frequencies. Interestingly the LSTM
models perform much better than EWMA. We also see in Figure 20
that the di�erence between the MSML and MSUL models is minor,
with only about 2.3%.

5.6 Adaptive Threshold Mechanism
To estimate the occupancy state of the spectrum, we convert the
predicted power values to binary occupancy state using a power
threshold. For our dataset, we observe that the LSTM’s predicted
power values are very smooth. The predictions do not scale to the
highs and lows present in the data, but the cycles and seasonality
present in the data are forecast correctly. The scaling issue poses a
problem when we convert the power values to binary occupancy
state using the original threshold. Figure 21 shows an example pre-
diction of Frequency 704.125 MHz by stacked LSTM. We observe
that with the correct threshold, the occupancy state can be deter-
mined e�ectively. We introduce an adaptive threshold mechanism
that selects the best threshold by applying various thresholds in a
predetermined range and selecting the one that provides the com-
bined best F-Score and Accuracy across the forecast window. The
adaptive threshold selection shown in Figure 22 explores the space
ranging from -90 to -73 for selecting the appropriate threshold. It
then identi�es the threshold value that maximizes both accuracy
and F-score across the entire forecast window. The original and
selected adaptive thresholds are shown in Figure 23. Figure 23 pro-
vides a comprehensive plot of both training and test data. The blue
marker indicates the true data, an initial 50% of the data is used for
training, and the orange marker indicates the model’s prediction
on the training data. The next 20% of data is used for validation,
the green marker indicates the LSTM’s forecast on the validation
data, and the red marker indicates the prediction on testing data.
We study the impact of the adaptive threshold selection and deter-
mine that the adaptive threshold yields a better F-Score for both
classes for di�erent frequencies. Figure 24 gives an insight into
the accuracy of the models after the adaptive selected threshold
is applied to the LSTM models. It also compares the accuracy of
the LSTM models with that of the baseline majority model. We
�nd that the LSTM models perform signi�cantly better than the
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(a) 700-710 MHz (b) 956-961 MHz (c) 1788-1800 MHz (d) 2355-2360 MHz

Figure 16: RMSE for di�erent frequency bands

(a) 2357.925 MHz over 4 days (b) 1790.775 MHz over 5 days (c) 704.125 MHz over 5 days (d) 959.625 MHz over 2 days

Figure 17: Usage patterns

Figure 18: RMSE for 3 LSTM models and EWMAmodel

Figure 19: % increase in RMSE in EWMA compared to LSTM
models

Figure 20: % increase in RMSE in MSML compared to MSUL

Figure 21: True vs predicted power (freq. 704.125 MHz)

Figure 22: Adaptive threshold search
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Figure 23: Adaptive threshold illustration

Figure 24: Accuracy of the models

baseline majority model. Approximately, 96% accuracy is observed
in the frequencies of 2357.925 for all the LSTM models. All the
LSTM models are almost identical in performance except at 959.625
MHz. As seen in the RMSE evaluation, prediction accuracy is also
poor for 959.625 MHz, as no particular usage pattern is exhibited
by this frequency. However, high prediction accuracy is seen in the
bands that exhibit clear usage patterns.

6 FORECAST WINDOW LENGTH
While spectrum prediction has various advantages, the forecast
window size remains a critical parameter for its applicability in real
scenarios. A large forecast window increases the throughput by
allowing an OU to access the channel continuously without having
to pause transmission for determining the occupancy of the licensed
user [20]. A large forecast window also reduces the overall energy
spent by OU to sense and determine the occupancy state. However,
when forecasting for larger windows using LSTM models, the error
in the prediction increases with time. This phenomenon is displayed
for Frequency 2357.925 MHz in Figure 25. This is also evident from
the increasing rates of false-positives and false-negatives and a
decreasing trend in accuracy and F-scores when considering binary
spectrum occupancy states, as seen in Figures 26 and 27. Though
the initial parts of the forecast window have the lowest RMSE, a
small forecast window is not ideal as that involves sensing often.
From our spectrum analysis, we observe that channels can have
di�erent usage patterns. Thus, each frequency may have a di�erent
forecast window that yields the best performance for that frequency.

Figure 25: Increasing trend in RMSE

Figure 26: False positive and false negative over windows

Figure 27: Accuracy and F-score over windows

Figure 28: LSTM based window selector

6.1 LSTM based Window Selector
To �nd the best window length for the OU, we introduce a new
LSTM based Window Selector that predicts the best window length
given a sequence of past power values. This selector takes the real-
world power value of a frequency and the predicted values from an
already trained MSUL model and then outputs a window-length.
The components of the selector are illustrated in Figure 28. 30% of
the spectrum data, which is the test data of the MSUL model, is
used in the training and evaluation of this window selector system.
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Frequency RMSE
704.125 6.8
959.625 1.97
1790.775 6.32
2357.925 4.55

Table 1: Window Selector Evaluation

The sliding window approach, described in Section 4.1.1, is used to
create data points from the test data. The Window Selector (WS)
Data Creation Module takes this created dataset as input, along
with the predicted value from the MSUL model on the same dataset.
It then labels each of the data points with a real number, which
indicates the window length the MSUL model is able to predict
correctly from the �rst prediction consecutively. This newly created
dataset is then fed into the LSTM based WS model to train it.

A 3-layer stacked LSTM architecture is used for this model with
RELU as the activation function of each layer. The Adam optimizer
for updating network weights and mean square error as the loss
functions are used for the training of the model. Early stopper
is used on the validation set to train the model for the optimal
number of epochs. The training data consists of 50% of the total
data, the next 20% data is kept for the validation set and the last
30% for testing the model. A new model needs to be trained and
created for each individual frequency. We evaluate this model by
choosing the window length of the past values to be 20. We choose
the prediction window length to be 20 as well. This model can be
extended to other past and prediction window lengths. The model’s
RMSE performance for each frequency is shown in Table 1.

Discussion
SSML can predict the spectrum power value of multiple frequencies
in a single go, whereas EWMA based model can be used only for a
single frequency at a time. E.g., if one SSMLmodel can predict future
values for 100 frequencies at a time, 100 di�erent EWMAmodels are
needed to achieve the same purpose. Also, EWMA can predict only
one step in the future, unlike robust multistep LSTM models, that
can predict multiple steps in a one-shot. Our work gives an insight
into how an opportunistic user can use the SSML model to evaluate
various bands to narrow down the choices of the frequencies to
be used for its transmission and then use multistep LSTM models
to forecast the availability of the channels corresponding to the
selected frequency over multiple timeslots. LSTM based Window
Selector model can then guide the user to use the best length of
the forecast window. All these models can be trained and used
for any choice of bands and bandwidth. Multistep LSTM models
can be trained and used to predict for any length of the forecast
window. The hyperparameters of the models are optimized for the
frequencies evaluated in this work. Multistep models can work
better on a di�erent set of hyperparameters instead of the ones
used in this work when applied to a di�erent frequency band.

7 CONCLUSION
We collected and analyzed spectrum usage data on the POWDER
platform in Salt Lake City, Utah. We found that various segments

of the spectrum remain underutilized. We also highlighted the
segments of the spectrum where the usage pattern di�ers signi�-
cantly between day and night. Motivated by our spectrum usage
�ndings, we explored LSTMmodels to perform spectrum prediction
on four bands, each exhibiting a di�erent usage pattern over time.
We introduced a new adaptive threshold parameter that signi�-
cantly boosts the occupancy prediction performance. To minimize
the chances of interference and maximize the throughput, we intro-
duced a novel LSTM based Window Selector system. This system
automatically outputs the best window length with the given power
input data.
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