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Abstract
It is common for performance studies of computer systems
to make the assumption—either explicitly or implicitly—that
results from each trial are independent. One place this assump-
tion manifests is in experiment design, specifically in the order
in which trials are run: if trials do not affect each other, the
order in which they are run is unimportant. If, however, the
execution of one trial does affect system state in ways that
alter the results of future trials, this assumption does not hold,
and ordering must be taken into account in experiment design.
In the simplest example, if all trials with system setting A are
run before all trials with setting B, this can systematically bias
experiment results leading to the incorrect conclusion that “A
is better than B” or vice versa.

In this paper, we: (a) explore, via a literature and artifact
survey, whether experiment ordering is taken in to consid-
eration at top computer systems conferences; (b) devise a
methodology for studying the effects of ordering on perfor-
mance experiments, including statistical tests for order de-
pendence; and (c) conduct the largest-scale empirical study
to date on experiment ordering, using a dataset we collected
over 9 months comprising nearly 2.3M measurements from
over 1,700 servers. Our analysis shows that ordering effects
are a hidden but dangerous trap that published performance
experiments are not typically designed to avoid. We describe
OrderSage, a tool that we have built to help detect and mit-
igate these effects, and use it on a number of case studies,
including finding previously unknown ordering effects in an
artifact from a published paper.

1 Introduction

Systems performance analysis typically involves running a
series of trials and then calculating statistical measures (such
as mean or median) from the performance data collected.
These measures are used to conclude that one system is, on
average X% faster than another, that the addition of a new fea-
ture does not have a statistically-significant impact on perfor-
mance [12, 16], or that software scales well to large problem
sizes. One of the most fundamental assumptions of this kind
of analysis [36] is that trials are independent; in particular,
that each trial is unaffected by prior trials in the series. If this
assumption does not hold, it can systematically bias results

and alter or even invalidate conclusions drawn from them.
Typical systems research work does not take ordering into

consideration as part of experiment design. This can lead to
violations of the independence assumption.

The problem is especially pernicious because there is not
one, or even a few, root causes behind performance-affecting
state that carries over between trials. In the highly complex
environment of a modern computer system, there are a large
number of hardware and software components whose state
can be carried over from one trial to another [26]. These
include caches [8], data layout in RAM and on disk [22],
application and operating system tuning parameters [20, 41],
and even temperature (with consequences such as thermal
throttling [3, 13]). The systems under test themselves can,
intentionally or unintentionally, make changes that persist
between trials, such as changes to software packages, global
system configuration, environment variables [26], or files.

Thus, while the question of why order matters is important,
it is highly specific to the software being tested, the hardware
it is run on, and the design of the experiment. Before “why”
can be considered, there is the more fundamental question
of whether the order matters for a specific experiment. In
many cases, knowing that order-dependent performance exists
can itself be an interesting result because it indicates some
unexpected property of the software or system under test.
Therefore, eliminating it entirely through experiment design
is not always even desirable.

In this paper, we formulate a systematic approach to ana-
lyzing whether the order of trials within an experiment affects
results. We use this method to collect and analyze a large new
performance dataset that we collected on over 1,700 servers
over a period of 9 months and show that experiment order is
a factor that cannot be neglected. We find that for the selected
benchmarks the order can bias performance by 50% or more
and potentially alters conclusions in 72% of cases.

Order is acknowledged to have some level of impact in the
literature [1, 26]. However, we show this acknowledgment
has not translated into experiment design in practice. We con-
ducted a survey of three major systems conferences and found
that it is exceedingly uncommon to discuss experiment order-
ing in these papers. Furthermore, we examined the artifacts
for the papers and find that they are not designed to detect or
avoid ordering effects. To help relieve this situation, we con-
tribute OrderSage, a tool that helps experimenters with both



the orchestration and analysis aspects of experiment ordering.
In this paper, we make the following contributions:

• We perform a literature survey of top-tier systems confer-
ences (Section 2), showing that experiment order is reported
as part of experiment design in fewer than 10% of papers.
We also analyze these paper’s artifacts, and show that this
neglect extends to the way experiments are run in prac-
tice: more than 94% of artifacts run experiments in either a
single fixed order or do not specify an order.

• We develop a methodology (Section 3), using established
statistical tests, for determining whether results are order-
dependent and narrowing down specific experimental tests
that are particularly affected.

• We collect and publicly release a large, first-of-its-kind
dataset for studying the impact of ordering on performance
experiment results (Section 4). This dataset contains the
results of over 2.3M trials run in a variety of different orders.

• We analyze this dataset using our methodology (Section 5)
and show that ordering can make a significant difference,
even to the level of potentially changing conclusions. This
provides strong evidence for the claim that systems re-
searchers should consider order in their experiment design.

• We developed and release OrderSage, a tool that easily
applies our methodology to performance experiments (Sec-
tion 6). OrderSage embodies both a mechanism for random-
izing experiment order and analyzing its effects. To demon-
strate its use, we present case studies (Section 7) applying
it to the performance test-suite for memcached [2, 7, 21],
and to NPBench [43]. We also use OrderSage on one of the
artifacts from our literature survey and find a previously-
unknown ordering effect in it.

We cover related work in Section 8 and conclude in Sec-
tion 9.

2 Literature and Artifact Survey

To evaluate the extent to which ordering effects are taken
into account in practice in the systems research literature,
we conducted a survey involving the OSDI ’21, SOSP ’21,
and EuroSys ’22 conferences. We selected these three con-
ferences because they ran Artifact Evaluation Committees
(AECs), meaning that we were able to look at both what pa-
pers say about ordering and what the artifacts (code, scripts,
etc.) actually do.

We had two inclusion criteria for our survey. First, the pa-
pers need to have received all three AEC badges (Available,
Functional, and Reproduced)—this lets us know that not only
did the paper have an artifact submitted, but that the artifact is
complete. Second, the papers need to base their main claims

Figure 1: Paper selection for our literature and artifact survey.

on a set of performance metrics (e.g., runtime, latency, band-
width, etc.) executed on real (not simulated) systems. Under
these criteria, we ended up with 56 papers out of the three
conferences’ 130 papers, as seen in Figure 1.

Following the selection and filtering phase, we performed
the survey in two passes; each paper/artifact was reviewed by
a different reviewer in each pass, with the goal of countering
individual reviewers’ biases. Table 1 presents the results from
both passes as well as the agreement between the two passes.
It is worth noting that the spread is larger for the artifact anal-
yses because they required more investigation than reading
the evaluation sections of the surveyed papers. Regardless,
we consider all observed relative agreement numbers to be
high enough to serve as a convincing basis for our conclu-
sions. As detailed below, our artifact review provided much
more insight into how the studies were run compared to the
information in the papers alone.

Do papers specify the ordering of their experiment de-
sign? Only 4 out of 56 papers (7%) clearly stated the order in
which the corresponding performance experiments were run.
This percentage is not surprising, because space constraints
lead authors to focus on describing the factors that are key
to their work instead of latent factors such as the order of
execution. Of special note is that EuroSys ’22 allowed artifact
description appendices, which we considered as part of the
paper rather than part of the artifact. This is where we found
most of the ordering-related information; these appendices
allowed authors to detail steps in their evaluation workflows,
leaving no ambiguity about the orderings.

Do papers describe their inter-experiment reset pro-
cedures? Between 4 and 10 papers, or 7–18%, described
reset procedures for ensuring that subsequent trials are not
potentially impacted by the preceding tests. Such procedures
included clearing caches, running warmup tests, rebooting
hardware, and launching new cloud instances, among others.
Similar to our conclusion about the order information, the
reset specification was scarce in the studied papers.

What order do artifacts execute experiments in? Be-
cause papers do not tell us much about what order is used for
experiments, we examined the artifacts themselves. 36 to 37
artifacts (64–66%) use a fixed-order experiment design. This
was typically implemented by providing a “run all” script



Table 1: Results of studying 56 papers and the corresponding artifacts.
Attribute being tested 1st pass 2nd pass Match b/w passes
Paper explicitly describes an order of experiment execution 4 (7%) 4 (7%) 93%
Paper describes a reset procedure to be run between experiments 4 (7%) 10 (18%) 82%
Artifact’s primary experiment execution order: 63%

fixed 36 (64%) 37 (66%)
undefined 17 (30%) 17 (30%)
parallel 3 (5%) 2 (4%)

Artifact runs a reset procedure between experiments 27 (48%) 16 (29%) 73%

that iterates through the studied algorithms or configuration
options in sequence with no randomization. In other cases, a
specific order was documented in the repository’s README
files. Many other artifacts (17, or 30%) provided instructions
on how to run individual groups of tests (e.g., for specific
figures and sections in the papers) but did not specify any
sequence between them—we categorized their orderings as
undefined. Another small class of studies (2–3 artifacts) used
parallel execution, where tests were run concurrently on mul-
tiple worker machines or cloud instances and therefore can be
considered to run each test in its own clean environment. We
have not identified any artifacts that implemented a random-
ized ordering, or which clearly showed explicit attention to
ordering concerns. To summarize, 53–54 artifacts out of 56
(94–96%) used undefined or fixed orderings, both of which
can be questioned from the presentation and experiment de-
sign perspectives. Expanding on the latter case, we show in
this study that fixed-order experiment designs have potential
to introduce adverse bias in performance analysis.

Do artifacts use inter-experiment reset procedures? Be-
tween 16 and 27 artifacts (29–48%) ran identifiable proce-
dures to reset the system to a known state between experi-
ments. Finding these procedures in the code is a non-trivial
and time-consuming process, which explains the spread be-
tween the results in the two survey passes. While we did find
reset procedures in up to half of the artifacts, it is concerning
that the other half of the artifacts did not manifest any reset
procedures. While it may not matter for some of the studies
because of the nature of their performance analysis, there is
a chance that for a subset of them it may be an oversight
causing undesirable effects on their conclusions.

From the survey, we learn that the literature does not make
order an explicit part of experiment design, and we do not see
evidence that ordering issues are explicitly addressed. In the
remainder of this paper, we show how this can constitute a
trap for experimenters and discuss how to avoid this trap.

3 Analyzing Order Dependence

In this section, we detail the procedure we have designed to
find order dependence in performance experiments. There
are two primary outputs from this procedure: first, it reports
whether the statistical distribution of performance results dif-

fers when run using fixed-order and random-order experiment
designs—that is, whether the order has an effect on the ex-
periment results. Second, it reports whether these differences
are potentially large enough to change inferences—that is,
whether it is possible for ordering effects to be large enough
that the conclusions drawn from an experiment could change
based on the execution order.

For consistency, we use the following terminology in this
section and throughout the remainder of the paper:

Test: A test is an individual unit of the system under evalua-
tion. A test typically represents an individual benchmark or
an application with a specific configuration or input.

Trial: A trial is an execution of a test. The outcome of a trial
is a single-metric performance assessment, such as runtime,
throughput, latency, etc. Multiple trials of the same test typ-
ically exhibit variations in performance stemming from the
nondeterminism intrinsic to the test itself or the system used
for benchmarking.

Run: A run is a set of trials, in a particular order, of all tests
in series. Conceptually, one could (and often does) report the
results from a single run in a single order.

Experiment: An experiment is a collection of one or more
runs done for the purpose of reaching a conclusion about
the system(s) under evaluation; typically, such a conclusion
will be reached by comparing results of the trials associated
with different tests. The order of trials within the runs of an
experiment is part of the experiment design and is referred to
as the experiment order.

An outline of the method is shown in Algorithm 1; below,
we go through each step in detail.

¶ Select a “Baseline” Order Select an ordering of trials
that will be used for “fixed order” runs. The order itself is not
important; the order in which trials have been run in the past,
or a “natural” order (such as by increasing parameter value)
is sufficient. This does not need to be a “correct” order: it will
act as the control against which we test random orderings.

· Define a “Reset to Clean State” Procedure Each run
(series of trials) should start from a clean state, such that



Algorithm 1 Order-Dependence Test
Input T : List of trials in baseline order . ¶
Input R: Reset procedure . ·
Input N: Number of repetitions
Input α: Desired family-wise error rate (commonly 0.05)
1: for n = 1, . . . ,N do . ¸
2: Execute R
3: for all t ∈ T do . Run trials in baseline order
4: fixedOrderResults[t][n]← Execute t
5: end for
6: Execute R
7: for all t ∈ RandomlyPermute(T ) do . Run trials in random order
8: randomOrderResults[t][n]← Execute t
9: end for

10: end for
. ¹

11: for all t ∈ T do . Calculate p-values for distribution comparison
12: pKW[t]←KruskalWallis(fixedOrderResults[t], randomOrderResults[t])
13: end for
14: αBC ← α/length|T | . Use Bonferroni corr. for multiple comparisons
15: if ∃t ∈ T | pKW[t]< αBC then
16: return true . Order matters for 1 test→ it matters for the experiment
17: else
18: return false
19: end if

state left over from earlier runs will not affect performance
results of the next run. In many cases, this will be much more
expensive than running the benchmarks themselves: for the
purposes of the experiments in this paper, this procedure is a
reboot of the server on which the benchmarks are executed.
This might instead consist of restarting a server process, pro-
visioning fresh VMs, clearing storage devices, etc.

¸ Run in Both Fixed and Random Orders We execute a
series of runs. Each run consists of the same set of trials, and
each trial may comprise of multiple invocations of the system
under evaluation in order to increase statistical significance.
For half of our runs, trials are run in the fixed baseline order; in
the other half, the order is randomly permuted (separately for
each run). Between runs, the environment is reset to a clean
state using ·. Since the evaluation might take long enough
that time-varying effects (such as hardware degradation) could
be observed, fixed (Lines 3–5) and random order (Lines 7–9)
runs are interleaved to avoid bias. The outcome of each run
is a set of performance results, one from each trial, with the
units being the “natural” units for the tests, e.g., seconds for
runtime, MB/s for bandwidth, etc. The experimenter should
complete a sufficiently sized set of runs (Line 1) to provide
the desired statistical significance in the subsequent steps.

¹ Compare Distributions The next step is to compare the
samples obtained from the fixed- and random-order runs. The
intuition behind this step is that if the two sets of samples
come from the same statistical distribution, it can be said
that the order does not change the distribution, and thus does
not matter. If they come from different distributions, then the
order does indeed matter.

Algorithm 2 CI Overlap Test
Input fixedOrderResults, randomOrderResults from Algorithm 1
Input t: test to check
1: (fLow, fMedian, fHigh)← RankBasedCI(fixedOrderResults[t]) . º
2: (rLow, rMedian, rHigh)← RankBasedCI(randomOrderResults[t])
3: if (fLow > rHigh)∨ (fHigh < rLow) then
4: return Case 1 . Inference does change
5: else if (fLow < rMedian < fHigh)∧ (rLow < fMedian < rHigh) then
6: return Case 2 . Inference likely does not change
7: else
8: return Case 3 . Inference may or may not change
9: end if

To avoid assumptions of normality (which have been shown
to rarely hold for computer systems performance results [22]),
we use the non-parametric Kruskal-Wallis test (Lines 11–13).
This distribution-comparison test produces a p-value indicat-
ing the likelihood of observation assuming the null hypothesis
(i.e., that both samples come from the same distribution). This
should be performed for each test, longitudinally across all
runs: the two populations are (a) the outcomes for all trials
(executions) of the test from fixed-order runs, and (b) the
outcomes of all trials for the same test from random-order
runs. Thus, we are looking at whether a particular test’s per-
formance differs based on where its trials occur in the runs
that are differently ordered.

For each test, compare the p-value produced by Kruskal-
Wallis with a threshold chosen to provide the confidence level
desired; we aim for a family-wise error rate of α = 0.05 (95%
confidence) as is common in such tests. Because we perform
a potentially large number of comparisons, the problem of
multiple comparisons [25] arises; we apply the Bonferroni
correction [9] (Line 14) to obtain the per-test thresholds (αBC)
required for multiple comparisons to reach the target family-
wise confidence level. This correction scales the thresholds
down (making them stricter) in proportion to the number of
comparisons made.

If the p-value is above the threshold, we cannot reject the
null hypothesis, and therefore conclude that both samples
could have come from the same distribution—the order likely
does not matter. If the p-value is below the threshold, we re-
ject the null hypothesis and conclude that a single distribution
would be highly unlikely to yield the observed samples—the
order of the tests does matter.

We note that it is possible, and in our experience common,
that different tests within an experiment produce different
results at this step. This could indicate that some tests are
affected by what runs before them and others are more robust
in this respect. Overall, however, as long as any test shows
order-dependence, this indicates that the experiment design
as a whole needs to be aware of ordering (Lines 15–19).

º Compare Confidence Intervals A typical experiment
setup in performance analysis is to ask whether there is a
difference in performance between two systems. A situation



particularly important to avoid is one in which inferences
from the experiment could change depending on the ordering,
in turn leading to a change in the conclusions drawn. We look
for such situations by comparing confidence intervals [12]
(CIs) as shown in Algorithm 2. CIs can be compared within
tests (e.g., comparing fixed and random orders, to determine
whether order changes the median computed), or across tests
(e.g., comparing two or more tests and checking whether
different performance is observed.)

The outcome of this test tells us something related to, but
distinct from, the Kruskal-Wallis test. Kruskal-Wallis tells
us whether the distributions differ, but not directly whether
they differ enough to change conclusions in a significant way.
Looking at the effect size (detailed in Section 5.1.1) gives us
a sense of the latter, but the CI test answers it directly. Recall
that a CI is an estimated interval we expect to include the
true value of a population measure [12]. For instance, for the
95% CI of the median (the interval we use), we expect that
in a collection of many such intervals, 95% of our estimates
would contain the true population median.

We use rank-based CIs estimating the population me-
dian [17] to avoid assumptions of normality. This comparison
results in three possible cases (visualized in Figure 5):

Case 1: The CIs for the fixed- and random-order runs do not
overlap. In this case, we can have high confidence that we
would expect to compute different medians depending on the
order. This is a red flag, and indicates that we could come to
different conclusions based on the order.

Case 2: The median for at least one of the two samples lies
within the CI for the other population. If this is the case, given
one population, we could have potentially arrived at the other
observed median, and we conclude that our conclusions likely
would not change based on order.

Case 3: In the final case, the CIs overlap, but both medians
are outside the other group’s interval. This case is inconclu-
sive, and requires more careful analysis to determine if it
could change conclusions. Still, it is a potential sign that more
careful experiment design is needed.

4 Dataset and Data Collection

To study performance effects at a large scale, we have col-
lected a dataset covering nearly 2.3 million executions (trials)
of 25 benchmarks on 1,700 machines over a period of nine
months. Many benchmarks were run in multiple configura-
tions, such as on different sockets or with different CPU fre-
quency settings, resulting in multiple tests per benchmark ap-
plication. This data was collected across more than 9,000 runs.
We released this dataset as part of this paper’s artifact: https:
//github.com/ordersage/paper-artifact. Collection
of the dataset covers the first three steps of the method de-

scribed in Section 3; we cover the rest of the steps in the this
section.

This dataset focuses on low-level measurements of CPU
and memory performance through the use of standard bench-
marks, in particular STREAM [23], the NASA Parallel Bench-
marks [27] (NPB), and Reece’s memory benchmarks [30, 31].
We have additional benchmarks of disk and network perfor-
mance, but leave analysis of them to future work. Our case
studies in Section 7 have examples of our methodology ap-
plied to higher-level applications.

4.1 Environment

We collected our data by running experiments in Cloud-
Lab [5], a public testbed for research use. CloudLab has a
variety of different types of server hardware [37], and we ran
our experiment across 13 different server types. We consid-
ered each configuration of each benchmark on each node type
as constituting its own test for the purposes of this analysis:
thus, we have 1,880 different collections of corresponding
trials to compare. CloudLab is an attractive platform for this
work, as it has previously undergone study to quantify and
calibrate the level of variability across different hardware in
the platform [22].

Servers in CloudLab are allocated at a bare-metal level
to one user at a time. Disks used are all local to the server,
and for this paper, we do not consider the network or other
shared resources. Thus, our benchmarks were not affected by
any other simultaneous users of the servers in question or the
CloudLab system as a whole, and did not have any artifacts
due to virtualization. We believe our dataset to be robust with
respect to time-varying, location-dependent (e.g., environmen-
tal/temperature), and micro-architectural factors: we gathered
this data over a period of months; CloudLab nodes are in
three different geographically distant data centers; and they
encompass a variety of processor and memory technologies.

4.2 Baseline Order ¶

The baseline order that we use is a “natural” one that groups
benchmarks from the same suite (e.g., NPB [27]) together,
and reflects the order in which we added the suites to our
experiment setup. This reflects the type of order that a systems
experimenter would be likely to arrive at in the process of
developing scripts to run their experiments.

4.3 Reset Procedure ·

The reset procedure we use is a fresh load of the operating
system and clean boot of the host on which the experiments
are run. This means that each run sees, as much as possible,
the “pristine” state of a just-booted machine, not affected by
any software or configuration changes made by prior users.

https://github.com/ordersage/paper-artifact
https://github.com/ordersage/paper-artifact


It is important to note that we do not claim this clean state to
be correct: we do not claim that the results of a trial gathered
under these conditions are more “valid” than results after
the machine has been running for some time. It is possible
for boot-time effects to alter results, and for some tests, a
scenario in which a machine has been booted and active for a
long period of time may be more realistic. What we do claim
about this procedure is that we can be confident that all runs
started from the same state. Therefore, it can tell us if the
order of trials within the run affected results.

4.4 Running in Fixed and Random Orders ¸

Our data collection framework allocates machines in Cloud-
Lab on which to perform runs. For each run, it randomly
chooses—with equal probability—to execute trials in our
fixed baseline order or a random order. This procedure en-
sures that we interleave baseline and random runs, running
them in approximately equal proportion throughout the entire
time period to avoid a systematic bias in one direction or the
other due to potential changes in the facility over time. If
the random order is chosen, the framework shuffles the list
of all trials for that run. The framework records this order
information for use in future analysis.

5 Analysis Applied to Our Dataset

We now describe how we analyze the order-dependence of
the performance results gathered in Section 4. This section
covers steps ¹ and º from the method described in Section 3.

The nature of our data collection adds another dimension to
our tests, and thus we adopt terminology used elsewhere in the
literature [22] for clarity. Because CloudLab contains servers
of many different types, each of the tests we define will be
executed on 13 different hardware types—each different hard-
ware type may have a different processor, different amount of
RAM, etc. We refer to a combination of {test, hardware type}
as a configuration, where the test itself is a combination of
{benchmark, settings}. For example, the STREAM benchmark
run in its COPY mode on a server of type m400 represents one
configuration; STREAM in COPY mode on a server of type
c6520 is another; and STREAM in SCALE mode on an m400
would be a third. In total, we have 1,880 such configurations.
Results from trials executed under a particular configuration
across all runs are grouped together: our primary compari-
son of interest is whether the same configuration produces
different results when run as part of differently-ordered runs.
It is worth noting that we do not expect results from different
configurations to be independent, and do not analyze them as
such: there is strong likelihood, for example, that STREAM
in COPY mode exhibits similar order-dependent performance
effects to STREAM in SCALE mode. The value derived from
running so many configurations is that it helps to make our re-
sults robust with respect to many different programs, settings

for those programs, and types of hardware.
We analyze data from our memory and CPU benchmarks

as separate experiments: this avoids mixing results from per-
formance tests with very different goals, and offers interesting
insight into how the effects of ordering can differ depending
on the main resource being exercised.

5.1 Comparing Distributions ¹

The next step in our method is to compare the distributions of
performance results for each configuration when run in fixed
vs. random orders.

5.1.1 Memory Benchmarks

The left side of Figure 2 plots the p-values for all 1,198 config-
urations of memory benchmarks. For this test, the Bonferroni-
corrected αBC (n = 1,198) is 4.2×10−5. Configurations are
sorted on the x-axis according to the effect size (discussed be-
low). As can be seen from the figure, most (1,042, or 87%) of
the configurations fall well below the αBC threshold, showing
clear evidence of performance effects due to ordering.

To strengthen our analysis, we calculated the effect size for
each pair of compared samples. This measure is not meant to
replace the p-values but rather should complement them [40].
While the statistical tests indicate that the probability of the
sampling error causing the observed performance difference
may be low, measuring the effect size helps us understand the
scale of the difference between the groups.

We calculate the effect size for each statistical test. The
larger the effect size, the larger the estimated difference be-
tween the populations being compared; a small effect size can
indicate that even when there is a statistically significant dif-
ference revealed by a p-value, it may be small enough not to
be of practical importance. To align with the Kruskal-Wallis
test, we use the non-parametric formulation of the effect size
η2 that is defined using the H-statistic [4]. In statistics terms,
η2, which yields values between 0 and 1, estimates the frac-
tion of variance in the dependent variable that can explained
by the independent variable. The review article [40] provides
additional context and includes the formula for η2 calculation.

η2 values are plotted in the right side of Figure 2. Past the
first few hundred configurations, η2 becomes larger indicating
that the difference between the fixed-order and random-order
results becomes larger. This is also the exact region in which
p < αBC, which indicates significance. It is worth noting that
we do not compare η2 with arbitrary thresholds but rather
observe its growth across the range of the tested configu-
rations for comparison purposes; from this standpoint, it is
assessed similarly to how we interpret percentage differences
in Section 5.1.3.



Figure 2: Kruskal-Wallis p-values and effect sizes for memory benchmarks, sorted in order of increasing Kruskal-Wallis η2

effect size. The horizontal line at the bottom of the left plot comes from rounding small values up to 10−30 for display.

Figure 3: Kruskal-Wallis p-values and η2 effect sizes for CPU data. The plotting is as described for Figure 2.

5.1.2 CPU Benchmarks

Figure 3 shows the Kruskal-Wallis p-values and effect sizes
for our CPU benchmarks. For these comparisons, αBC (n =
682) is calculated as 7.3×10−5. As with the memory bench-
marks, most configurations fall well below the αBC threshold,
indicating that the order in which they are run makes a dif-
ference. The most observable distinction between the CPU
tests and the memory tests is the shape of the effect size curve:
while there are still some configurations that have large effect
sizes, there are fewer of them. There are a larger number of
configurations that reach statistical significance in the p-value
test but have an effect size small enough that it may not have
a practical impact. This demonstrates the need to look at both
significance tests and effect sizes.

Table 2 summarizes the observed Kruskal-Wallis p-values.
From this table, we can clearly conclude that the order of ex-
periments matters for the selected microbenchmarks. This ef-
fect appears to be more pronounced for memory benchmarks
which have a higher ratio of configurations with p < αBC.

5.1.3 Relative Difference

Most computer systems studies report their results not in terms
of effect sizes but in terms of absolute or relative differences
between several alternatives. To align our analysis with our
research community, we also looked at the order effects in
terms of percentage differences (representing the difference
between the mean fixed-order result and mean random-order
result, divided by the mean-fixed order result):

∆% =
µ f ixed−µrandom

µ f ixed
×100%

Figure 4: Percent Difference for Memory & CPU benchmarks.

Figure 4 shows the observed ∆% values for memory and
CPU benchmarks. The configurations are sorted on the x-axis
by ∆% values, and the y-axis is ∆% for a particular configura-
tion. The range of ∆% values gives a sense of the magnitude
of the studied order-related effects.

Our memory data is measured in throughput, so the higher
the value, the better the performance—since we calculate ∆%
as fixed order performance minus random order performance,
a positive ∆% indicates that the fixed order had better per-
formance than the randomized order. A negative ∆% means
the randomized order performed better. Conversely, our CPU
data is measured as execution times, so lower values mean
better performance: for these, positive values mean that the
randomized experiment design results in better performance.

From these figures, we can see that both memory and CPU
benchmarks have some effects that would be considered large
enough to affect results. Though they have similar absolute
average ∆% values (8% for memory, and 7.3% for CPU), the
details of their curves are quite different. Both have some
configurations that are faster in random order and some that
are slower, but the magnitudes and shapes of the curves differ.



Table 2: Configuration classification showing whether there is difference between fixed and random orders or not. The comparisons
used Kruskal-Wallis test with Bonferroni-corrected αBC = 4.17×10−5 for memory and αBC = 7.33×10−5 for CPU comparisons.

Benchmark Type Kruskal-Wallis p < αBC Kruskal-Wallis p > αBC Total
Memory 1042 (86.97%) 156 (13.02%) 1198

CPU 475 (69.65%) 207 (30.35%) 682

5.2 Comparing Confidence Intervals º

In Section 5.1, we showed that experiment order does impact
performance using statistical tests and percentage difference.
In this section, we look at whether the bias caused by experi-
ment order can result in incorrect conclusions. Answering this
question will allow us to establish whether a researcher should
consider experiment order while analyzing performance.

Figure 5 shows each of the three cases from the confidence
interval overlap test, using examples drawn from our mem-
ory benchmarks. The x-axis represents the experiment order.
The y-axis is the rank-based 95% confidence interval of the
median performance for each order, with the shaded region
representing the interval and dashed lines extending the inter-
val limits to the full width of each figure for comparison. The
diamond represents the median value. Case 1 indicates that
the conclusion would change based on order, Case 2 indicates
that it is unlikely to do so, and Case 3 is inconclusive.

Figure 5: Examples of CI arrangements. The plots are created
based on actual measurements for three memory tests; scales
are different for them. Red vertical bars are rank-based non-
parametric 95% CIs for medians, and �—median estimates.

For both memory and CPU benchmarks, we found that
most configurations fell into Case 1, meaning that order could
change conclusions. This can be seen in Figure 6. The effect
is more pronounced for memory benchmarks, where 81% of
the configurations fall into Case 1, than for CPU benchmarks,
for which only 56% fall into Case 1. Overall, 72% of all
configurations are in Case 1. From these results, it becomes
amply clear that one can arrive at an incorrect conclusion
by merely modifying the experiment order. A performance
analysis needs to consider order to ensure accurate results.

6 Automating Experiment Order Testing

We have shown that order can be important in experiment
designs. However, it can be difficult for experimenters to

Figure 6: Three CI cases for memory and CPU tests.

rethink their performance experiments to account for this
factor. To this end, we have developed OrderSage, a tool
that enables experimenters to follow the methodology from
Section 3 in their experiments with minimal effort.

6.1 Motivation
The data collection efforts described in Section 4 can be
characterized as long-term, extensive, and requiring robust
infrastructure. The first refers to the fact that we collected the
studied measurements over the period of 9 months. The sec-
ond indicates that we benchmarked a large pool of hardware
types, used numerous tests, and studied many unique permuta-
tions of commonly tuned benchmark and system parameters.
The third stresses that experimentation of this kind requires re-
liable computing resources and software for orchestrating test
execution, gathering and storing results, etc. We met these re-
quirements using CloudLab hardware, the testbed’s program-
matic interface built upon geni-lib Python package [38],
and a set of custom scripts developed for orchestration [39].

This is in contrast to most studies, which describe short-
term and focused analysis efforts, where experimenters thor-
oughly study subsets from many combinations of tunable pa-
rameters and gather the needed results in a limited timeframe.
In such settings, the emphasis often is on demonstrating that
one algorithm or hardware implementation is better than the
alternatives and on characterizing its observed gains. To ar-
rive at such conclusions, experimenters need to make sure
that their measurements are not significantly impacted by the
order-related effects. In the simplest cases, this means that
if they were to run the same sets of tests in different orders,
their conclusions would remain valid. We note that in many
cases in which order-dependent performance is discovered,
this may indicate unexpected behaviors in the system, and is
itself an interesting finding.

Aiming to support such focused experimentation, we de-
sign OrderSage with the target user in mind who is an ex-
perimenter collecting performance data for publication (such



Figure 7: The main operation of OrderSage.

as in a research venue) or for decision-making (such as in a
production computing environment.) We assume that such
a user can script the execution of each test (e.g., in shell or
Python), and thus OrderSage’s primary responsibilities are to
execute a number of runs with the scripted tests in different
orders, collect and store test results, and analyze the results
through the lens of possible order effects. Below, we describe
the key components of OrderSage’s experiment orchestration.

6.2 Implementation
OrderSage is implemented as a set of Python modules
and is available at https://github.com/ordersage/
ordersage. Its operation can be described using the follow-
ing terms:

Controller: A machine that facilitates experimentation on a
remote node or nodes and performs the statistical analyses.
This is the primary place where OrderSage’s code runs.

Worker: A machine that executes an experiment that con-
sists of several fixed and random runs. Workers are accessed
(through ssh) and controlled by a single controller node. One
controller can make use of one or more workers.

Results: Each trial produces one performance result in the
form of a floating-point number. Multiple performance met-
rics should be treated as separate results. OrderSage collects
these results from the worker(s) and stores them on the con-
troller for analysis.

Figure 7 shows a high-level system diagram that includes
the key processes being orchestrated by OrderSage:

¬ allocate(): Support is provided for use of worker nodes
that are either pre-allocated by the user or reserved on
CloudLab testbed. Outside of CloudLab, any node—local
or remote—into which the user can ssh, run the tests (in-
cluding installing software, if necessary), and execute the
reset procedure can be used. Analogous allocate() rou-
tines can be implemented for commercial clouds using the
APIs they provide.

 Initialize: Worker nodes are readied via an initialization
script provided by the user. This typically includes in-
stalling and configuring the software under evaluation.
During initialization, a baseline order is selected (Step ¶
from the method described in Section 3) by running a
user-provided script that produces the commands for each
test. OrderSage defaults to rebooting a worker node as the
“clean state” reset procedure (Step · from the method).
However, this behavior can easily be redefined by the user.

® Run Tests: After initialization, tests are run according to
Step ¸ of the method. Each run consists of an execution
of all trials in some order. Half of the runs are performed
in the baseline order, and half in an order that is randomly
shuffled (separately for each run); these orders are inter-
leaved. The reset procedure is executed in between each
run.

¯ Collect Results: Performance measurements are collected
as outlined in Step ¸ of our method and saved as raw data
from each trial. Additionally, metadata such as random
orderings, machine environment information, execution
times, and stdout outputs are saved for each run.

° deallocate(): If the worker(s) were allocated()ed in
¬, (such as with our CloudLab integration), OrderSage
will handle the deallocation of nodes at the end of the
experiment.

± Statistical Analysis: Results are analyzed according to
Steps ¹ and º from the method described in Section 3.
The results of all statistical analyses are saved on the con-
troller node. If multiple worker nodes were used, the neces-
sary result aggregation will take place. A final comparative
step will provide a high-level overview of the combined
vs. individual experiment analyses.

Running OrderSage is detailed in Appendix A.

7 Case Studies

We used OrderSage to facilitate the methodology proposed
in Section 3 for three case studies. Our goals were to demon-
strate its use on common benchmarks and application test
suites and investigate the impact of test order on the results
of these cases. All case studies were executed on CloudLab
servers of the xl170 hardware type [37]. For these experi-
ments, which occurred over 24-48 hours, each experiment
was run on a single worker. All data from these experiments
are included in the released artifact: https://github.com/
ordersage/paper-artifact.

7.1 memcached Benchmark Suite
This case study uses memcached’s own benchmark suite,
which is designed to mimic the process of reporting perfor-

https://github.com/ordersage/ordersage
https://github.com/ordersage/ordersage
https://github.com/ordersage/paper-artifact
https://github.com/ordersage/paper-artifact


Table 3: Test results for the memcached experiment. We use
Bonferroni correction with n = 3 and αBC = 0.0167 (pro-
viding a family-wise error rate of 0.05). The Kruskal-Wallis
p-values are shown, as are their interpretation relative to αBC:
the column contains • if the null hypothesis can be dismissed
or ◦ if it cannot. ∆% is calculated as in Section 5.1.3 and the
CI cases are as defined in Section 3.

Test KW p-value KW test ∆% CI case
cmd_set 0.49 ◦ 0.3 2
cmd_get 0.74 ◦ −0.2 2
get_hits 0.00009 • 5.3 3

mance numbers for this application. memcached [2] is an
efficient and widely used in-memory key-value store, and
its associated mc-crusher [24] benchmark suite includes a
variety of scripts designed to exercise a server instance and
measure its performance.

The mc-crusher documentation specifies “You should
start a fresh memcached”, and includes a series of three tests
(cmd_set, cmd_get, and get_hits) in its included sample
configuration file, executed serially in that order; accordingly,
we start memcached after the reboot in our standard Step ·
reset procedure, and perform those same three tests in each
of our runs. We follow the same ordering of trials in the fixed
case, with a single instance of memcached for all trials (fol-
lowing the mc-crusher distribution exactly). We increase
the sample duration to 60 seconds per test (to reduce the in-
fluence of noise on each sample) and permute the order of
the trials in our random runs to check our hypothesis that
ordering affects the observed results, but otherwise do not
modify the sample mc-crusher parameters. From inspection
of the mc-crusher source, we expect the three benchmarks
to operate on generally disjoint data, and therefore do not
anticipate any direct connection between the execution of
one and the output of the next. However, it is difficult to pre-
dict the presence or magnitude of indirect ordering artifacts,
where the side effects of previous computation might influ-
ence the efficiency of subsequent operations, which is what
our analysis aims to measure.

Table 3 presents the results we obtained by running Order-
Sage with memcached version 1.5.22, with 50 fixed and 50
random runs, each including the three tests described.

Overall, we conclude that the order of trials within a run
does affect the measurements obtained for the mc-crusher
environment under test, at the 95% significance level. This
coincides with the get_hits’s median performance changing
by over 5% based on whether a fixed-order or random-order
experiment design is used.

7.2 NPBench & NPB

NPBench is a “a set of NumPy code samples representing a
large variety of HPC applications” [43]. The authors use it to

Table 4: Test results for the NPBench & NPB experiment.
Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case
IS 0.83 ◦ 0.00 2
SPMV 0.69 ◦ −0.60 2
softmax 0.03 • 0.46 3

test a variety of Python HPC frameworks and compilers that
aim to accelerate NumPy code; they also expect the results
to be useful to end-users of such frameworks. NAS Parallel
Benchmarks (NPB) is an open source benchmarking suite
which includes “a small set of programs designed to help
evaluate the performance of parallel supercomputers.” [27]
We select two tests from NPBench that exercise operations
used in data analytics and machine learning: sparse matrix-
vector multiplication (SPMV) and the normalized exponential
function (softmax) used in neural networks. In addition, we
select integer sort (IS) from NPB, which is used to benchmark
random access memory. SPMV and softmax are generally
CPU-bound, while IS generally has its performance limited by
memory speed. Using OrderSage, we did 100 runs in each of
fixed and random orders. We set problem sizes to large enough
values to get meaningful results on CloudLab machines: flag L
in NBbench is expected to take about 1000ms to run whereas
class D in NPB is the largest test problem for IS, and the
median runtime was 36 seconds.

The results from these experiments are in Table 4. IS and
SPMV show no order-dependence. While softmax does show
a statistically-significant change in distribution when run in a
random order, the effect size of 0.46% is small enough that
it is unlikely to make a difference in practice: these three
tests can be safely run in any order. This demonstrates the
need to look at effect sizes as well as statistical significance: a
positive result from the Kruskal-Wallis test does not, by itself,
guarantee that the effect is large enough to matter.

7.3 uFS Paper Artifact Reproduction

Our final case study looks at the uFS filesystem presented at
SOSP 2021 [19]. This paper submitted an artifact and was
awarded the Available, Functional, and Reproduced badges;
it was part of our survey in Section 2. uFS is a user-level
filesystem “semi-microkernel” [19] that claims good base
performance and better scalability than the ext4 filesystem in
the Linux kernel. This is demonstrated with benchmarks at
various scales and under various threading conditions. Using
OrderSage, we find that some experiments run for this paper
are order-dependent with large effects (up to 17%), though
not large enough to change the conclusions of the paper.

The evaluation scripts supplied with the artifact run multi-
ple benchmarks, of which we selected the Microbenchmarks
with single-threaded uFS and ext4 (both without journaling.)
Their scripts run all 32 workloads in sequence; we modified



Table 5: Test results for the uFS experiment. In the original
paper, ufs results are compared with corresponding ext4nj
experiments. Columns are as described for Table 3.

Test KW p-value KW test ∆% CI case
ufs.ADSS 0.028 • 16.8% 2
ext4nj.ADSS 0.364 ◦ -4.0% 2
ufs.ADPS 0.013 • 6.7% 2
ext4nj.ADPS 0.406 ◦ 4.7% 2
ufs.RDSR 0.112 ◦ 0.2% 2
ext4nj.RDSR 0.406 ◦ -0.8% 2
ufs.RMS 0.940 ◦ 0.8% 2
ext4nj.RMS 0.650 ◦ 0.1% 2
ufs.LsMS 0.650 ◦ -0.6% 2
ext4nj.LsMS 0.940 ◦ 0.0% 2
ufs.RMP 0.545 ◦ 0.0% 2
ext4nj.RMP 0.545 ◦ 0.3% 2
ufs.CMP 0.496 ◦ -0.2% 2
ext4nj.CMP 0.256 ◦ -0.1% 2
ufs.LsMP 0.151 ◦ 3.6% 2
ext4nj.LsMP 0.406 ◦ 0.1% 2
ufs.CMS 0.019 • -1.3% 2
ext4nj.CMS 0.705 ◦ 0.3% 2
ufs.RDPR 0.112 ◦ 0.2% 2
ext4nj.RDPR 0.226 ◦ 1.9% 2

them to run one workload at a time as individual tests. We
use the leftmost data point for evaluation as described in the
paper’s Section 4.2 and Figure 5a—these are used to evaluate
the claim that uFS performs as well as or better than ext4 un-
der baseline, single-threaded conditions. We used OrderSage
and a c6525-100g node in CloudLab (which has a dedicated
NVMe drive as does the original authors’ machine) to run
these tests in fixed and random orders (10 times each).

Our results (Table 5) show that order does not mat-
ter to most tests, but it does matter to three: ufs.ADSS,
ext4nj.ADPS, and ufs.CMS, with the ufs.ADSS test chang-
ing the most: in the fixed order, its median is 119K with a tight
CI of [117K,120K]. In random order, its median drops by
16.8% with a much wider CI of [74K,121K]. The conclusion
from the uFS paper still holds: the random-order ufs.ADSS
median of 98K is still greater than the 41K random-order re-
sult for baseline system it is compared to, ext4nj.ADSS, and
the CIs do not overlap. This effect may be due to hardware dif-
ferences: the original uFS paper was evaluated on an NMVe
drive using Intel Optane memory, while the drive we used on
CloudLab has traditional flash memory. As a result, latencies
and flush strategies differ between the environments. How-
ever, this demonstrates the necessity of avoiding the ordering
trap, as such order-dependent results are probably “hidden”
in many published results, and likely indicate system effects
that the authors may not be fully aware of.

8 Related Work

There is much scientific literature focused on experimental
design and analysis of computer systems performance experi-
ments [12,16,18,32,34]. Among recent work in related areas

are studies of presentation flaws specific to performance re-
sults [11] and analysis of performance variability in computer
systems [22]. In a separate but relevant context, some research
and development efforts are focused on testbeds, i.e. computer
infrastructure, designed for reproducible experiments [28,42],
and how they can facilitate trustworthy experimental evalu-
ations. Studies of computer benchmarking [10, 15] consider
both the nuances of benchmark design and interpretation of
results. However, the aforementioned sources do not help con-
clusively answer the question: “Does the order of tests matter,
and if so, how much?” Our study aims to bridge this gap.

One recent study related to our work focuses on repeatable
experiments in highly variable cloud environments [1]. The
authors study the following designs: 1) Single Trial, 2) Multi-
ple Consecutive Trials, 3) Multiple Interleaved Trials (MIT),
and 4) Randomized Multiple Interleaved Trials (RMIT). An-
other study of the RMIT execution plan led to the develop-
ment of WPBench, a web serving benchmark suite that bun-
dles a set of micro and application benchmarks [35]. The fixed
and random orders we study correspond to MIT and RMIT,
respectively. While those studies argue for using RMIT, our
investigation extends previous work with a large-scale eval-
uation of both approaches and shows where the differences
between the two are most significant. We also consider envi-
ronments without “background noise” from other tenants.

The idea of turning a proposed methodology into a reusable
tool was inspired by the recent work on Lancet, a self-
correcting tool for latency analysis [14]. TraceSplitter [33]
applies an analogous statistical approach to traffic traces. Sim-
ilarly, Hyperfine [29] facilitates many tasks involved in the
benchmarking process and common subsequent analyses. In
turn, experimenters can focus more on creating interesting
experiments with increased confidence that their conclusions
are unbiased by factors such as test ordering. We implement
OrderSage with this vision in mind and describe in this paper
the results it collects in several use cases.

Another related study considers performance change-
points [6]. The data collection in our work is similar to the
process described in that paper. However, rather than char-
acterizing temporal patterns broadly, we focus on the order-
related effects and the methodology for studying them.

9 Conclusion and Future Work

The order in which tests are run is a significant, but often
neglected, part of experiment design—as shown in our survey,
it is rarely mentioned in papers, and the artifacts that support
them show little sign of being designed with ordering in mind.
Our findings show that order can indeed make a difference:
sometimes quite a large one. Systems experimenters should
take this into account in their experiment designs, and test for
order dependence when feasible. The response to discovered
order-dependence will vary depending on the system, the
experiment, and its goals. In some cases, there may be aspects



of the system under test, test environment, or test procedure
that need to be “fixed” to make runs more consistent and less
dependent on order. In other cases, some amount of variability
is simply to be expected, and experiments should be run in
several randomized orders to avoid systematically biasing
results with a single order. Finally, in some cases, it may be
that a “clean” environment is not the most realistic one in
which to run the experiment, and more effort needs to be
taken to get the environment into a suitably realistic state.

Our work thus far has left out of scope a deep analysis of
why order matters. This would be an interesting subject for
follow-up research, and we expect that the reasons will be
as varied as the tests that are run and the environments they
are run in. One way to do such an investigation would be
to analyze which tests cause changes in the following trials,
and which ones see the largest effects. We hope that our open
dataset and tool will help to enable such explorations.
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Appendix A Using OrderSage

Using OrderSage is straightforward, and requires little beyond
that used in a typical experiment.

• Experiment Environment: Users must have a controller
node and at least one worker node that has remote-access
capabilities. The controller is separate from the worker so
that the latter can be rebooted as part of the reset procedure.

• Experiment Repository: The tests to run and their as-
sociated scripts are stored in a git repository created by
the user, which makes them natively version-controlled. In
addition to the system(s) under evaluation, the repository
contains the following:

– Test Configuration Script: Called during the initial-
ization phase by the controller, this script prints a list
of commands to stdout. The commands will be exe-
cuted in-order for the fixed runs and shuffled for the
random runs. Each command represents a single test
and all commands must be unique. It is up to users
to implement this script as they wish as long as these
requirements are met. In the simplest case, it can be a
series of print statements of varying test commands
or it can be more complex and include methods to
iterate through complex sets of parameters, producing
a command for each one.

– Initialization Script: The controller calls an initial-
ization script to ready all workers for experimentation
as defined by the user. This script can install packages,
set machine states, etc. Its only requirement is that
it creates a “results” directory in a location on the
worker.

• Configuration File: To run OrderSage, the user creates a
configuration file. This configuration contains the URL of
the experiment repository, the location of the configuration
and initialization scripts within the repository, and other
parameters. These parameters include paths to results files,
the number of runs, etc. If the set of worker node(s) is pre-
allocated, the workers parameter of this file must contain
a list of all worker node hostnames.

• Define Reset Protocol: Our default implementation of
OrderSage calls reset(), which is implemented to reboot
the worker node(s) and reconnect between runs. However,
if users prefer a different reset procedure, they can override
this method.

• Results: Results are collected in a single text file on each
worker node. Each test run (trial) must provide a single,
floating-point number on a new line of the file. It is impor-
tant that this results file is presented in-order (i.e., the first
trial produces the first number and the nth trial produces the
nth number). In total, the number of lines in the result file
must equal the number of tests × the number of runs × 2
(for fixed and random runs).

Once the aforementioned configuration is complete, a user
can run OrderSage by executing the following command:

# python controller.py
The artifact with the code and data we released, https://
github.com/ordersage/paper-artifact, has more in-
formation on running OrderSage and reproducing the results
presented in this paper.

https://github.com/ordersage/paper-artifact
https://github.com/ordersage/paper-artifact
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