
Arvin: Greybox Fuzzing Using
Approximate Dynamic CFG Analysis

Sirus Shahini, Mu Zhang, Mathias Payer, Robert Ricci

Introduction: Fuzz Testing

• Fuzz testing: The most popular method to discover bugs

• Running programs with random inputs, looking for crashes

• Thousands of security critical bugs in the past few years

• The core challenge:
• We must find the right input(s) …

• There are infinite number of inputs…

2

Arvin's Contributions

• A new way of instrumenting programs under test

• Better context for analysis of dynamic program behavior

• Better program coverage, faster

• Better bug finding: 50 bugs in 17 programs

3

Background

• Time is GOLD

• High-level goal: good coverage and many crashes
• Usually measured in basic blocks or edges

• Grey-box fuzzing: limited visibility into program under test

• Better inputs : better coverage

• Prioritization makes a big difference

• Understanding program behavior requires context awareness

4

Arvin: Context-Aware Fuzzing

• Understanding the PUT’s context using control-flow graphs

• Dynamic control-flow graphs at basic block level

• Most inputs end very close to the PUT’s entry point
• Getting farther from entry and closer to more interesting areas

• Prioritize inputs that are high quality
• First, get high coverage

• Then, heavily exercise those inputs

5

Example

6

Example

7

Building Dynamic Graphs

• Graphs are complex – most fuzzers use only bitmaps

• Building DCFGs at runtime is challenging for a greybox fuzzer

• Arvin’s core instrumentation: The DCFG runtime library
• Instruments PUT in-memory

• Independent and nested basic blocks
• Treat call instructions differently from most fuzzers

• For Arvin, they start a new nested basic block

8

Building Dynamic Graphs: Nested Blocks

9

Calculating Priorities From DCFGs

• New coverage
• Not just new blocks, but new edges between them

• Depth
• Get far from PUT entry point

• Target specific basic blocks
• Representing potentially vulnerable functions

• … and specific paths to reach them

10

Balancing the Priorities

11

Offsetting the Analysis Load

• Millions of executions for a single bug

• We need to reduce the cost of graph analysis

• Some nodes are not needed in later iterations

• Arvin makes use of directed approximation
• Strategy: Remove instrumentation for blocks that run the most

• Reduces instrumentation and analysis cost

• They were generally not giving much information anyway

• Remember them between runs of the PUT
12

DCFG Approximation

• Arvin’s shrink-grow cycle: Decremental CFG Growth (DCG)

• Hit counts matter: DHT

• Shrink: Choose candidate nodes for exclusion

• Grow: Discover and add new nodes

• Save time to invest on more efficient coverage growth

13

Example: Shrink and Grow

14

Varying Thresholds

15

Adaptive Mutation

• Deterministic and Non-deterministic mutations

• Deterministic (IT)
• Pick a good input

• Try all of our mutations on it

• Tends to find crashes

• Random (NI)
• Explore inputs with random muts.

• Tends to expand coverage

• Adjust rates over time

16

Evaluation: Testing coverage growth

17

Evaluation: Depth

18

Evaluation: Approximation

19

Discovered bugs

20

Related Work

• angr framework [Shoshitaishvili et al, IEEE S&P '16]
• We use it to find basic blocks, etc.

• Inspiration
• AFL [Zalewski], AFL++ [Fioraldi et al, WOOT '20], and others

• Fuzzing with CFGs
• ParmeSan [Osterlund et al, USENIX Security '22]

• Fuzzing with adaptive instrumentation
• Full Speed Fuzzing [Nagy et al, IEEE S&P '19]

21

More In The Paper

• Parallel fuzzing

• Detailed examples

• More evaluation

22

Try Arvin

• Contact: sirus.shahini@gmail.com

• Open source: https://github.com/0xsirus/arvin

23

https://github.com/0xsirus/arvin

Questions?

24

Example

25

Exclusion in Detail

26

Parallel Fuzzing

• Separate instrumentation libraries for different fuzzing modes

• Cooperative parallel fuzzing

27

Evaluation: Approximation

28

Evaluation: Parallel fuzzing

29

	Slide 1: Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis
	Slide 2: Introduction: Fuzz Testing
	Slide 3: Arvin's Contributions
	Slide 4: Background
	Slide 5: Arvin: Context-Aware Fuzzing
	Slide 6: Example
	Slide 7: Example
	Slide 8: Building Dynamic Graphs
	Slide 9: Building Dynamic Graphs: Nested Blocks
	Slide 10: Calculating Priorities From DCFGs
	Slide 11: Balancing the Priorities
	Slide 12: Offsetting the Analysis Load
	Slide 13: DCFG Approximation
	Slide 14: Example: Shrink and Grow
	Slide 15: Varying Thresholds
	Slide 16: Adaptive Mutation
	Slide 17: Evaluation: Testing coverage growth
	Slide 18: Evaluation: Depth
	Slide 19: Evaluation: Approximation
	Slide 20: Discovered bugs
	Slide 21: Related Work
	Slide 22: More In The Paper
	Slide 23: Try Arvin
	Slide 24: Questions?
	Slide 25: Example
	Slide 26: Exclusion in Detail
	Slide 27: Parallel Fuzzing
	Slide 28: Evaluation: Approximation
	Slide 29: Evaluation: Parallel fuzzing

