
Arvin: Greybox Fuzzing Using Approximate Dynamic CFG
Analysis

Sirus Shahini
sirus.shahini@utah.edu

University of Utah

Mu Zhang
muzhang@cs.utah.edu
University of Utah

Mathias Payer
mathias.payer@nebelwelt.net

EPFL

Robert Ricci
ricci@cs.utah.edu
University of Utah

ABSTRACT
Fuzzing has emerged as the most broadly used testing technique to
discover bugs. Effective fuzzers rely on coverage to prioritize inputs
that exercise new program areas. Edge-based code coverage of the
Program Under Test (PUT) is the most commonly used coverage
today. It is cheap to collect—a simple counter per basic block edge
suffices. Unfortunately, edge coverage lacks context information: it
exclusively records how many times each edge was executed but
lacks the information necessary to trace actual paths of execution.

Our new fuzzer Arvin gathers probabilistic full traces of PUT
executions to construct Dynamic Control Flow Graphs (DCFGs).
These DCFGs observe a richer set of program behaviors, such as
the "depth" of execution, different paths to reach the same basic
block, and targeting specific functions and paths. Prioritizing the
most promising inputs based on these behaviors improves fuzzing
effectiveness by increasing the diversity of explored basic blocks.

Designing a DCFG-aware fuzzer raises a key challenge: collect-
ing the required information needs complex instrumentation which
results in performance overheads. Our prototype approximates
DCFG and enables lightweight, asynchronous coordination be-
tween fuzzing processes, making DCFG-based fuzzing practical.

By approximating DCFGs, Arvin is fast, resulting in at least an
eight-fold increase in fuzzing speed. Because it effectively prioritizes
inputs using methods like depth comparison and directed exclusion,
which are unavailable to other fuzzers, it finds bugs missed by
others. We compare its ability to find bugs using various Linux
programs and discover 50 bugs, 23 of which are uniquely found by
Arvin.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; Software
security engineering.

KEYWORDS
fuzzer, vulnerability, Control Flow Graph, Input Prioritization

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0098-9/23/07.
https://doi.org/10.1145/3579856.3582813

ACM Reference Format:
Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci. 2023. Arvin:
Greybox Fuzzing Using Approximate Dynamic CFG Analysis. In ACM ASIA
Conference on Computer and Communications Security (ASIA CCS ’23), July
10–14, 2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3579856.3582813

1 INTRODUCTION
Fuzz testing is a key technique to improve the resilience of software
against bugs [2, 3, 7–9, 15, 19, 25, 27, 28]. In the last few years,
fuzzers have discovered thousands of critical security bugs [3, 16,
19]. Coverage-guided or greybox fuzzing [3, 8, 12, 14, 15, 18, 20,
23, 25] uses a light-weight instrumentation to observe which basic
blocks of the Program Under Test (PUT) are executed. While the
feedback that the fuzzer gathers is used to make better decisions
about the mutation process and generating more quality inputs,
all fuzzers still spend a large amount of their time with millions of
inputs that will never yield any new observations.

Naturally, “better candidates” for each mutation increase the like-
lihood of generating better “mutated” inputs. The central challenge
in fuzzing is the huge number of inputs to try: only a minuscule
fraction of possible inputs will trigger bugs. Most fuzzing tech-
niques do not discuss how to distill this small portion of “better”
inputs from numerous candidates but simply aim to increase the
likelihood of finding inputs that belong to this tiny portion of the
sample space. Prior work has managed to prioritize the mutation of
specific bytes in an input file, which have control or data dependen-
cies on certain target code such as compare instructions [6, 23, 27],
error handlers [23], sanitizers [22] or array accesses [11]. Nonethe-
less, prior to mutating an input from the input queue, we must
identify a “better” input among many candidates generated from
previous mutations. Intuitively, these prior inputs are not equally
important—mutating an input that has greater potential for improv-
ing coverage or finding crashes makes a fuzzer more efficient and
thus needs to be prioritized.

An overall observation of the change of edge coverage is not suf-
ficient to differentiate the path-finding potential of inputs. Fuzzers
create a lot of inputs that cause the program to exit early, such as
exiting due to errors with malformed input. Various techniques like
taint-analysis, hardware-assisted analysis, in-memory patching,
and hooking of instructions have been used to improve mutation
strategy, and seed generation [6, 10, 23]. Another approach is to
create better inputs that observe behavior deeper in the call graph,

https://doi.org/10.1145/3579856.3582813
https://doi.org/10.1145/3579856.3582813

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

exercising more application logic without spending too many itera-
tions creating inputs. Seed prioritization, which is of paramount
importance in fuzzing, remains under-explored in the literature.

While previous work has improved which inputs are mutated
and managed to mutate specific inputs selectively, prioritization of
mutated inputs remains ad hoc. Fuzzers simply unconditionally store
the very first input that reaches a new program area or increases its
hit count. Our core contribution is to distinguish how a target area
is reached, allowing the fuzzer to select inputs based on reaching
paths. As we demonstrate, CFG-awareness enables effective priori-
tization of mutated inputs. Control Follow Graphs (CFGs), which
indicate how basic blocks (or other execution units like functions)
are related to one another, provide great contextual information
regarding the PUT. This information, if used correctly, significantly
improves runtime decisions to mutate and prioritize inputs. CFG
analysis can be performed statically or dynamically. Dynamic CFGs
(DCFGs) are generated at runtime through monitoring what basic
blocks of the PUT are executed and how the transitions happen
between those basic blocks. A DCFG provides a fine-grained and
more accurate image of what happens when the PUT is fed with a
new mutated seed. DCFGs capture the precise execution context of
the discovered basic blocks, like their depths and relative distances
in the control flow. Our observation is that different inputs that
cover the same basic blocks can have different potential with respect
to being mutated to reach newer or deeper regions due to different
contextual information in their DCFGs. As a result, we propose
to leverage DCFG information to guide the selection of the “best”
inputs which directly improves the fuzzer’s ability to grow code
coverage and find bugs. In short, context awareness matters when
determining the most-viable inputs.

Control flow graphs are complex structures, and this complexity
can create serious challenges if the fuzzer needs to construct and
analyze dynamic CFGs at runtime. The added complexity will re-
sult in a significant slow-down of the entire fuzzing process. It is
important to find a balance between the benefits that a complex
but valuable structure like a DCFG provides to the fuzzer and the
extra cost that is required to manage this complexity. We observed
that by introducing approximation to the graph structure, we can
leverage the benefits of using a DCFG without sacrificing execution
speed. We design directed approximation of DCFGs through observ-
ing the frequency of running basic blocks to selectively focus on
parts of a DCFG: by tracking at runtime which basic blocks of the
PUT have less potential to increase coverage and trigger crashes,
we can dynamically adjust the instrumentation and graph analysis
to spend more time on important parts.

We present Arvin, a context-aware greybox fuzzer that uses dy-
namic CFG analysis and directed approximation to find high-quality
inputs. Arvin uses binary rewriting to inject instrumentation that
on-the-fly builds DCFGs. To offset the cost of DCFG construction,
Arvin dynamically identifies less important parts of the PUT based
on their execution frequency to exclude them from instrumenta-
tion and steer the iterations towards the parts of the program most
likely to lead to growth in coverage. At each iteration, using a novel
technique called Decremental CFG Growth (DCG), only a subset
of the basic blocks will be instrumented, and the fuzzer constantly
rewrites the PUT in memory to change the instrumentation. Arvin

can selectively collect a rich set of CFG information for input pri-
oritization. We have designed a flexible prioritization policy that
can be tailored to the characteristics of the individual targets. The
collective result of DCFG-based input prioritization and graph ap-
proximation effectively increases the chance of finding better inputs
within far fewer fuzzing iterations.

In summary, we make the following contributions:
• Design and implementation of a new coverage-guided fuzzer
that automatically identifies and prioritizes high-quality in-
puts during fuzzing.

• New data structures for basic block instrumentation, with
enough flexibility to add or change Arvin’s default low-level
prioritization factors based on the nature of the programs
and their inputs.

• A new approximative technique to speed-up CFG analysis
while maintaining sufficient accuracy in each graph in each
iteration. Our design allows the use of a wide class of differ-
ent CFG properties for input prioritization.

• A co-operative parallel fuzzing scheme that uses a heavily-
instrumented version of the PUT to guide the runs of light-
weight instances.

• A greybox fuzzer that works independently from any exter-
nal library and does not require access to the PUT’s source
code. Arvin works directly on the target binary.

2 DESIGN
To effectively prioritize generated inputs, we leverage dynamic
control flow information from each iteration and at the same time
alleviate the high cost of graph analysis using approximation. The
architecture of Arvin has two main components. The fuzzing en-
gine and the DCFG library. The fuzzing engine generates inputs,
orchestrates the execution of the instrumented PUT, and analyzes
the resulting CFGs. The DCFG library is the set of two (libarv
and libarvp) native-code libraries that manage graph construc-
tion, instrumentation and synchronization. libarv contains the
full instrumentation logic, and the executions of the PUT that it
uses to produce DCFGs. Dynamic graphs are created in the DCFG
library and then are fed back to the fuzzing engine, which extracts
runtime information from the DCFGs at different granularities. This
information is used to analyze the execution trace and is compared
with other DCFGs from previous iterations. This provides us with
the fundamental means using which we find an accurate and ef-
fective order for the inputs. Arvin uses graph metrics, like size,
depth, the number of times different basic blocks are executed and
the presence of sensitive functions to prioritize inputs. libarvp is
a lightweight load-balancing library used in co-operative parallel
fuzzing, and does not generate a CFG on its own. It helps the fuzzing
engine to distribute the inputs on fuzzing instances after inputs
have been prioritized through DCFG analysis.

A graph in Arvin for any iteration shows either the precise
(in precision mode) or an approximate (DCG mode) control flow
information of the PUT being executed using the tried test input.
The metadata of each node describes the type of the exercised basic
block and the number of times it has been executed (or hit).

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

2.1 Building the CFG
Our instrumentation traces the PUT to build a CFG that precisely
reflects what has happened during the execution and then approxi-
mate the new graphs for next executions using the collective infor-
mation obtained from previous iterations. The correct structure of
the CFG to show the accurate transitions between basic blocks is
the basis for our analysis to specify the priority of each input.

We divide basic blocks into two general categories of indepen-
dent and nested basic blocks. This classification is used to improve
the accuracy of the recorded transitions in the graph. Normally, a
transition from a basic block to another can be either done using a
conditional jump (branch) instruction or by a call instruction. In
a greybox fuzzer, the coverage instrumentation is usually at the
beginning of each basic block. The instrumentation informs the
fuzzer that the basic block is going to execute. This simply means
that the fuzzer can see a basic block when an explicit branch or call
instruction is executed. However, fuzzers (including AFL) generally
do not consider a call instruction as the prologue of a new basic
block because what comes after that, deterministically is executed
after the called function returns (the execution flow does not de-
pend on the evaluation result of a branch instruction). As a result,
the fuzzer will recognize the start of the execution of all traversed
basic blocks, however, the correct representation of many transi-
tions will be missed. Although this strategy is not problematic in
a fuzzer like AFL for marking a basic block or an edge in its basic
block/edge map, it poses a serious challenge to build a dynamic
CFG as Arvin needs. Arvin needs to know at any given moment
during the execution of the PUT, which basic block the processor
is executing regardless of whether there have been some jumps
back and forth between the current basic block and the neighboring
basic blocks. We need to break normal basic blocks whenever we
come across a call instruction and begin a new basic block right
after that. We define a nested basic block as any basic block that
starts with a call instruction. Any other basic block which is not
nested is an independent basic block.

The graph nodes are mapped to the executed independent basic
blocks during the iteration. We do not create new nodes in the
DCFG for nested blocks when they are executed. The purpose of
having nested blocks is solely to maintain the precision of the
dynamic graph as it is being made.

Figure 1 demonstrates how we address the challenge of creating
a dynamic CFG during execution. In this example, we aim to record
the correct transitions between three basic blocks 𝐴, 𝐵 and 𝐶 in a
simple control flow graph. The control flow starts from basic block
𝐴. Supposing 𝐴 has not been visited before in this iteration, the
fuzzer makes a new node for𝐴. We describe the three possible cases
as different scenarios to demonstrate how nested blocks help the
fuzzer ensure the needed precision in tracking basic blocks:

(1) A branch instruction at the end of basic block𝐴 takes control
to basic block 𝐵. The fuzzer adds 𝐵 as a new child of 𝐴. 𝐵
finishes execution and branches back to 𝐴. Since a branch
always lands on the beginning of the destination basic block,
the fuzzer sees that 𝐴 is about to run but 𝐴 already exists
in the graph and hence it is not recorded as a child node of
𝐵. 𝐴 then branches to 𝐶 and a similar procedure to the first
branch is performed.

A

BC

branch

branch

br
an
ch

A

BC

call

A

B

call

return

br
an
ch

A

BD

call

A

B

C

call return

br
an
ch

C

branch

branch

D

return

return

Without nested blocks With nested blocks

A

BC

branch

branch

br
an
ch

Transitions

A branches B
B branches A
A branches C

branch

branch

A calls B
B returns A
A branches C

A calls B
B branches C
C returns A
A branches D

C

i

ii

iii

Figure 1: Example iterations i through iii with and without
nested blocks.

(2) 𝐵 is the first basic block of a function. We call such a basic
block, a function basic block which is also an independent
basic block. 𝐴 calls 𝐵 and 𝐵 is added to the graph. 𝐵 finishes
execution and gives control back to 𝐴 using a return instruc-
tion. Technically what happens is that the processor jumps
back to the middle of basic block 𝐴 while the last known vis-
ited basic block for the fuzzer, is 𝐵. What happens now is, if
𝐴 jumps to 𝐶 using a branch instruction, the new transition
will be seen as 𝐵 → 𝐶 instead of 𝐴 → 𝐶 . We solve this issue
by creating a nested basic block inside 𝐴 right after the call
instruction which will help the DCFG library correctly track
the transitions after call instructions. The metadata value
of a basic block is defined to have various information bits,
one of which is the BLOCK_TYPE. A nested basic block has
the same identifier as its encompassing independent basic
block with a different BLOCK_TYPE value in its metadata.
Considering this new basic block, after 𝐵 executes the re-
turn instruction, libarv sees the new transition 𝐵 → 𝐴,
and when 𝐴 finishes its execution by branching to 𝐶 , the
transition is correctly recorded in the graph as 𝐴 → 𝐶 .

(3) 𝐵 is a function basic block.𝐴 calls 𝐵 and the𝐴 → 𝐵 transition
is seen by libarv and recorded in the graph. 𝐵 branches to
another basic block 𝐶 of the same function which 𝐵 has
started. The transition 𝐵 → 𝐶 is executed and recorded. 𝐶
executes a return instruction and the processor jumps to
the last address stored on the stack, which is the address
of the next instruction after the initial call instruction to 𝐵.
Again, what happens is that without the nested block after
the call instruction, the last transition would be invisible
to the fuzzer and if 𝐴 branches to basic block 𝐷 at the end
of its execution, the incorrect transition 𝐶 → 𝐷 would be
recorded. However, with nested basic blocks, the library sees
the transition 𝐴 → 𝐷 after the previous transition of 𝐶 to
the nested block in 𝐴 and the correct graph will be built.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

After each iteration, the fuzzing engine traverses the graph
stored in shared memory and makes a copy of the relevant in-
formation into its private memory so that it can be compared with
the results of other iterations. This process determines the priority
of all inputs in the queue. Properties like depth, number of new un-
visited basic blocks, presence of important or dangerous functions
in the CFG and the proximity of new basic blocks to the important
blocks are examples of prioritization factors. A new graph will then
be made for the next iteration using the same process.

The prioritization weight of the graph properties is decided
upon based on the active priority model in Arvin. A priority model
describes in what order different graph metrics like depth and size
should be evaluated to score inputs. New priority models can be
defined for Arvin based on the characteristics of each individual
PUT. In each priority model, the graph properties that should be
evaluated for input prioritization and the order in which those
properties should be evaluated are specified. We defined two default
priority models, TNF (“Tree Nodes First”, which prioritizes finding
large graphs) and TDF (“Tree Depth First”, which prioritizes deep
graphs) for Arvin. TNF has the following metrics evaluated for each
generated input, in the order written below:

• Presence of user-definedmarked functions in the input graph.
• Size of the graph.
• Depth of the graph.
• Hit count (execution frequency) of basic blocks in the graph.

TDF evaluates the same properties in the order below:
• Presence of user-definedmarked functions in the input graph.
• Depth of the graph.
• Size of the graph.
• Hit count (execution frequency) of basic blocks in the graph.

We also defined a third model, TNS (“Tree No Sort”), that simu-
lates AFL’s input selection and ignores all graph properties.

H L H L L L H L L L H H

A) Input queue without prioritization*

B) Input queue after CFG-based prioritization

C) Prioritization and queue balancing

PnP2P1

H : High-priority input
L : Low-priority input
 : Partition number xP x

* Queue head is the left-most element

...

H H H H H L L L L L L L

H H H H H L

L L

L L

L L

Figure 2: High-level view of an input queue without Arvin
prioritization (A) and with Arvin prioritization (B and C) and
the effect of partitioning similar low-priority inputs.

2.2 Balancing the Priorities
Prioritization allows the fuzzer to focus on more important inputs
which consequently reduces the total amount of time spent on
similar inputs. It is possible, however, that a small portion of lower-
priority inputs is worth earlier evaluation. For example, a new
mutation might generate an input that increases the frequency of
execution of a specific basic block (e.g., to access a linear memory
range) close to a fault but barely not triggering the fault. It is possible
that a lower-priority input is quite close to crashing the PUT.

Mutated inputs that score high enough for further mutation are
stored in a multi-level queue structure; a coarse-grained division
to a high priority (HP) and a low priority (LP) segment, and a fine-
grained prioritization within each segment. The LP segment will
be used to hold similar inputs to those already in the HP segment.

We define two inputs to be similar if they have extremely close
or equal prioritization metrics in their CFGs, irrespective of the
contents of the two inputs. This means that two inputs with entirely
different contents might be considered similar because of triggering
similar behavior in the PUT.

We dynamically and randomly increase the priority of a small
number of LP inputs, on the chance that, while they themselves
may not score well, mutations of them might lead to higher-quality
inputs. However, there is a massive number of similar inputs that we
want to identify and deprioritize. Sincewe spend a high analysis cost
for evaluating each input, we have to carefully specify what inputs
are worth the added cost, which is resulted from graph traversal. In
contrast to a fast greybox fuzzer which stores an input if the input
shows any form of change in the coverage map—irrespective of how
contextually similar it might be to the previously stored inputs—we
cannot afford to spend all the fuzzing time on millions of inputs
that are similar to each other. We need to balance exploration vs.
exploitation carefully and effectively in Arvin.

We figured there would be a notable possibility of starvation
in the LP segment due to the high volume of similar inputs in the
sample space. When the fuzzer chooses an input from this segment,
the generator may make additional similar inputs with close scores
to their parent, preventing such inputs from being added to the HP
segment, and they will be assigned to an index in close proximity to
their parent, being also in the LP segment. When this cycle repeats,
other inputs in the LP segment will get starved. Further, we want
to limit the evaluation of similar inputs to increase coverage faster.

To resolve these two issues (starvation and the presence of a huge
number of similar inputs), we expanded our fine-grained prioritiza-
tion by “partitioning” each class of similar inputs in the LP segment
(Figure 2) and defining a limited capacity for each partition. For ex-
ample, there is a maximum capacity for the LP inputs with the depth
of 200. If the capacity of a partition has been fully consumed, the
partition gets frozen and the fuzzer avoids placing further similar
inputs next to their parent in that partition, effectively eliminating
the chance of starvation while keeping the priority of the inputs
in the frozen partition unchanged. After each iteration, we post-
process the queue and the assigned capacities. A partition will get
unfrozen if it has remained frozen for enough cycles. This strat-
egy improves performance, avoids starvation and stays fair to the
low-priority inputs. In summary, through deprioritization of lower-
quality inputs and enforcing fine-grained limitations on the queue

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

partitions, Arvin refrains from spending too much time on similar
inputs, which is a major issue in other fuzzers.

2.3 Decremental CFG Growth
In any PUT, many basic blocks (along with the instrumentation
code) are executed in each iteration. Multiple executions of the same
basic block do not increase coverage, and do not necessarily lead
to finding bugs. However, they do strongly influence the runtime
of the PUT, due to the repeated calls to the instrumentation code.
In Arvin, this time will be spent on the transition of the control
to the fuzzer and traversing the graph structures in the DCFG
library. Our strategy for speeding up fuzzing is to avoid calling
the instrumentation code for basic blocks that execute repeatedly
without providing us new CFG information, such as loop bodies.
Appendix C presents a code example.

We introduce directed approximation to reduce the amount of in-
strumentation required, excluding instrumentation on less-promising
basic blocks (and consequently less-promising paths) to spend more
time on more-promising paths. We do so by removing instrumen-
tation from expensive basic blocks: a basic block is expensive if the
DCFG library observes that it was executed more frequently than a
defined threshold called the DCG Hit Threshold (DHT).

Note that we have two types of runtime analysis. The first hap-
pens in the DCFG library to record and manage the graph while
the PUT is running during an iteration. The second happens in
the fuzzer outside the library after each iteration, to compute the
properties of the graph and prioritize inputs. DCG aims to lower the
performance cost of the former while refraining from diminishing
the information needed by the latter to prioritize inputs.

2.3.1 Identifying Expensive Basic Blocks. Identification is the pro-
cess of finding the basic blocks that have been executed more than
the defined DHT in an iteration. Doing so is straightforward, as
Arvin’s CFG structure includes a hit counter on each node that is
incremented every time the associated given basic block is executed.
After an iteration finishes, we traverse the CFG, comparing the hit
count for each node with DHT to mark expensive blocks.

Note that we cannot use static analysis to find expensive nodes
for three reasons. First, counting the exact number of times each ba-
sic block executes requires dynamic analysis: this number changes
based on the dynamic execution context. Second, while finding
loops using static analysis is possible, we do not necessarily mark
all loops as expensive. Third, we need to achieve identification and
exploration for all traced basic blocks: we do need to instrument
all reached basic blocks, even the expensive ones, in at least one
iteration to include them in our dynamic CFG. Additionally, we still
need an input that can reach a given expensive block to evaluate it
more exhaustively in the next cycles (explained in Section 2.4) and
to find neighboring blocks that are reached through it.

2.3.2 Excluding Basic Blocks From Instrumentation. Exclusion is
the process of modifying the PUT image in memory to remove
the instrumentation from basic blocks that have been identified as
expensive. Thus, they do not transition to the DCFG library and ef-
fectively do not pass through the runtime CFG traversal code inside
the library. Note that the excluded blocks are still executed, they
are simply not instrumented. This technique does not remove them

Total size: 5
Covered nodes: 5

Total size: 4
Excluded nodes: 1

Total size: 5
New nodes: 1
Covered nodes: 6

Total size: 4
Excluded nodes: 1

Total size: 7
New nodes: 3
Covered Nodes: 9

Total size: 5
Excluded nodes: 2

SHRINK SHRINK SHRINKGROW GROW

Figure 3: An example of DCG balancing tracing cost vs cov-
erage growth.

entirely from the CFG: excluded basic blocks are still kept in an
information base stored in the fuzzer and used in the graph analysis
to prioritize inputs. They simply do not appear in the runtime CFGs
of the next iterations. Effectively, DCG deprioritizes less important
basic blocks in the DCFG library which is affected the most by the
size of the CFG. The fuzzer, outside the library does have access to
the information of the excluded nodes and uses that information
for CFG analysis and prioritization. This has two important conse-
quences. First, the information of the excluded nodes is preserved
in the fuzzer and used to prioritize inputs and tailor mutation to in-
crease the likelihood of finding bugs in loops and finding code parts
that access sequential memory. Secondly, In the case of executing
the excluded basic blocks in the next iterations, we reduce the load
of graph analysis by not tracing excluded nodes. Effectively we in-
crease the chance of finding new basic blocks instead of repetitively
adding and traversing the known more frequent basic blocks.

Note that if an input causes the PUT to transition from the
excluded loop to a new basic block, the new basic block is correctly
recorded in the graph, and this information is conveyed to the
fuzzer for prioritization; exclusion of a basic block by the DCG will
not cause the fuzzer to miss the new basic blocks that are reached
through the excluded basic block.

2.3.3 The Shrink-Grow Cycle in DCG. DCG has two operational
stages, shrink and grow. In each shrink stage, after the CFG has
been analyzed, the fuzzer excludes expensive nodes, reducing the
tracing cost. In the grow stage, when new nodes are added to the
graph, the analysis cost does not proportionally increase: this stage
takes advantage of the time saved by the shrink stage. The combi-
nation of the two stages produces an approximated graph rather
than a precise graph. However, the key point is that, instead of
introducing randomness to approximate and decrease the size of
the graph, which might lead to the exclusion of important nodes,
the approximation in Arvin is directed to focus on the exclusion of
less potential and slow basic blocks.

When we have gathered the metadata for the expensive nodes,
having them profiled again in the next graphs is not necessary.
While we do need precision for graph analysis, we only require
detailed tracing for the newly explored areas. Precise tracing infor-
mation is achieved collectively and separately in different areas of

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

A

B C D

E F G H I

1

2 3 4

1 1 1 1 1

DCG Hit
Threshold

A

B C

E F G

H

I

1

2 3

1 1 1

1

1

A

B

E

F

G

H

I

1

2

1

1

1

1

1

∞

3

2

A

E

F

G

H

I

1

1

1

1

1

1

1

Graph Size: 9
Hits: 15

Graph Size: 8
Hits: 11

Graph Size: 7
Hits: 8

Graph Size: 6
Hits: 6

iteration0
input0

iteration1
input0

iteration2
input0

iteration3
input0

Figure 4: An example of creating multiple dynamic CFGs
using DCG technique with the same input

the PUT and at the same time the unnecessary high cost of preci-
sion for unwanted and older areas is avoided. An example of these
stages operating on a simple CFG is shown in Figure 3. It shows
how the shrink-grow strategy works in Arvin to increase coverage
while preventing the tracing cost from increasing proportionally to
the added coverage. The fuzzer memorizes the information about
all the visited basic blocks (including the excluded ones) while DCG
keeps the fuzzing speed close to a constant number of iterations
per second for the majority of iterations and increases the coverage
at the same time. This helps Arvin reach a stable and reasonable
speed even for very large programs.

2.3.4 Example of DCG in Action. Figure 4 shows an example of this
approximation. At the top of the figure, we have the precise graph
showing a simple execution of a program. This is the graph that
is generated in the first execution irrespective of the DHT value.
However, DHT specifies how the approximation will be carried
out for these basic blocks in the next iterations. Each node and the
number of times the corresponding basic block has been executed
is written in the graph. For example, basic blocks C and D have been
executed 3 and 4 times respectively. In the first execution, we have
15 trace calls in the library as the set of 9 basic blocks are in total
executed 15 times. D transitions to H through a call instruction. A
nested block in D is used to register H and I as the children of D. One

D

N D1

H IA

D

N D1

H IA

H IA

Identify and exclude

Missed transitions after exclusion

<branch>

<ret>

<call>

Approximated transitions after exclusion

<branch>

<branch> <branch>

<branch>

<branch>

<call>

<ret>

Figure 5: Effect of exclusion after the first iteration on iden-
tification of nodes and transitions in the second iteration

level lower in the figure, the result of the second execution with the
same input when DHT is set to 3 has been shown; node D is excluded
from the graph. Note that we still have the information of node D in
the first graph but we do not want this node to be evaluated again in
the second graph. Since normally D and its nested blocks have equal
hit counts, D will be excluded along with its nested basic blocks.
Figure 5 shows how basic blocks D, H, I and their transitions are
identified before and after the exclusion stage that targets basic
block D. At the top of the figure, it can be seen that A branches to
D which has a call to H. This means that we have a nested block
after the call instruction - 𝑁𝐷1 - which will be executed after H,
returns to D. Next, D branches to I. The result of these transitions is
registering H and I as the children of D. However, after the exclusion
of D and 𝑁𝐷1 , in the second iteration, the transitions to and from
D and 𝑁𝐷1 are missed which is the expected behavior. Instead the
fuzzer observes the sequential execution of H right after A and I
after H. This causes I to be recorded as the child of H in the dynamic
graph built for the second iteration, while H and I are originally
the children of the excluded node D. This is an example of precision
loss. Similarly, lower graphs show the results of the third and fourth
iterations when we decrease DHT to 2 and 1 respectively.

2.3.5 Additional Challenges. With an approximate CFG, fuzzing
multi-threaded targets is possible as the major problem with multi-
threaded targets while using one shared memory instance is the
loss of precision in the CFG. The disadvantage of reducing precision
(which is comparing approximate graphs instead of precise graphs)
will be outweighed by the benefit of a higher speed and more flexi-
bility in managing the graphs. Also, since approximation happens
in a directed manner and the fact that DCG naturally targets de-
pendent (nested) basic blocks more frequently, the precision loss
mostly happens in less important parts of the graph. Note that loss
of precision also happens even without DCG in effect, when the
PUT jumps to an external uninstrumented library. In this regard,
we can safely assume that the nodes that are excluded by DCG in

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

C
R

A
S

H
 R

E
P
O

R
T

MP P P P

INPUT QUEUE

W
R

IT
E

R
E
A

D

Figure 6: Distribution of seeds in the input queue between
the master process (M) and the parallel processes (P).

Arvin, belong to an external entity that we are not interested in
tracing. There is an important difference though; a node is only
excluded from the graph if and only if we have previously traced it
in a DCFG and identified it as an expensive node. This is opposite
to a pure external transition into which the fuzzer does not have
any insight to analyze what has happened during the transition.

DCG improves speed by excluding the shared slow nodes be-
tween different inputs. DCG always increases relative speed. This
means that the result of applying DCG to the dynamic graph of
any iteration always decreases the evaluation time for the same
input. And given that there are usually many shared nodes between
the mutations of an input and the input itself, the overall effect of
applying DCG, is uniform speed improvement for the mutations of
any given input. Finally, note that the implementation of DCG is
only possible due to the use of dynamic runtime instrumentation
as opposed to static file-based instrumentation.

2.4 Parallel Fuzzing and Adaptive Mutation
Arvin uses a complex memory layout to record and manage DCFGs.
This complicates parallelism in the fuzzer due to various concur-
rency issues. We addressed this problem by creating a separate
library for parallel fuzzing and defining a different fuzzing mode
for parallel instances. The fuzzing strategy is different in themaster
mode from the parallel mode with each mode having its own native
library. The master process tackles the DCFG construction and
analysis, stores and queues the inputs, and then has the parallel pro-
cesses pick up the generated inputs and perform non-deterministic
mutations. The parallel mode uses a separate fast fuzzing model
that does not incur the cost of CFG tracing and analysis. Figure 6
shows how the master and parallel processes cooperate with each
other to cover the input queue.

Arvin tunes mutation dynamically. Better coverage does not
necessarily mean finding more bugs [29]. Executing a bogus basic
block is not enough by itself to crash the PUT: the right input must
be fed into the target to create the necessary context for the basic
block to trigger the bug. For example, in div %rcx instruction, the
CPU will fail to complete the operation only if rcx register contains
zero. This means that the more possibilities we try for each given
set of values that can be consumed in a basic block, the more likely
it is to crash the PUT. However, trying more possibilities means
investing more time on a given input file.

Arvin uses two mutation stages which is a common fuzzing
strategy; the mutation functions (like bit-flipping or arithmetic
operations) are also similar to other fuzzers. The first stage deter-
ministically executes different mutation functions on the input (IT
stage). The second stage (NI stage) executes mutation functions

Figure 7: A high-level view of automatic tuning of mutation
functions. The area of NI or IT functions is proportional to
the number of times they’re used for mutation of the input.

probabilistically. We figured careful balancing of these two stages
in Arvin is important to find more quality inputs. NI stage (anal-
ogous to havoc in some other fuzzers), normally yields a better
coverage growth (also discussed by Wu et al. [31]). However, after
completing one cycle—in any fuzzer—the coverage growth gets
much slower and leaves enough room for spending more time on
each input individually in the queue. This will also cover the ex-
cluded basic blocks by DCG; while we reduce the graph analysis
cost in the DCFG library, later on, we spend more mutation time
on the expensive basic blocks, including loops and other code parts
that might relate to memory corruption bugs.

Arvin decides how the mutation functions should be used to
create a balance between the two mutation stages to increase the
likelihood of finding crashes. This works based on how the PUT
responds to mutations in either IT or NI stages. Arvin automatically
changes mutation patterns after it gathers enough basic blocks and
the coverage reaches a relative saturation point which causes the
fuzzer to execute more aggressive deterministic mutations (example
in Appendix A). This combines the capability of increasing the
coverage using the information the DCFGs expose and increasing
the chance of finding more crashes. In Figure 7 we show a high-level
view of how our dynamic mutation tuning works.

Initially, an input in the input queue is uncovered. It is considered
covered when it passes a full cycle of mutation. A cycle of mutation
for an input is complete when the fuzzer advances to the next input
in the queue. Generally, the queue, for the most part, consists of
mutated inputs. When the queue is completely covered and the
fuzzer jumps back to the first element of the queue, it is said one
cycle of fuzzing has elapsed. Initially, Arvin tries to make amutation
map for the current input under evaluation that shows which parts
of the input respond better to mutation in terms of reflecting a
dynamic behavior in the PUT. In the first cycle, we do not wait in
the deterministic stage for a long time. This is shown in Figure 7
as the smaller area of IT Functions versus the bigger area of NI
Functions in the corresponding rectangles. When Arvin gets back
to the same input in the next cycle, Mutation Map is loaded, and
deterministic checks are executed exhaustively based on the map.
In the third cycle, we only run NI stage for the input as we have

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

already exhausted all deterministic checks in the previous cycle.
This also happens in the next cycles for the same input. This whole
process is performed on a per-input basis; any individual input goes
through the same stages as described.

3 IMPLEMENTATION
Given the novel instrumentation strategy and using a native DCFG
library in the design, we decided to build Arvin as a new greybox
fuzzer. We implemented Arvin as a standalone fuzzer from the
ground up in 15,000 lines of C. Arvin performs the instrumenta-
tion at runtime over the loaded memory image of the executable
PUT. Transitions between the PUT and the fuzzer are managed
through “ptrace“ mechanism of the Linux kernel. The DCFG li-
brary traces the PUT, builds the DCFGs, and relays the information
back to the fuzzing engine. Both the master and parallel libraries
are native-code shared objects injected into to the PUT’s address
space depending on the fuzzing mode to monitor the control flow
and manage the PUT’s execution. DCG finds the candidate graph
nodes for exclusion and the fuzzing library skips tracing of the
corresponding basic blocks in the next iterations. We defined two
main priority models in the fuzzing engine, TDF and TNF. These
models prioritize inputs based on the graph depth, graph size and
coverage, the presence of marked basic blocks (in targeted fuzzing)
and the frequency of the execution of the basic blocks. TDF how-
ever, assigns a higher score to a deeper input while TNF prioritizes
coverage over depth. For the purpose of comparing coverage depth
of our fuzzer to AFL, we defined an AFL-simulated mode, TNS, in
Arvin. By default. Arvin takes input from STDIO and files but also
supports network sockets.

Before starting the fuzzing engine, Arvin performs a pre-processing
pass over the PUT using angr framework [26]. To avoid the limita-
tions and costs of simulation/emulation, we instrument and execute
the PUT natively. Although we have written the current prototype
of Arvin for x86-64 architecture, with moderate changes only to
the instrumentation code, it can run on other architectures as well.
Arvin has been implemented to run on Linux.

4 EVALUATION
Our test environment was a CloudLab [13] node with an Intel Xeon
Gold 6142 processor running Ubuntu 20 with Linux kernel 5.4. For
our fuzzing sessions we mainly used binutils package and unzip
because of their ubiquity and the fact that they are secure and
highly tested programs which make finding bugs in them relatively
quite challenging. We also fuzzed several programs from the OSS-
Fuzz project [25]. In this section, we present our evaluation results
for coverage growth, fuzzing speed, the effectiveness of our prior-
itization policies, finding bugs, and parallel fuzzing. The default
priority model in all Arvin sessions has been TNF1. To understand
the effects of our DCG technique, we include Arvin_pr (Arvin in
precision mode) in several tests. In this mode, DCG is disabled, and
native static instrumentation is used instead of runtime instrumen-
tation. In this mode, we do not need the modification of the PUT
memory image, using “ptrace“ is not necessary and we write the
instrumentation payload at compile time. For Arvin_pr, the fuzzing
library (“libarv“) is still loaded into the PUT’s address space, but
1For the majority of PUTs, TNF and TDF yield similar results.

Table 1: Comparison of Arvin and AFL++ time and coverage.

Target Coverage
Delta

Arvin
Time

AFL++
Time

Coverage
Ratio

objdump +3% 34% 99% 7
size +12% 57% 98% 7

addr2line +3% 60% 95% 8
readelf +6% 39% 96% 9
nm +3% 87% 97% 7
as +1% 32% 98% 3

unzip +23% 84% 98% 3

Average +7% 56% 97% 6

Table 2: Average number of total iterations in the four 120-
hour experiments.

afl++ arvin_pr arvin
strip 644M 48M 74M
objdump 503M 32M 69M
readelf 683M 87M 78M
libpng 937M 11M 15M
Average 691M 44M 59M

the instrumentation aims at maximizing the CFG precision and
enhancing the accuracy of the benchmarks.

4.1 Coverage Growth
In this test, we chose AFL++ (given its impressive coverage) and
compared it with Arvin when both are given the same amount of
time to run in the same fuzzing configurations. Arvin fuzzes in
binary mode, while AFL++ is used in open-source mode to achieve
its maximum speed and coverage.2 The results are shown in Table 1.
Each program was fuzzed 3 times for 48 hours and the numbers
reported are the averages. In Table 1,Coverage Delta is the difference
in the basic block coverage reached by each fuzzer. A positive
number shows a better coverage in Arvin; for all PUTs, Arvin had
better coverage, ranging from 1% to 23%. Arvin Time and AFL++
Time show the portion of the fuzzing time that each fuzzer used to
reach the maximum common coverage. For example, if one fuzzer
finds 2,000 basic blocks while the other finds 1,800 in the same PUT,
these columns show the time it took each fuzzer to find 1,800 basic
blocks. The lower this number the better, as it shows the fuzzer can
increase coverage faster.

Coverage Ratio looks at how efficient each fuzzer is in terms of
iterations. We define the coverage score (s) as the total number of
covered basic blocks (b) divided by the total number of iterations
(i) executed in a given fuzzing session (𝑠 = 𝑏

𝑖). A higher coverage
score shows the fuzzer can increase coverage within fewer number
of iterations. In all cases, Arvin’s coverage score is much higher than
AFL++’s, so we report the Coverage Ratio, which is simply Arvin’s
coverage score divided by AFL++’s. On average, Arvin needs only
0.15 (or 1

6) times the number of iterations of AFL++ to reach the
same basic block coverage in 41% shorter fuzzing time; Arvin is

2AFL++ does have a binary-only qemu mode, but it is much slower; using source mode
gives AFL++ the biggest possible advantage.

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

0 20 40 60 80 100 120
Time (hour)

2000

2500

3000

3500

4000

4500

5000

5500
Co

ve
ra

ge
strip

arvin_pr
arvin
afl++

0 20 40 60 80 100 120
Time (hour)

2000

2500

3000

3500

4000

4500

objdump

arvin_pr
arvin
afl++

0 20 40 60 80 100 120
Time (hour)

1000

2000

3000

4000

5000

6000

7000

readelf

arvin_pr
arvin
afl++

0 20 40 60 80 100 120
Time (hour)

900

1000

1100

1200

1300

1400

1500

1600
libpng

arvin_pr
arvin
afl++

Figure 8: Coverage growth of Arvin and AFL++ over the course of 120 hours for four different programs.

more efficient than AFL++ in terms of both total fuzzing time and
total number of iterations.

To evaluate the performance of Arvin compared to AFL++ over
long time periods, we also ran four 120-hour sessions. Graphs of
coverage growth (in terms of basic blocks) during these sessions
can be seen in Figure 8. In all cases, Arvin finishes the session with
higher coverage than AFL++, though in the readelf case, AFL++
does temporarily outpace Arvin at the beginning of the session.
Table 2 shows the total number of iterations during these sessions.
While Arvin, on average, has more iterations than Arvin_pr (about
15M more), it has significantly fewer iterations compared to AFL++
(about 632M less) while reaching better coverage than both. Arvin’s
superior coverage is, in most part, explained by the effect of di-
rected approximation. By excluding less important nodes, we save
processing time to find new nodes.

4.2 Fuzzing Depth
Our next test looks at Arvin’s ability to achieve coverage that goes
deep (i.e., further from the root of the DCFG at the program’s entry).
We fuzzed readelf, addr2line, and the GNU assembler five times with
two different settings (30 total fuzzing sessions). As a baseline, we
use TNS mode which approximates AFL’s input-selection strategy,
ignoring depth3. We compare this to Arvin’s TDF mode, which does
prioritize depth when selecting inputs to mutate.

The result of this comparison is shown in Figure 9. Since our goal
is to measure how much Arvin increases the depth of generated
inputs, we use the depth of the initial input as the starting point: for
each PUT, we observed the depth of the PUT for the initial seed and
subtracted it from the depth of all generated inputs in both fuzzing
modes. This result demonstrates the effectiveness of our proposed
technique to reach deeper parts of the target. In depth-sensitive
TDF mode, Arvin reaches on average 83% greater depth than the
depth-oblivious TNS mode.

4.3 Targeted Fuzzing
Arvin is also able to focus on specific functions or code parts such as
known unsafe functions. The user can have the fuzzer mark these
functions so that if an input reaches them, the library records this
in the graph to signal the fuzzer to increase the priority of the input.
This feature is called “targeted fuzzing”. To test it, we fuzzed the file
program with different inputs and marked one specific function4

3We cannot do this comparison with AFL itself, as AFL does not construct a DCFG
and therefore does not collect enough information to compute depth.
4The marked function was json_isxdigit() defined in src/is_json.c

1 2 3 4 5
Fuzz session#

0

20

40

60

80

100

120

140

160

De
pt

h

readelf
TDF
TNS

1 2 3 4 5
Fuzz session#

0

5

10

15

20

25

30

35

40
addr2line

TDF
TNS

1 2 3 4 5
Fuzz session#

0

50

100

150

200

250

300

as
TDF
TNS

Figure 9: Depth reached by depth-sensitive TDF mode and
depth-oblivious TNS mode.

1 2 3 4 5
Fuzz session#

20000

25000

30000

35000

40000

45000

50000

55000

In
te

re
st

in
g

In
pu

ts

TF-Enabled
TF-Disabled

Figure 10: The number of generated inputs that reach a
marked function with and without targeted fuzzing.

as an important function in the PUT. Only one of the initial seeds
reached the marked function. We ran Arvin 10 times to fuzz file: 5
times each with the targeted fuzzing feature disabled and enabled.
Figure 10 shows the number of the total inputs that reached the
marked function in each fuzzing session. In all of the sessions that
targeted fuzzing was enabled, Arvin could successfully generate
more inputs that ended up calling the marked function in the fuzzed
program, effectively increasing the chance of a more aggressive
evaluation of the chosen important function.

4.4 DCG and Fuzzing Speed
DCG approximates graphs, diminishing their size, and at the same
time, it reduces the number of transitions between the fuzzer and
the PUT. This yields a significant speed improvement. It decreases
graph analysis time and moderates the cost of using “ptrace“, which
is known to be slow in Linux kernel [1].

4.4.1 DCG Hit Threshold (DHT). DHT controls the exclusion of
nodes from the graph. To show its effect on fuzzing speed, and to
select a value to use in practice, we evaluated ten different DHT
levels on five different programs. These levels from 𝐿1 to 𝐿10 map

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

1 2 3 4 5 6 7 8 9 10
Level

101

102

Sp
ee

du
p

nm
size
addr2line
readelf
objdump
as

Figure 11: Log-scale plot of the effect of DCG Hit Threshold
on fuzzing speed of 6 different programs.

0 2 4 6 8 10
Level

500

1000

1500

2000

2500

No
de

s

nm
size
addr2line
readelf
objdump
as

0 2 4 6 8 10
Level

500

1000

1500

2000

2500

3000

Ed
ge

s

nm
size
addr2line
readelf
objdump
as

Figure 12: The effect of DCG Hit Threshold on graph size in
terms of number of nodes (left) and edges (right).

to numbers 1 to 10 in the reverse order. (𝐿1 = 10, 𝐿2 = 9 . . .𝐿10 = 1).
This means a higher level ends up excluding more nodes. For each
program, we ran Arvin 10 times, each time with one of the defined
levels for its DHT (50 total runs). In each run, we calculated the
speed improvement based on the first few iterations. The reason is
that the effect of DHT is normally best seen in the first iterations
of mutating any seed where the majority of repetitive basic blocks
are identified by the DCFG library. The speed improvement in this
experiment at each level is the reverse of dividing the execution time
of one iteration before and one iteration after the DCG completes
the identification and exclusion phase of the tried seed. This number
is usually the upper bound for relative speed improvement for that
individual seed at the evaluated DHT level, throughout the whole
fuzzing session for any two iterations affected by DCG. The result
of this test is shown in Figure 11. The worst case is for addr2line
with an speedup of 8 for 𝐿1 and the best case is a speedup of 173
for as at 𝐿10. This means that at the worst-case scenario in these
experiments, DCG improved speed 8 fold. While the speed in the
worst case is increased 8-fold, the graph size reduction in most
tests is between 60% to 70%. This shows that DCG correctly targets
expensive nodes for exclusion; on average, for each 1% reduction
in the graph size, DCG results in a 45% speedup. The effect of
DHT levels on the size of an average graph has been shown in two
different plots in Figure 12.

For most programs, the low and middle levels (𝐿1 and 𝐿5) have
a relatively high number of discovered paths. This is exactly be-
cause the way DCG is supposed to work; we reduce the number of
evaluations of different execution traces (paths in this context) by
excluding specific basic blocks from the analysis. We have added
the detailed graphs of DCG effects in Appendix B. For the rest of
the tests in our evaluation, we have used 𝐿10.

Also, our partitioning strategy (explained in Section 2.2), reduces
the total time needed to finish a cycle on average by 40% while in

2 4 6 8 10 12 14 16

0

2500

5000

7500

10000

12500

15000

17500

20000

Ite
ra
tio

ns

objdump
arvin
afl
afl++(qemu)
honggfuzz
honggfuzz(qemu)

2 4 6 8 10 12 14 16

0

5000

10000

15000

20000

readelf
arvin
afl
afl++(qemu)
honggfuzz
honggfuzz(qemu)

2 4 6 8 10 12 14 16
Instances

0

2500

5000

7500

10000

12500

15000

17500

20000

Ite
ra
tio

ns

size
arvin
afl
afl++(qemu)
honggfuzz
honggfuzz(qemu)

2 4 6 8 10 12 14 16
Instances

0

2500

5000

7500

10000

12500

15000

17500

20000

nm
arvin
afl
afl++(qemu)
honggfuzz
honggfuzz(qemu)

Figure 13: Fuzzing speed versus the number of fuzzing in-
stances for 4 different programs and 4 different fuzzers run
in total 5 different sessions.

some cases, even one cycle is not finished after the session ends if
we disable partitioning.

As a conclusion, Arvin generally performs better in longer fuzzing
sessions and for bigger programs.

4.5 Parallel Fuzzing Mode
The fast parallel mode in Arvin effectively makes up for the per-
formance cost of using ptrace. In this subsection, we present the
result of comparing fuzzing speed in terms of the number of iter-
ations per second between Arvin and other fuzzers as shown in
Figure 13. For this experiment, we chose 4 programs and fuzzed
them with three fuzzers. honggfuzz and AFL have been used to fuzz
in open-source mode and AFL++-qemu and honggfuzz-qemu for
binary-only mode. The number of instances is the total number of
fuzzing units for each specific fuzzer, including the Master instance
in Arvin. For example, in Arvin, an instance number of 8 means
one master instance plus 7 parallel instances (this is why for the
single-instance case, Arvin is slow). The result is, except nm, Arvin
is faster than other tested fuzzers. And for nm the speed difference
between Arvin and the fastest fuzzer (AFL) is negligible.

As is shown in the figure, while different tests show a monotonic
speed growth by increasing the number of instances, honggfuzz
results in some inconsistencies. AFL is almost as fast as Arvin, how-
ever, the speed of AFL is for open-sourcemode. In binary-only mode,
AFL++-qemu is significantly slower. Honggfuzz-qemu also has an
almost linear speed growth by increasing the number of its paral-
lel threads, however, it is slower than other tested fuzzers in both
modes. These tests show Arvin has, in general, better performance
in parallel mode than the other three popular evaluated fuzzers.

4.6 Discovered Bugs
Table 3 summarizes the previously-unreported bugs found by Arvin
and seven other fuzzers. All the bugs found by other fuzzers, were
also found by Arvin. We used the latest version of each program
in this table and fuzzed them for 12 hours separately with each
reported fuzzer. In each session, for the fuzzer under test, we ran

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

Table 3: Bugs found using different tested fuzzers. honggfuzz (hf) and AFL++ (APP) abbreviated to save space.

Program Arvin AFL hf hf-qemu APP APP-qemu TortoiseFuzz Angora∗ VUzzer ParmeSan
GNU assembler (v 2.35, 2.36, 2.37) 13 0 4 1 5 1 3 0 0 0
unzip (v 6.00) 4 2 2 0 3 1 0 0 0 0
gif2png (v 2.5.8-1) 2 2 2 2 2 2 2 2 0 2
readelf (v 2.35) 1 0 0 0 0 0 0 0 0 0
bison (v 3.5, 3.7) 7 3 4 2 4 4 3 1 0 1
fig2dev (v 3.2.8a) 3 1 2 1 2 2 2 1 0 0
flvmeta (v 1.2.2) 1 0 1 0 1 0 0 0 0 0
nasm (v 2.15.05) 1 0 0 0 0 0 0 0 0 0
ibmtpm (last commit May 15 2021) 1 0 0 0 0 0 0 0 0 0
libraw (v 0.21.0) 2 0 0 0 1 0 0 0 0 0
pnmtopng (v 1.17.dfsg-4) 2 1 1 1 2 1 1 0 0 0
pnmtojpeg (v 1.17.dfsg-4) 2 0 2 2 1 1 1 0 0 0
pnmtofiasco (v 1.17.dfsg-4) 2 2 2 2 2 2 2 2 0 2
pstopnm (v 1.17.dfsg-4) 3 0 2 1 1 1 1 0 0 0
psnup (v 1.17.dfsg-4) 2 0 1 1 2 1 1 0 0 0
xpdf (v 4.03) 1 0 0 0 0 0 0 0 0 0
xvid (last version from http://svn.xvid.org/trunk) 3 0 0 0 1 0 0 0 0 0
Total 50 11 23 13 27 16 16 6 0 5
∗ Angora failed to fuzz unzip with this error message: "There is none constraint in the seeds". Angora also failed to compile binutils-gnu 2.36 in taint mode.

four parallel instances. We used a small set of simple random seeds
with an average size of 4KB. Arvin, AFL++-qemu and honggfuzz-
qemu fuzzed in binary mode, and the other fuzzers instrumented
the target’s source code. We repeated the tests five times. Since
VUzzer and ParmeSan were extremely slow (on average more than
230x and 50x slower than Arvin respectively), we reran the same
fuzzing sessions for both these fuzzers and let them run for 48 hours
(4 times longer than Arvin) with exactly the same results.

Arvin found thousands of crashes. Obviously, each crash does not
belong to a distinct new bug. Arvin performs a fast hash calculation
over every CFG to report whether a similar crash has happened
more than once. However it is possible that different inputs that
trigger the same bug have different execution paths and hence
different CFGs. To find the number of unique bugs we categorized
the crash reports based on the fuzzed program and the proximity
of reporting times, then chose a couple of sample inputs from each
category. We identified a lower bound of 50 distinct-zero day bugs
discovered by Arvin5. As reported in Table 3, this is 23 bugs more
than the next best fuzzer, AFL++, and 27 more bugs than honggfuzz.

4.6.1 Discussion of the effects of design decisions on finding bugs.
So far, we demonstrated how our prioritization policies increase
code coverage which generally translates into finding more bugs.
To directly study how Arvin’s prioritization affects finding bugs, we
completely disabled prioritization in Arvin. Then we repeated the
bug-finding sessions three times in this mode and recorded the aver-
age number of bugs that were found. Arvin only detected between
20% to 33% of the same bugs reported in Table 3, depending on the
size of the PUT and, consequently, the number of generated inputs
in the queue. We observed the poorest result for GNU assembler.
The effect of prioritization is more significant on larger PUTs. On
average, only 22.5% of all the bugs were discovered.

5We have reported the bugs to the software maintainers.

To evaluate the direct effect of DCG and targeted fuzzing, we
repeated the bug-finding sessions three times for each test. First,
we executed the sessions in arvin_pr mode which does not use
DCG. In this mode we were able to find, on average 44% of the
bugs. For the second test, we used three of the bugs that we had
previously found in GNU assembler and unzip6 For the reported
bugs, we marked the responsible functions in which the bug ex-
isted. For GNU assembler, the functions were tc_gen_reloc() and
elf_copy_symbol_attributes() defined in gas/config/tc-i386.c
and gas/config/obj-elf.c respectively. For unzip, the marked
function was BZ2_decompress() defined in bzip2/bzlib.c. On
average, the total number of correct inputs to trigger any of the
three bugs increased by 20.6% and the time needed to find the first
input to trigger the related bug decreased by 13.8%.

5 RELATEDWORK
The major contribution of prior work in greybox fuzzing has been
to improve mutation or prioritization and, in most cases, a combi-
nation of both. Prioritization happens at the individual-input and
input-set levels. The former discusses better ways of finding promis-
ing parts of inputs while the latter focuses on selecting better inputs
from the set of mutated inputs. At either level, the information
the fuzzer gains from the PUT—statically or dynamically—is an
important factor that determines to what extent a greybox fuzzer
can successfully perform prioritization. The more information the
fuzzer has about the internals, structure, and run-time context of
the PUT, the more metrics it has to prioritize inputs.

Correlating different parts of inputs to PUT’s functionality or
CPU registers using techniques like memory taint analysis have
been used by various state-of-the-art fuzzers. REDQUEEN [6] for

6Note that targeted fuzzing was not originally used to discover the reported zero-day
bugs.

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

example, uses the QEMU emulator to identify the compare instruc-
tions and tries to match input bytes with the operands of the iden-
tified instructions to satisfy branch conditions to increase coverage.
Steelix [18] uses IDA and Dyninst framework and VUzzer [23]
uses Intel Pin framework [4] to reach a similar goal, finding the
correlation between different parts of the input and operands of
compare instructions to resolve magic bytes. These strategies are
quite different from, but complementary to, the one used by Arvin:
Arvin instead focuses on selecting and mutating entire inputs rather
than individual bytes within them.

Full speed fuzzing [21] considers removing instrumentation from
basic blocks to increase speed. Although it uses a relatively sim-
ilar idea to how we identify expensive basic blocks, their goal is
entirely different from what we do in Arvin. Arvin aims to perform
DCFG analysis to gauge the contextual value of the inputs and then
use approximation to simplify the graphs. The way they modify
instrumentation and consequently trace the PUT is also completely
different from Arvin. In Full speed fuzzing they have two separate
binaries of the PUT, the oracle and the tracer. When a new basic
block is found in the oracle, the oracle is terminated, and the tracer
is executed to find the new basic block(s). This cycle is repeated to
gradually reduce the number of instrumented basic blocks in the
oracle. In Arvin, we do not stop the PUT upon finding a new basic
block because we need to acquire the run-time context information
from the PUT’s control flow. The fuzzer keeps monitoring the com-
plete execution of the PUT to construct its DCFG, which is then
used by the fuzzing engine for input prioritization.

ParmeSan [22] makes dynamic CFG by heavily using external
data-flow analysis. In contrast to Arvin, ParmeSan builds an ini-
tial graph and gradually adds edges to the structure upon visiting
them during fuzzing. The CFG is then used to calculate distances
between different parts or targets of the program under fuzz. The
way ParmeSan uses and builds the dynamic CFG is fundamentally
different from Arvin; ParmeSan uses data-flow analysis to make a
CFG that contains all possible traces using different inputs observed
during fuzzing. Arvin however, natively constructs a new CFG for
each iteration that demonstrates the exact execution trace for that
individual execution to be directly compared to other inputs.

SAVIOR [11] prioritizes inputs based on static analysis of the
PUT and predicting potentially vulnerable locations in code then
labeling them to be identified during fuzzing. TortoiseFuzz [29]
prioritizes inputs based on the potential execution of some known
security-sensitive functions and code structures (e.g loops) in the
PUT. Although these techniques are fundamentally different from
our approach, they are two other examples that show the impor-
tance of input prioritization in fuzzing. Input selection in general
has been discussed in multiple other works [17, 24, 30].

To the best of our knowledge, Arvin is the first greybox fuzzer to
natively build an approximate DCFG in each iteration for effective
input prioritization.

6 CONCLUSION
Input prioritization is essential to improve fuzzing effectiveness
but challenging to achieve. Fuzzers usually fail to accurately es-
timate the quality of a mutated input due to a lack of sufficient
context information. We showed how to leverage DCFG run-time

information for effective input prioritization and at the same time
use approximation to reduce the cost of the analysis without in-
curring significant negative consequences of precision loss. We
implemented Arvin and demonstrated how a partial dynamic CFG
enables rich but sufficiently cheap run-time context information
to prioritize inputs, and we showed how effective our approach
could be in attaining better coverage with fewer iterations. Arvin is
open-source [5] and outperforms different popular state-of-the-art
fuzzers in terms of coverage, speed, and finding bugs.

REFERENCES
[1] 2010. Replacing ptrace(). https://lwn.net/Articles/371501.
[2] 2016. The Cyber Grand Challenge. https://blogs.grammatech.com/the-cyber-

grand-challenge.
[3] 2022. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/.
[4] 2022. Pin. https://software.intel.com/content/www/us/en/develop/articles/pin-

a-dynamic-binary-instrumentation-tool.html.
[5] 2023. Arvin. https://github.com/0xsirus/arvin.
[6] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Symposium on Network and Distributed System Security (NDSS).

[7] Boris Beizer. 1995. Black-Box Testing: Techniques for Functional Testing of Software
and Systems. Wiley.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security.

[9] Ella Bounimova, Patrice Godefroid, and David Molnar. 2012. Billions
and Billions of Constraints: Whitebox Fuzz Testing in Production.
https://www.microsoft.com/en-us/research/publication/billions-and-billions-
of-constraints-whitebox-fuzz-testing-in-production/.

[10] Peng Chen, Hao Chen, and Jianzhong Liu. 2018. Angora: Efficient Fuzzing by
Principled Search. In 39th IEEE Symposium on Security and Privacy.

[11] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. Savior: Towards bug-driven hybrid testing. In 2020
IEEE SP. IEEE.

[12] Jared D. DeMott, Richard J. Enbody, and William F. Punch. 2007. Revolutionizing
the field of grey-box attack surface testing with evolutionary fuzzing. In Black
hat USA.

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In Proceedings of the USENIX ATC.

[14] S. Embleton, S. Sparks, and R. Cunningham. 2006. "Sidewinder": An Evolutionary
Guidance System for Malicious Input Crafting. In Black hat USA.

[15] Google, Inc. 2022. HonggFuzz. https://github.com/google/honggfuzz.
[16] Google, Inc. 2022. HonggFuzz Trophies. https://honggfuzz.dev/#trophies.
[17] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,

andAntony L. Hosking. 2021. Seed Selection for Successful Fuzzing. In Proceedings
of the 30th ACM SIGSOFT ISSTA.

[18] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-State Based Binary Fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering (Paderborn,
Germany) (ESEC/FSE 2017).

[19] Valentin J.M. Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science, and
Engineering of Fuzzing: A Survey. In ACM Computing Surveys.

[20] G. J. Myers, C. Sandler, and T. Badgett. 2011. The Art of Software Testing. Wiley.
[21] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing

Overhead through Coverage-Guided Tracing. In 2019 IEEE SP.
[22] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.

ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Security.
[23] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and

Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.
[24] Alexander Rebert, Cha Sang Li, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In Proceedings USENIX ATC.

[25] Kostya Serebryany. 2017. OSS-Fuzz - Google’s continuous fuzzing service for
open source software. USENIX Association.

[26] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. 2016. SOK: (State of) The Art of
War: Offensive Techniques in Binary Analysis. In 2016 SP.

[27] Nick Stephens, John Grosen, Christopher Salls, Audrey Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

https://lwn.net/Articles/371501
https://blogs.grammatech.com/the-cyber-grand-challenge
https://blogs.grammatech.com/the-cyber-grand-challenge
https://lcamtuf.coredump.cx/afl/
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/0xsirus/arvin
https://www.microsoft.com/en-us/research/publication/billions-and-billions-of-constraints-whitebox-fuzz-testing-in-production/
https://www.microsoft.com/en-us/research/publication/billions-and-billions-of-constraints-whitebox-fuzz-testing-in-production/
https://github.com/google/honggfuzz
https://honggfuzz.dev/#trophies

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

2016. Driller: AugmentingFuzzing Through Selective Symbolic Execution. In
NDSS.

[28] Ari Takanen and Charlie Miller. 2008. Fuzzing for Software Security Testing and
Quality Assurance. Artech House.

[29] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization. In NDSS.

[30] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.
Scheduling Black-BoxMutational Fuzzing. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security (Berlin, Germany).

[31] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming
Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In
Proceedings of the 44th International Conference on Software Engineering.

A MUTATION MODERATION AND CFG SET
PRUNING

This is an example of how Arvin moderates the usage of mutation
functions and why it is important.

While having an optimal order for inputs is helpful, the fuzzer
can still perform inefficiently if a poor mutation policy is practiced.
We need to avoid the generation of new inputs that are unlikely
to exercise new execution paths. Toward this end, we designed a
Performance Check in Arvin to dynamically change the mutation
pattern of inputs based on the context information we gathered
from previous CFGs. For this check, “performance” means the time
it takes to evaluate the input queue, which for the most part consists
of mutated inputs: the goal is to progress through the queue more
quickly. Because each input can take from a few minutes to a few
hours to evaluate, having an effective, accurate, and technically
sound policy to avoid low-potential mutations has a dramatic effect
on the performance. Different parts of an input have different roles
and meanings to the PUT; as a result, the mutation in different
parts have different potentials to generate better execution paths in
terms of coverage and depth. Since we analyze all CFGs (even those
that have been created due to mutation of less effective parts of an
input), unnecessary trials, significantly impact the fuzzing speed
because cycles are wasted if the mutated part exercises previously
visited blocks and no crash in the PUT happens.

1 if (input[0x248] && !input[0x249]){
2 result=num/(unsigned char)((input[0x248] & 0x0F) -1);
3 }else{
4 result=num;
5 }

Listing 1: Example code snippet of a program

We defined three different performance-check modes (MD, ME1
and ME2), which specify how aggressively the deterministic muta-
tion functions (like iterative bitflipping functions) should be carried
out for each input. The more the mutation functions are used for
each input, the more the fuzzer has to spend time on each single
input. MD makes the highest use of the deterministic functions and
ME1 and ME2 spend less time on some mutation functions and speed
up the evaluation of each input with ME2 limiting per-input eval-
uation quota more aggressively. Both ME1 and ME2 try to change
the usage pattern of mutation functions dynamically to reduce the
overhead of deterministic checks and evaluate a bigger number of
inputs within a specific period of time with ME2 being more restric-
tive in choosing mutation functions. ME1 and ME2 are reserved for
faster coverage growth and MD is more focused on finding bugs.

The logic is that there are potentially multiple (in some cases an un-
limited number of) different inputs that may lead to the execution
of a specific set of basic blocks. When Arvin works in restrictive
performance mode (i.e ME1 or ME2), it gives a higher priority to
finding new basic blocks rather than crashing the PUT. Although
finding the correct set of basic blocks that take part in a crash in
the PUT is necessary, it is not enough. This is why in the restrictive
modes, we have better coverage but poorer crash-finding ability.
We can work around this inconsistency by performing automatic
multi-pass fuzzing.

Figure 14: Assembly equivalent of the code above with in-
volded basic blocks

We illustrate the aforementioned natural inconsistency issue and
our solution using an example. In Listing 1, a code sample with an
obvious divide-by-zero bug, has been shown. There is a conditional
check in the first line which translates into multiple branch in-
structions in the compiled binary. The body of the if-else block is
compiled into two basic blocks shown as b3 and b4 in Figure 14. The
conditional check reads the input at offsets 0x248 and 0x249 and
checks their values. If input[0x249] is zero and input[0x248]
is non-zero, it divides num ([%rbp - 9]) by the right half of the
value minus one and stores the result in the result variable ([%rbp -
8]). Any value like 0xn1 in input[0x248] where n is an arbitrary
hex digit, can crash this program if input[0x249]==0. An example
seed input has been shown in Figure 15. Initially input[0x248]
and input[0x249] are both zero.

Suppose that in a deterministic mutation function, Arvin flips the
byte in input[0x248] and observes that basic block b3 is executed.
Suppose that the next mutation function flips two neighboring
bits at a time for each iteration until all adjacent two-bit groups
are tested. The result of this second mutation function for all the
two-bit groups in input[0x248] have been shown in Figure 15.
None of them can crash the program because when the mutation
generates 0x01 for input[0x248], it also sets the left-most bits of
input[0x249] to 1 (and hence the whole byte to 0x80) which vio-
lates the if condition to enter b3. The result is that Arvin observes
that no new basic block is visited after trying all two-bit tests for
data[0x248]. This is when the performance check kicks in and
limits the use of the next deterministic functions for ME1 and ME2

ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia Sirus Shahini, Mu Zhang, Mathias Payer, and Robert Ricci

Figure 15: Example input for the code in Figure 14 showing
the values of bytes 0x248 and 0x249 along with the respective
status of execution of b1 and b2 and whether or not it crashes.
When performance check is active in restrictive mode (ME1 or
ME2), the fuzzer disables the bit_flip function for bytes 0x248
and 0x249 and the correct deterministic check to trigger the
bug is missed. On the other hand in performance checkmode
zero, the bug is triggered and the fuzzer detects the crash.

and then another mutation function single-bit-flip which is able to
crash the program gets disabled to improve speed. However in MD,
this restriction is not applied and single-bit-flip functions can find
the correct input by flipping the right-most bit in data[0x248]
(without touching input[0x249]) and crash the program. But it
also evaluates many other tests for the remaining bits, which may
not either increase the coverage or trigger a crash.

B DCG COMPLEMENTARY GRAPHS
In this part, we have reported the visual results of the effect of DCG
on coverage growth and path discovery of various programs.

In Figure 16 we have tested Arvin’s path discovery at three
levels (𝐿1, 𝐿5 and 𝐿10) for four programs. It should be noted that
the reported number of paths is the lower bound of actual paths
executed because of the approximation used in the fuzzing library.
In the test, we wanted to evaluate the effect of DHT levels on path
discovery and coverage. For bigger programs (the assembler in
this test) the difference between lower and higher levels is more
significant due to the big speed difference between the levels. In all
tests, lower levels tend to spend more time on finding new paths
whose majority of basic blocks have been already visited in previous
iterationswhile higher levels tend to find pathswith new basic blocks.
This can be directly inferred from looking at Figure 17 which shows
the number of basic blocks covered in the same configurations as in
Figure 16. Generally, higher levels have better coverage Figure 17.
Interestingly, for size, while 𝐿1 has the best path discovery, it got
the poorest basic block coverage among the three tested levels.

0

50

100

150

200

Pa
th

s

size

L1
L5
L10 0

200

400

600

800

1000
as

0

100

200

300

400

500

Pa
th

s

objdump

0

200

400

600

800
readelf

0 1000 2000 3000
Time (sec)

0

50

100

150

200

250

300

Pa
th

s

strip

0 1000 2000 3000
Time (sec)

0

50

100

150

200

250
addr2line

Figure 16: The effect of DHT on path discovery.

1000

1200

1400

Co
ve

ra
ge

size

L1
L5
L10

3000

3500

4000

4500

5000

5500

as

2000

2250

2500

2750

3000

3250

3500

Co
ve

ra
ge

objdump

1000

1500

2000

2500

3000
readelf

0 1000 2000 3000
Time (sec)

2200

2400

2600

2800

3000

3200

Co
ve

ra
ge

strip

0 1000 2000 3000
Time (sec)

1200

1300

1400

1500

1600

1700
addr2line

Figure 17: The effect of DHT on coverage growth.

As mentioned before, DCG shows better results as time passes. In
Figure 18 we repeated the same test for as and size in a longer
session. Although 𝐿5 and 𝐿10 have similar coverage in the shorter
session shown in Figure 17, 𝐿10 has obviously better coverage for
size in the second test. More tests showed that as reaches a local
saturation point relatively early when it is fuzzed by Arvin in 𝐿5

Arvin: Greybox Fuzzing Using Approximate Dynamic CFG Analysis ASIA CCS ’23, July 10–14, 2023, Melbourne, VIC, Australia

0 5000 10000 15000
Time (sec)

800

1000

1200

1400

1600

1800

Co
ve

ra
ge

size

L5
L10

0 5000 10000 15000
Time (sec)

3500

4000

4500

5000

5500

6000
as

L5
L10

Figure 18: The effect of DCG Hit Threshold on coverage
growth of size and as in a 5-hour session.

and 𝐿10. This saturation point lasts for many hours and this is why
both levels show similar coverage for this program.

C DCG CODE EXAMPLE
In Listing 2, a sample sanitization code from readelf is shown that
checks the value of e_phnum from the function get_program_headers.

1 if (filedata ->file_header.e_phnum
2 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) :
3 sizeof (Elf64_External_Phdr))
4 >= filedata ->file_size)
5 {
6 error (_(...
7 return FALSE;
8 }

Listing 2: Example header sanitization in readelf

In another function get_64bit_program_headers we have the
following loop:

1 for (i = 0, internal = pheaders , external = phdrs;
2 i < filedata ->file_header.e_phnum;
3 i++, internal++, external ++)
4 {
5 internal ->p_type= BYTE_GET (external ->p_type);
6 ...
7 internal ->p_align= BYTE_GET (external ->p_align);
8 }

Listing 3: Example loop in readelf

In Listing 3, the program updates two variables in each loop
iteration. The loop variable itself i is protected against overflow
by checking the value of e_phnum which consequently prevents
the two linked pointers internal and external from exceeding
their expected boundaries. For a small 20KB ELF file as the in-
put of readelf, the maximum allowed value for e_phnum, is 20 ∗
1024/𝑠𝑖𝑧𝑒𝑜 𝑓 (𝐸𝑙 𝑓 64_𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑃ℎ𝑑𝑟) = 365. This means that the ini-
tial basic block of this loop alone will produce 365 different paths,
and this is just one of several similar loops in readelf.c. Multiply-
ing the number of additional paths in each loop by the number of
paths discovered from other parts of the program will result in hun-
dreds of thousands of paths that can be generated just by tweaking
the e_phnum in the input header. Each of these paths incurs graph
analysis cost without triggering a crash in the PUT or increasing
coverage. This is a small example of why DCG is notably effective
to moderate the analysis cost.

D LOW-LEVEL DETAILS OF TESTED
PROGRAMS

The complexity and time cost of dynamic CFG analysis in Arvin
depends on the number of basic blocks and type of basic blocks in
the target program. In Table 4 we have reported basic blocks details
and the total number of instructions in each tested program.

The are two types of basic blocks that we have defined for Arvin
play an important role in our analysis and their relative number
also affects fuzzing speed. The size of each control flow graph is
directly proportional to the number of independent blocks that
Arvin identifies. In Figure 19-top we have shown the ratio of nested
blocks to independent blocks for each program. When this ratio for
each program gets smaller, the dynamic CFGs of the program will
grow bigger in Arvin. In Figure 19-bottom, we have shown the ratio
of number of basic blocks to total number of instructions in each
program. Transition to some of these basic blocks happens due to
indirect jumps which Arvin can precisely capture during dynamic
tracing of the program under fuzz. Naturally for a bigger executable
(i.e an executable with more instructions) we’ll have more basic
blocks. However, as we see in Figure 19-bottom the relation between
these two metrics is significantly different for some programs. This
ratio for the majority of programs is on average about 0.25 and gzip
and unxz (which uses the same binary as xz) had respectively the
highest and lowest ratios in the set of our tested programs.

nm file addr2line readelf unzip unxz size as gzip gif2png libpng libpcap
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ba
sic

 B
lo

ck
/In

st
ru

ct
io

ns
 R

at
io

nm file addr2line readelf unzip unxz size as gzip gif2png libpng libpcap
0.0

0.2

0.4

0.6

0.8

1.0

N/
I R

at
io

Figure 19: Ratio of basic blocks to all instructions (top) and
nested blocks to independent blocks (bottom)

Table 4: Low-level static details of the tested programs

Program Basic Blocks Independent Blocks Nested Blocks Instructions
nm 51082 40432 10650 187406

objdump 17939 12777 5162 58925
file 7131 5853 1278 26512

addr2line 50436 39937 10499 185350
readelf 35176 26661 8515 115015
unzip 9461 7761 1700 43576
unxz 18481 8914 9567 388009
size 50524 40002 10522 185645
as 72231 56708 15523 255542
gzip 4407 3745 662 14059

gif2png 929 692 237 3383
libpng 8254 6851 1403 28608

	Abstract
	1 Introduction
	2 Design
	2.1 Building the CFG
	2.2 Balancing the Priorities
	2.3 Decremental CFG Growth
	2.4 Parallel Fuzzing and Adaptive Mutation

	3 Implementation
	4 Evaluation
	4.1 Coverage Growth
	4.2 Fuzzing Depth
	4.3 Targeted Fuzzing
	4.4 DCG and Fuzzing Speed
	4.5 Parallel Fuzzing Mode
	4.6 Discovered Bugs

	5 Related Work
	6 Conclusion
	References
	A Mutation Moderation and CFG Set Pruning
	B DCG complementary graphs
	C DCG Code Example
	D Low-level Details of Tested Programs

