
RANDOM TESTING OF WEBASSEMBLY

IMPLEMENTATIONS USING SEMANTICALLY

VALID PROGRAMS

by

Guy Watson

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

August 2023

Copyright © Guy Watson 2023

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF THESIS APPROVAL

The thesis of Guy Watson

has been approved by the following supervisory committee members:

Eric Norman Eide , Chair(s) May 15, 2023
Date Approved

John Regehr , Member May 18, 2023
Date Approved

Pavel Panchekha , Member May 15, 2023
Date Approved

by Mary W. Hall , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

WebAssembly is a relatively new language designed to be low-level and portable.

Designed primarily for web browsers, its compact representation is meant to be directly

executed by a browser, enabling high-performance applications on the web. Since im-

plementations are both complex and browser-dependent, the language is a good target

for differential random testing. This thesis introduces Wasmlike, a random generator of

semantically valid WebAssembly programs. By using semantically valid programs with

random differential testing, the goal is to penetrate past syntax and semantic validation,

and test WebAssembly implementations for defects that cause programs to produce in-

correct results. Wasmlike has found five significant semantics defects in WebAssembly

implementations.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . v

ACKNOWLEDGMENTS . vi

CHAPTERS

1. INTRODUCTION . 1

2. RELATED WORK . 4

3. GENERATING WEBASSEMBLY PROGRAMS . 7

3.1 WebAssembly Specification . 7
3.2 Semantically Valid Program Generation . 12
3.3 Current State of Wasmlike . 27

4. TESTING WEBASSEMBLY IMPLEMENTATIONS . 30

4.1 Systems Under Test . 30
4.2 Testing Process . 30
4.3 Test Harness . 36

5. RESULTS . 39

5.1 Defects Found . 39
5.2 Testing Metrics and Throughput . 41
5.3 Defects Not Related to Program Generation . 43
5.4 Discussion . 45

APPENDIX: BUG REPORT TEST CASES . 49

REFERENCES . 54

LIST OF FIGURES

3.1 A portion of Wasmlike’s grammar specification defining literals, addition
operators, and variables . 16

3.2 An portion of Wasmlike’s grammar specification supporting multiple func-
tions and function references. 17

3.3 An example memory store inside a small AST subtree. 20

3.4 Sum program extremes. 22

4.1 Testing procedure. 34

4.2 Organization of the test harness. 37

A.1 Rotate bugs in Wasmer 1.0.2. 50

A.2 LLVM optimizer crash in Wasmer 2.3.0. 50

A.3 Cranelift and LLVM wrong code error in Wasmer 2.3.0. 51

A.4 Three way code generation difference in Wasmer 2.3.0. 52

ACKNOWLEDGMENTS

Thanks to my family and friends for their endless support.

This material is based upon work supported by the National Science Foundation under

Grant Numbers 1527638 and 2027208. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

CHAPTER 1

INTRODUCTION

WebAssembly, commonly known as Wasm, is a stack-based, portable, and low-level

programming language. WebAssembly is defined by its specification [20] and has a single

binary format that is meant to be compiled and executed by a web browser. The language

shares many similarities with assembly languages, being comprised of simple instructions,

very few types, and almost no frills. It is not, however, machine code. It uses stack-based

execution, compared to modern processors that use registers. It enforces structured control

flow, such as branches that target a nesting level instead of a program counter. These

simple language structures can be easily translated into machine code.

Large pieces of software are typically tested with test suites that contain unit and

integration tests to verify the behavior of the software. The complexity of these pieces

of software — with unanticipated edge cases or complex interactions — makes them in-

feasible to exhaustively test. This is especially the case with software that processes or

implements programming languages, such as compilers and interpreters, since the vari-

ability of possible programs makes it impractical to write tests for every way a language’s

features might be used, either singly or in combination.

Random testing, or fuzzing, is useful to complement existing “fixed” test suites. Ran-

dom testing approaches such as AFL [26] are known as mutational fuzz testers, or fuzzers,

and generate new test inputs by mutating an initial seed or corpus. Mutational fuzzing has

several problems when applied to systems like compilers. It tends to find errors related

to syntax, but has difficulty penetrating deep into the code base to find more complex

errors [12], since the vast majority of mutations produce malformed code. Additionally,

the test inputs created by a mutational fuzzer will often only display characteristics from

the initial seed, or language constructs found randomly. This limits the possible test

2

inputs that the fuzzer can practically generate and makes finding bugs relying on complex

interactions extremely difficult.

Random program generation based on the semantics of a language can avoid these

problems and act as a complementary method to mutational fuzzing methods. For a

generated program to be considered semantically valid, it must obey the grammar of the

language and conform to the scoping, typing, and behavioral rules set by the language

specification. A semantically valid program run by an implementation of the language can

be expected to execute and produce a meaningful result. One can therefore use semanti-

cally valid test programs to find semantic bugs in the implementation of a programming

language: i.e., errors in which a valid program does not produce the result that is correct

according to the language specification.

With no ability to guarantee that a given implementation of WebAssembly is perfect,

we cannot use one as an oracle to distinguish other implementations as containing or

not containing defects. Instead, we use random differential testing [13] to identify test

cases that trigger defects in given implementations. In short, if the same input is given to

multiple systems under test and results in output that is not uniform, a defect is present in

at least one system under test.

Thesis statement: Random differential testing of WebAssembly implementations us-

ing semantically valid programs allows the discovery of defects that cause programs to

produce incorrect results.

To investigate this hypothesis, we present Wasmlike, a fuzzer that randomly gener-

ates semantically correct WebAssembly programs. We use the fuzzer to differentially

test several implementations of WebAssembly: NodeJS, Wasmer, Wasmtime, Firefox, and

Chromium.

To implement this fuzzer we use Xsmith [11], a framework for creating programming

language fuzzers. The advantage of using a tool like Xsmith is highlighted by the restric-

tive nature of WebAssembly. Since browsers are meant to execute WebAssembly code

natively, the language is designed to be safe. WebAssembly programs must satisfy a

number of constraints in order to be semantically valid and accepted by a WebAssembly

compiler. Programs that do not follow these constraints are declared invalid by the spec-

ification, which renders the program unusable for random differential testing. Because

3

Xsmith can express all of WebAssembly’s language constraints, it is an excellent choice for

constructing a fuzzer that can make guarantees about the programs it generates.

We evaluate WebAssembly implementations with the aid of a testing harness that au-

tomates differential testing and reports possible defects. Defects are signaled when a

single test input produces different results across multiple implementations: if one runtime

reports a different result compared to the other runtimes, we know that a semantic defect

has been found.

This thesis describes our approach to testing WebAssembly implementations by gen-

erating semantically valid programs. In Chapter 2, we describe related work that informs

our approach. Chapter 3 describes our methodology on generating semantically valid test

programs. The constraints present in WebAssembly, as well as the need to avoid undesir-

able runtime behavior, guide program generation to ensure useful and semantically valid

test cases. Chapter 4 covers our testing methodology and the test harness used for the

experiment, and Chapter 5 discusses results, conclusions, and future work.

CHAPTER 2

RELATED WORK

Fuzz testing compilers can lead to finding bugs in areas of a language that are not often

exercised [8]. These defects can be very hard to identify and test for manually, which is the

main motivation for using random testing.

To generate random test cases, we take a similar approach to Csmith [25], specifying

the grammar and attributes of a language in order to generate a valid program for the

compiler. Csmith starts with an attribute grammar and randomly generates an AST by

using the grammar to determine valid placements and type rules. Csmith then transforms

that AST into the text format of a semantically valid C program. Csmith was developed

specifically for the C language, and Xsmith [11] is a successor to the Csmith project. Xsmith

is a tool designed for creating fuzz testers by specifying the grammar, attributes, type

system, and other rules of a language. This thesis uses Xsmith to create Wasmlike, our

WebAssembly fuzz tester.

Fuzzers can take many different forms, with one of the most common being a muta-

tional fuzzer like AFL [26]. Fuzzers like these rely on an initial seed or corpus of sample

data, which they mutate to produce new tests. This thesis chooses a different approach,

relying on a semantic specification of the language to generate test cases. This exercises

features of the language more deliberately, instead of relying on the seed data to contain

language features [6].

Some previous fuzzers attempt to automatically infer highly structured inputs without

a grammar specification. Grimoire [2] is a fuzz tester that attempts to synthesize language

structure during the fuzzing process. However, Grimoire has issues when dealing with

precise syntax and semantics. While it can approximate, WebAssembly is extremely strict

with semantics. The restrictive semantics lend themselves well to a grammar specification-

based fuzzer, such as the one we construct for this thesis.

5

Other work has been done to generate semantically valid test inputs from mutation-

based fuzzing. Polyglot [7] breaks down the seed corpus into an IR language and mutates

seed inputs to generate a new test input. To get a high percentage of semantically valid

tests, Polyglot does a second pass with a grammar specification to fix any mismatches

that arise from mutation, such as variable names and types. This presents a problem for

WebAssembly programs because of the strict semantics of the language. Everything on the

stack must be used, and fixing mismatches would result in WebAssembly programs that

consist of mainly deterministic fixes interspersed with random instructions.

Similarly, Nautilus [1] combines a grammar specification with a coverage-guided ap-

proach to generate semantically meaningful programs. Nautilus uses coverage informa-

tion to find interesting paths and mutate previously generated inputs, which guides its

generation of syntactically correct programs towards being more semantically correct. How-

ever, Wasmlike is built to always generate semantically valid programs and instead steers

the generation of programs by being able to make choices during generation based on

the current structure of the program being generated. This lets Wasmlike target different

features in a focused manner, albeit without coverage guidance.

A slightly different approach to semantically valid programs is Zest [17], which con-

ducts a fuzzing campaign by guiding the choices of a program generator instead of directly

mutating a seed. This requires some kind of program generator to be written, and results

in semantically correct programs if the generator is written correctly. Zest is meant for

use with coverage-guided fuzzing, since it uses a code coverage metric to adjust its muta-

tions. This thesis does not instrument WebAssembly implementations and instead directly

generates programs and uses differential random testing to find defects.

Finding deep semantic defects in a language through fuzzing typically requires the

fuzzer to be specific to that language. Perényi and Midtgaard wrote a stack-directed fuzzer

for WebAssembly [18] to target defects that would be missed by coverage-guided fuzzers.

Their fuzzer uses differential testing and is focused on extreme generator freedom: any

semantically valid WebAssembly program can be generated including recursive calls and

nondeterministic or undefined behavior. By comparison, Wasmlike is focused on finding

code-generation defects, and therefore avoids nondeterministic behavior through static

and dynamic constraints on generation.

6

Fuzz testing is not without its problems. Because of its unpredictable nature, the rigor

of random testing campaigns and tools has been called into question [12]. Klees et al. detail

problems with existing random testing papers, mainly: the failure to perform multiple

runs, counting unique crashes instead of distinct bugs, short timeouts, a small selection

of starting seeds, and a lack of common benchmarks. This thesis attempts to follow their

recommendations where applicable, e.g., appropriate timeouts and not measuring success

in terms of crashes found. While Klees et al. call for care in selecting the starting seed,

semantics-based fuzzing must instead take care in how often certain language features are

generated in order to produce meaningful programs that test large parts of a language’s

implementation. Wasmlike has several tuning parameters and idiomatic structures that

help generated test cases mimic real world behavior.

Fuzz testing is one of the test methods that both the WebAssembly project [10] and the

makers of Wasmtime [4] use. They both provide a fuzzer that turns a stream of bytes into

a WebAssembly module in order to test implementations. Their fuzzers always generate

semantically valid test cases, but lack the targeting and tuning that Xsmith provides.

CHAPTER 3

GENERATING WEBASSEMBLY PROGRAMS

To test WebAssembly implementations, we constructed an Xsmith specification for

WebAssembly, which we call Wasmlike.1 Wasmlike encodes the grammar, types, con-

straints, and features described by the specification and structure of the WebAssembly

language, version 1.1 [20].

We first provide an introduction to the WebAssembly specification and language fea-

tures used in the rest of this thesis. We then detail how Wasmlike works, describe the

constraints that guide generation, both specification constraints and generation model

constraints, and discuss how Wasmlike avoids undefined behavior. We then discuss how

Wasmlike generates interesting programs and avoids uninteresting ones by using the fea-

tures of an attribute grammar to make decisions on what direction to guide generation.

Finally, we cover the current state of Wasmlike and its limitations.

3.1 WebAssembly Specification
The WebAssembly specification is a self-contained technical document that details ev-

erything about the language, from instructions to types to program validation. Here, we

summarize the important aspects and necessary information for readers to understand the

rest of this thesis.

WebAssembly programs are designed to be portable and system-agnostic. A Web-

Assembly program is compiled into a binary form similar to Java bytecode: very compact,

but the final compilation to machine code and execution is the responsibility of the browser

or runtime.

The WebAssembly text format can be translated to and from its binary format with no

effect on the program, although translating between the two may result in minor changes

1The name is based on a series of fuzzers constructed from Xsmith called Cish and Pythonesque.

8

such as replacing a name with its equivalent index form or desugaring convenient short-

cuts. The rest of this thesis uses the text representation of WebAssembly as well as the

desugared syntax forms.

In the following sections, we lay out the structure of a WebAssembly program, the type

system and the run-time stack, structured control instructions and their interactions with

the stack, and finally, the structure of the text format along with some examples.

3.1.1 Program Structure

A WebAssembly program is written in a Lisp-like notation and is structured in multiple

parts. The outermost layer is a module, which defines the global variables, linear memory,

functions, imports, and exports of that module.

Global variables may be referenced from anywhere in the program. Linear memory is

simply a linear array of bytes that may also be referenced from anywhere in the program.

WebAssembly does not provide any structures on top of memory, leaving it for programs

to use as they will.

WebAssembly functions are similar to those found in other programming languages.

A WebAssembly function takes parameters, produces a result, and contains a sequence

of instructions. A function may also define local variables that are only available from

within that function. Many WebAssembly constructs, including variables, functions, and

parameters, can be given a name and may be referenced by either their name or their

index based on order of appearance in the program. Comments may also be present, but

are stripped out in the conversion from text to binary.

The imports and exports of a WebAssembly program are how it communicates to its

runtime. A program may import or export linear memory, global variables, and functions.

For example, exporting a function allows a web browser’s JavaScript runtime to call that

function when it wishes. Importing a linear memory allows the browser’s runtime to set

up the memory that the program will access when it executes.

Below is a small WebAssembly program containing all of these parts. The module

declares a linear memory with a size of at least one page. The module then imports a global

variable from its runtime and exports a function for the runtime to call. That function takes

one parameter and returns the sum of that parameter and the global variable. Note the

9

nesting of different WebAssembly structures and how names are used to refer to memory,

global variables, local variables, and functions. Also note how the module is dependent

on the runtime to provide the import for the global variable, as well as call the function the

module exports.

(module
; This is a comment
(memory $mem 1) ; One page of memory
(import "env" "wasm_global" (global $arg1 i32))
(export "_start" (func $add_two))
(func $add_two (param $arg2 i32) (result i32)

global.get $arg1
local.get $arg2
i32.add))

3.1.2 Types and the Runtime Stack

WebAssembly defines four types: i32, i64, f32, and f64, which represent 32- and 64-bit

formats of integers and IEEE floating-point values. The integer types represent both signed

and unsigned integers; some instructions treat i32 or i64 values as signed integers and

other instructions treat them as unsigned.

When a WebAssembly program executes, it may access and store values of the above

four types on a run-time stack. We refer to instructions that pop values from the stack as

consuming values, and instructions that push values onto the stack as producing values. For

example, an addition instruction pops two values from the stack, performs the addition,

and pushes the result back onto the stack: we say that the instruction consumes two values

and produces one.

WebAssembly programs are strongly typed. In particular, when a WebAssembly in-

struction executes, the types of the values that the instruction consumes must match the

types of the values at the top of the stack. For a binary operation (binop) such as addition,

both of the values consumed must be of the types required by the instruction. The value

produced will be of the type specified by the instruction. The name of every instruction

that modifies the stack begins with a type prefix. For example, although addition is valid

for every WebAssembly type, i32.add consumes and produces i32 values, while f64.add

consumes and produces f64 values.

Most instructions produce the same type that they consume. There are a few exceptions

to this general rule, mainly centering on comparison or test operations whose result is

10

“true” or “false.” Because WebAssembly does not have a boolean type, it uses the i32 type

to represent boolean values. For example, an equality instruction consumes two values (as

long as they have the same type) and produces one i32 value.

3.1.3 Structured Control Instructions

WebAssembly is a structured language with functions and function calls, blocks, loops,

and if statements. For structured control flow, functions comprise the outer layer, and

within them are block, loop, and if instructions. The block and loop instructions allow

controlling program flow by either jumping to the end of a block or to the beginning of

a loop, while the if instruction allows conditional if/else logic. Tying structured control

flow together is the branch instruction and some of its conditional variants. To enforce

structured control flow, a branch targets a nesting depth instead of an instruction address

in the program. Using C analogies, branches may break out of a block or continue a loop,

but they may not perform a goto. To extend this analogy, not only may a branch break out

of a block, but it may choose how many blocks to break out of.

Each structured control instruction must declare the types it takes as parameters and

the type of its result. To simplify type-checking, each structured control instruction has

its own run-time stack, meaning that a nested structured control instruction may access

local and global variables, as well as the parameters provided to it, but its run-time stack

is separate from that of its parent. For the parent, a structured control instruction is simply

viewed as an instruction that consumes the values specified in its parameters and produces

the value of its result type. In the case of branch instructions, when a branch targets a

structured control instruction, it must produce the correct result type for the targeted block

or if, or the correct parameters for the targeted loop.

3.1.4 Text Format and Examples

WebAssembly programs follow a Lisp-like format, with an identifier first and a list of

arguments following it. For example, the arguments of a module are function definitions.

The arguments to a function are parameters and a result type followed by a list of instruc-

tions.

Functions, local variables, and global variables can have names to aid a program-

mer in remembering their purpose, but can be referred to by their indices. For example,

11

when exporting a function so that an external runtime can call it, the export declara-

tion can take either a name or an index: (export "exported_function" $wasm_func) or

(export "exported_function" (func 0)).

Below is a modified version of the addition function from earlier. Each local.get

instruction pushes a value onto the stack. The following i32.add instruction consumes

those values and produces the result of the sum. Note that the function is exported by

index instead of by name. Also note that there is no explicit return instruction. When a

function reaches the end of its list of instructions, it returns the value left on the stack.

(module
(func $simple_add_two (param $arg1 i32) (param $arg2 i32) (result i32)

local.get $arg1
local.get $arg2
i32.add)

(export "_start" (func 0)))

Here is a function that takes a float parameter x and executes a loop to compute and

return (x + 2)× 10. Note the branch referring to nesting level by index.

(module
(func $loop_func (param $x f32) (result f32) ; Nesting level 1

(local $counter i32)

; Counter setup
i32.const 10
local.set $counter

; Get initial parameter
local.get $x

loop (param f32) (result f32) ; Nesting level 0
; The parameter is placed on the stack at the start of
; the loop.
f32.const 2
f32.add

; Decrement the counter
local.get $counter
i32.const -1
i32.add
; A ’tee’ is a simultaneous ’set’ then ’get’
local.tee $counter

; At this point, the conditional and the
; parameter value are on the stack
; - If the branch is taken, it consumes the parameter
; for the start of the loop
; - If not, the parameter is used as the result type
; for the loop

; The branch instruction consumes the counter value.

12

; If non-zero, branch to the start of the loop.
br_if 0

; If we get past the branch, the counter was zero.
; The f32 result is the only thing left on the stack.
; We end the loop with the correct result type

end)
(export "_start" (func 0)))

The equivalent C code is:

float loop_func(float x) {
float result = x;
int i = 10;
do {

result += 2.0;
i--;

} while(i != 0);
return result;

}

3.2 Semantically Valid Program Generation
There are several problems Wasmlike must solve to generate usable programs for ran-

dom differential testing. First, it must generate programs that produce meaningful results

that can be compared between different systems under test. A meaningful result is one

where we can obtain useful information about the execution of the program from the state

of the runtime after execution. Next, it must enforce WebAssembly’s type system as laid

out in the specification. Wasmlike does this by creating an abstract syntax tree to keep

track of the structure of the program being generated and to reason about the type system.

Additionally, Wasmlike must also avoid undesirable behavior to get consistent results from

generated programs by implementing static and dynamic constraints. Finally, Wasmlike

must generate programs that are interesting and approximate real-world programs in

order to find defects caused by optimizing compilers in the systems under test. Wasmlike

does this by generating idiomatic constructs such as counting loops, i.e., “for loops.”

3.2.1 Generating Programs for Random Differential Testing

Random differential testing presents some challenges for determining if a WebAssem-

bly implementation encounters a defect when it runs a generated program. First, the test

program must produce something meaningful. Second, the test program must be able to

be invoked by multiple WebAssembly runtimes. Third, we must be able to differentiate

the result of running a program on a runtime that contains a defect from one that does not.

13

When generating a program with a meaningful result, WebAssembly’s structure gives

us several inspection points. WebAssembly runtimes have access to the return value from

a function call, any imported or exported global variables, and imported or exported linear

memory. Wasmlike generates programs that contain a main function with a return value,

an exported linear memory, and boilerplate to expose each generated global variable. If

there is a difference in execution between two systems under test that impacts any of these

components, we consider it a defect.

To differentially test different runtimes, we must be able to run a generated program on

each system under test. To this end, Wasmlike will always generate a main function from

which all other functions are called. Each system under test has a test driver to instantiate

the generated WebAssembly module, call the main function, and collect the result.

Detecting defects in runtimes comes down to comparing the printed result of each

system under test. To detect as many defects as possible, the test harness combines every

piece of information available to the runtime into a CRC checksum value. This value

includes the return value from the main function, the contents of linear memory, and the

values of each global variable after execution. The test driver can access the return value

and memory easily, but the number of global variables depends on the generated program.

Wasmlike solves this by adding a small amount of boilerplate code to handle it and fold the

global variable values into the CRC. This is the same style of program and defect detection

method that Csmith uses [25].

3.2.2 Abstract Syntax Tree Generation

Wasmlike is an Xsmith-based random program generator. It uses the library provided

by Xsmith to specify the grammar and type system of WebAssembly, construct the AST

representing a random program, and output the generated program.

Wasmlike starts with a single root node in the AST representing the program as a

whole. The root node has unspecified children, which Xsmith calls holes. Wasmlike builds

the AST by finding a hole and filling it with a node that satisfies the grammar, type

constraints, and semantics of the WebAssembly language until all holes are filled. At that

point, it transforms the AST into the text representation of the program and outputs it.

14

The grammar is specified in a form reminiscent of eBNF. A node specifies its children,

and what types its children can be. When Wasmlike fills a hole, it chooses a node that is of

the type specified by the parent node.

Wasmlike starts with a program node. The only hole it can fill is that of the main

function, which it does with a new function. Wasmlike then fills the root expression of

the function, by randomly choosing among the possible kinds of expressions, e.g., binary

operations (binops), function calls, variable references, and literals. If Wasmlike chooses a

binop, it continues by choosing another subtype, such as an addition. The addition has two

children: left and right expression holes. Wasmlike continues filling in holes until there are

no more to fill. If Wasmlike chooses a literal value, it immediately chooses a random value

to use when printing the completed program. Generated nodes can inherit children from

their supertype. In the case of the addition node, the left and right children are specified

in the binop type, so that all binops inherit the requirement of having two children.

Wasmlike can generate variable definitions and references as well. To add global vari-

ables to the grammar, Wasmlike adds a list of variable definitions to the root program node,

and a variable reference node to the available generation node types. Wasmlike must also

tell Xsmith that the definition node is a binder, and that the reference node is a reference.

When Wasmlike chooses to generate a reference to a variable, Xsmith will either choose an

existing binder or create a new one, a process called lifting. The mechanism of lifting needs

types and names to be able to match new references to existing binders. In WebAssembly,

global variables are initialized when they are created. Thus, a binder consists of a type, a

name, and an initialization value, while a reference consists of the name of the binder, and

depending on the type of use, an expression to set the value of the variable. We discuss

types in more detail in Section 3.1.2.

The choice of where to lift a definition to can be nebulous. To add local variables as

well as global variables, Wasmlike adds a list of variable definitions to the function node in

addition to the program node. Wasmlike distributes the choice evenly between global and

local variables. It is important that not all variables are global, because one of Wasmlike’s

goals is to create opportunities for optimizing compilers to perform optimizations, so that

a testing process can potentially discover defects in those optimizations. If every generated

variable was a global variable, our testing process would capture more information about

15

what happened during execution, but compilers treat global variables with care, meaning

fewer optimizations would be applied during compilation.

Our example grammar specification so far is in Figure 3.1.

Wasmlike can make more complex trees than just a simple binop tree. To generate more

than one function, the root program node still contains the main function, but adds a list of

additional functions. Functions are lifted in a manner similar to local and global variables:

a function call is generated, and either an existing function is chosen as the target, or a

new function is generated along with its parameters, which are binders. Since there are

two new types of binders and references, Wasmlike must tell Xsmith how to differentiate

between functions and variables in order to produce semantically valid programs. Because

a function parameter shares the same index space as a local variable, there is no difference

between a variable reference to a function parameter, a local variable, or a global variable.

When lifting a new reference, Wasmlike simply differentiates the type of reference by

whether or not the reference is to a function. An example of this can be seen in Figure 3.2.

To make a well-typed WebAssembly program, Wasmlike follows type constraints dur-

ing generation. The simplest of these constraints can be seen in binop: a binop may

produce any type, and its two operands must match that type. Xsmith allows Wasmlike

to express this in terms of relationships between a node and its children. For a binop,

Wasmlike declares that it can fill any hole needing a value of any type, and that the two

children must be of the same type as the binop node. This is expressed in the following

code.

(add-property wasmlike type-info
[Binop [(fresh-number) ;; What types of holes can this node fill?

;; ’fresh-number’ is a type-variable composed of
;; all number types: i32, i64, f32, and f64.

(λ (n t) ;; A function that relates the node ’n’ and its
;; type ’t’ to a mapping of its children and
;; their types.

(hash ’l t
’r t))]] ;; In this case, ’l and ’r must match the

;; type of this node
...)

During program generation, multiple constraints may be applied to specific nodes. For

example, a unary operator node has the type constraint that its child must match the type

of the unary operator node itself. The “count leading zeroes” instruction, however, adds

the constraint that the type of the node must be an integer type. The combination of these

16

(add-to-grammar wasmlike
[Program #f ([globals : VariableDef *]

[main : Func])]
[Func #f ([locals : VariableDef *]

[root : Expr]
[name])]

[Expr #f ()
#:prop may-be-generated #f]

[Literal Expr ([v = (random 0 10)])]
[Binop Expr ([l : Expr]

[r : Expr])
#:prop may-be-generated #f]

[Addition Binop ()]

[VariableExpr Expr ()
#:prop may-be-generated #f]

[VariableDef #f ([init : Literal] ;;only used in globals
[type]
[name])

#:prop binder-info (#:binder-style definition)]
[VariableGet VariableExpr ([name])

#:prop reference-info (read)]
[VariableSet VariableExpr ([val : Expr]

[name]
[expr : Expr])

#:prop reference-info (read)]
...)

Figure 3.1: A portion of Wasmlike’s grammar specification defining literals, addition
operators, and variables. Wasmlike’s actual grammar specification has many more com-
ponents.

17

(add-to-grammar wasmlike
[Program #f ([globals : VariableDef *]

[functions : Func *]
[main : Func])]

[Func #f ([params : Param *]
[locals : VariableDef *]
[root : Expr]
[name]
[type])

#:prop binder-info (#:binder-style definition)]
[Param #f ([type]

[name])
#:prop binder-info (#:binder-style definition)]

[Call Expr ([function : FunctionReference]
[argnode : Arguments])]

[FunctionReference #f ([name])
#:prop reference-info (read)]

...)

(add-property wasmlike
lift-type->ast-binder-type
[#f (λ (type)

(if (function-type? type)
’Func
’VariableDef))])

Figure 3.2: An portion of Wasmlike’s grammar specification supporting multiple functions
and function references.

18

type constraints means that both the “count leading zeroes” instruction node and its child

must be an integer type, since the child node’s type is constrained to match the type of its

parent.

The constraint of child nodes does not necessarily depend on the parent, and can

instead be a constraint between children. For example, the WebAssembly specification

states that a comparison operation will consume any two matching types, but will always

produce an i32. To express this, Wasmlike defines a new type variable to hold the type

information, then sets the type constraint of both children to the same variable, as shown

in the code below. This effectively decouples the type of the two children from the parent.

[Comparison [i32 ;; This node can fill i32 holes
(λ (n t)

;; Create a new type-variable
(define child-type (fresh-number))
;; Assign the new type-variable to both children
(hash ’l child-type

’r child-type))]]

Manipulating types through the unification of type variables is a common pattern

throughout Wasmlike when dealing with more complex type interactions. Once two type

variables are unified, constraining one will constrain the other. Take for example the type

constraint of an argument list node, which is generated to fill in the arguments of a newly

generated function call. To match the parameters in the function signature to the supplied

arguments, Wasmlike represents the arguments as a list of expressions corresponding to

each argument in order. Wasmlike unifies the type of each argument in the list with the

type of each parameter in the function signature. Once unification is done, generating

expressions for the arguments to the function call will update the function signature,

keeping the types aligned.

[Arguments [(product-type #f) ;; Any product type
(λ (n t)

;; Get the argument list from the target function
(define pt (product-type #f))
(unify! pt t)
(when (not (product-type-inner-type-list! pt))

;; Force exploration of function node to fill in args list.
(att-value ’xsmith_type

(ast-child ’function (ast-parent n))))
;; Set the args for the call
(for/hash ([arg (ast-children (ast-child ’args n))]

[arg-type (product-type-inner-type-list! pt)])
(values arg arg-type)))]]

19

This is important because Xsmith deals with constraints lazily. It only concretizes types

from a set of possibilities to a single type when it must. The rest of the time, Xsmith

views types as a collection of possible types for each node. This allows Xsmith to quickly

expand the AST while maximizing the amount of randomness present during generation.

By concretizing types as late as possible, Xsmith maximizes the number of choices it has

for each node in the AST.

3.2.3 Wasmlike AST Generation Model

Wasmlike adds its own invariant during generation: each node in the AST that corre-

sponds to an instruction must produce a single value on the run-time stack, regardless

of what the represented WebAssembly instruction actually produces. This generation

model allows Wasmlike to easily generate programs that use the run-time stack correctly,

because Wasmlike only has to consider the current node being generated and its immediate

surroundings.

Most instructions already fall into this model. Binary operations consume two values

and produce one. Unary operations consume one value and produce one value. Even

function calls produce one value. Some instructions, however, need to be adjusted so that

their total effect on the stack is to produce one value.

Take for example the WebAssembly variable store instruction. A store instruction has

two operands: the value to store, and the index or name of the variable to store into. When

represented as an AST node, the store instruction needs two children: an expression child

for the value to store, and the name of the variable. Because the store instruction does

not produce a value, Wasmlike represents the store instruction in a novel way: it adds an

additional expression child to the node to serve as the result of the node. This can be seen

in Figure 3.3.

The generation model comes from the following reasoning. Wasmlike must generate

functions with a “balanced” runtime stack, meaning that every generated value must be

consumed, except for one, which is consumed by the function return. To generate code

the balances the stack, Wasmlike can either generate a node that is locally guaranteed to

be balanced, i.e., guaranteed to be the root of a subtree that yields a balanced stack, or it

can generate some number of nodes that may be unbalanced and fix the imbalance later.

20

+

Value to store Value to produceLocal
index

Store 7

1 30
(a) AST subtree

;; Memory store node
i32.const 1
local.set 0 ;; Consume the 1
i32.const 3 ;; Produce a 3 for the parent

;; Literal node
i32.const 7

;; Addition node
i32.add ;; Consume the 3 and 7

(b) Resulting instructions

Figure 3.3: An example memory store inside a small AST subtree.

21

Generating a locally balanced node is the simpler option because reasoning about the state

of the stack requires only considering directly adjacent nodes. Generating a truly random

AST and fixing it is much more complicated. Every subtree in the AST must be balanced

individually, since every instruction in the generated program must have its operands

satisfied or be declared an invalid program by the specification. Fixing imbalances would

mean mutating every level of the AST, not just adding to it. Because of the complexity

of this approach, Wasmlike uses its generation model to guarantee the correctness of the

stack without needing to mutate the AST after generation.

Because this invariant constrains programs more than the WebAssembly specification

does, we must ensure that the invariant does not unduly constrain the shapes of programs

being generated. As a simple proof of concept, let us take a program that sums up five

numbers. One extreme is to place all five numbers on the stack, then sum them all by using

four addition instructions. The other extreme is to sum them up as we go, starting with two

numbers, an addition, and then an alternating sequence of numbers and additions until the

five numbers are summed. Wasmlike is able to produce either of these two extremes, as

shown in Figure 3.4.

When rendering an AST node into the text form of WebAssembly, Wasmlike prints the

left child, then the right child, and then the parent. The corresponding ASTs of our two sum

programs are long branches to the left or the right of addition nodes, surrounded by literal

leaf nodes, as in Figure 3.4. Because Wasmlike can generate both extremes by changing

whether the next addition in the chain is the left or the right child, we know that Wasmlike

can generate any possible AST between the two extremes. From this, we can draw two

conclusions. First, Wasmlike can generate any ordering of a sequence of instructions in

the text format of a WebAssembly program. Second, because of this, we can be reasonably

sure that Wasmlike’s generation model does not constrain generated programs into similar

looking patterns. As long as the type system is satisfied, any interleaving permutation of

instructions is possible when generating programs.

3.2.4 Avoiding Undesirable Behavior

In addition to generating programs that are correctly typed, Wasmlike should also pro-

duce programs that are useful for random differential testing. There are several undesir-

22

+

5

+

+

+

4

3

2

1

(a) Push all literals, then sum

i32.const 1
i32.const 2
i32.const 3
i32.const 4
i32.const 5
i32.add
i32.add
i32.add
i32.add

(b) Resulting program from (a)

+

5

4

3

2

+

+

+

1
(c) Intermix pushes of literals and additions

i32.const 1
i32.const 2
i32.add
i32.const 3
i32.add
i32.const 4
i32.add
i32.const 5
i32.add

(d) Resulting program from (c)

Figure 3.4: Sum program extremes.

23

able behaviors to avoid in programs generated for differential testing: crashing programs,

programs that do not terminate, and programs that use undefined behavior. To avoid

these behaviors, Wasmlike uses a combination of static and dynamic constraints. A static

constraint is enforced during generation, and is related to the choices that Wasmlike makes,

such as constraining the range of a generated memory address. A dynamic constraint is

code that is inserted into a generated program to detect and correct undefined behavior

during execution.

The first undesirable behavior Wasmlike avoids in generated programs is crashes. It

does this by using static and dynamic constraints during program generation and when

the program is run. Static constraints are used when the behavior of the generated pro-

gram can be determined during generation, like an out-of-bounds memory address, and

dynamic constraints are used when the behavior can only be detected at run time, like a

division by zero. Wasmlike’s constraint on memory addresses is twofold. First, memory

addresses are always generated directly as a value, never as an expression resulting in a

value. Second, Wasmlike controls the range of possible memory addresses to always be

in bounds. Generating the value directly allows for the static constraint during generation

instead of a much more complex dynamic check during run time. Controlling the range

directly lets Wasmlike do interesting things like reuse sections of memory or encourage

the use of memory addresses that overlap. For instructions that would cause a run-time

error, like a division by zero, Wasmlike inserts a dynamic constraint into the generated

program that detects problematic operands and replaces them with similar values that

will not cause the program to crash.

The second behavior we want to avoid is programs that do not terminate. We chose

not to guarantee this property, in order to simplify Wasmlike and give it freedom to gen-

erate programs. Nevertheless, Wasmlike takes steps to mitigate generating these kinds

of programs. First, it limits the AST depth of generated programs. By choosing a depth

constraint that produces programs where most will finish quickly, it is unlikely (but still

possible) that a program will terminate on one runtime but not on another. Second, Wasm-

like avoids generating directly and indirectly recursive function calls. This limits the

program space that Wasmlike can explore with random generation, but the likelihood of

randomly generating a recursive function call that also contains a proper exit condition is

24

small. A recursive function call will most likely run until the program is terminated by a

stack overflow, so Wasmlike enforces a static constraint of not allowing recursive calls.

The third behavior we want to avoid is programs that use undefined and nondetermin-

istic behavior. Some floating point operations, such as taking the square root of a negative

value, result in a NaN value, and the WebAssembly specification allows WebAssembly

implementations to produce differing binary representations of NaN (i.e., non-canonical

NaN values). Because of this, two runtimes that correctly execute a program that pro-

duces NaNs may yield two different checksum values (Section 3.2.1). To avoid these

situations and produce programs useful for differential testing, Wasmlike inserts dynamic

checks into generated programs in the same manner as before: one that detects problem-

atic operands and replaces them. Another nondeterministic behavior we want to avoid

in generated WebAssembly programs is when a program is unable to grow its memory

because the operating system has run out of available memory to allocate. The fix is a

simple static constraint to never generate the memory.grow instruction. Wasmlike already

constrains memory addresses to a static range, so even if a memory.grow instruction was

generated, the extra memory would go unused. Table 3.1 presents a full list of undefined

behaviors along with Wasmlike’s constraints to avoid those behaviors.

3.2.5 Generating Interesting Programs

To exercise the systems under test to their fullest, Wasmlike needs to generate programs

that are interesting. For Wasmlike, this means generating programs that are non-trivial,

varied in their layout and structure, use a variety of language features, mimic constructs

of real world programs, and test edge cases. Wasmlike achieves this by using choice

weights to guide program generation, a cumulative function depth limit to encourage

function variety, weighted function reuse, idiomatic expression nodes, and weighted literal

generation that prefers edge cases like maximum and minimum values.

Choice weights are the primary way in which Wasmlike avoids generating non-trivial

programs. For Wasmlike, trivial programs are programs that are extremely short or pro-

grams that only use one type of instruction. For example, a program that immediately

returns a constant value is trivial, as is a program that only uses the addition instruction.

We want programs that are large and complex, to allow the compilers of various systems

25

Table 3.1: Static and dynamic generation constraints.

Undefined Behavior Constraint
Type

Constraint

Division by 0 Dynamic Replace divisor with 1
Division of MININT by -1 Dynamic Replace divisor with -2
Remainder of division by 0 Dynamic Replace divisor with 1
Square root of a negative value Dynamic Apply the absolute value operator

to the radicand
Out of bounds memory access Static Generate the memory address to

always be in bounds
Out of memory Static Never generate memory.grow

26

under tests the opportunity to apply optimizations so that we can detect more defects. To

avoid extremely short programs, Wasmlike sets the weight of terminal expressions low.

To avoid extremely large programs, Wasmlike sets a depth limit, past which only terminal

expressions are allowed to be generated. The combination of these two constraints produce

large, varied programs. If Wasmlike were not allowed to generate terminal expressions

until the depth limit was exceeded, the generated programs would look very similar: a

uniformly filled out AST.

Xsmith makes choices in stages. First, it filters the nodes it is allowed to generate based

on the type information of the hole it is trying to fill. For example, a node that produces an

integer is not allowed to fill either child hole of a floating-point addition. After filtering,

Xsmith chooses a node based on the declared choice weight. This allows easy tunability

by allowing Wasmlike to specify how often a particular node is generated, while letting

Xsmith ensure the correctness of the generated program as a whole. In the example of

choice weights below, Wasmlike is more likely to generate a variable expression than a

literal expression because of the sum of the weights of each category. When generating a

variable expression, Wasmlike is more likely to get the value of a variable rather than set

it.

(add-property wasmlike choice-weight
;; Variable Expressions
[VariableGet 15]
[VariableSet 10]
[VariableTee 10]
;; Literal Expressions
[LiteralIntThirtyTwo 5]
[LiteralIntSixtyFour 5]
[LiteralFloatThirtyTwo 5]
[LiteralFloatSixtyFour 5]

...

Cumulative function depth is used to help generate functions with a variety of sizes.

Wasmlike allows only a certain number of functions to be generated with the full depth

limit available to them. Past that, every additional new function has its available depth

reduced. This results in programs that are large but with a spread of large and small

functions, similar to real-world applications.

To mimic real-world use cases of functions, Wasmlike encourages function reuse through

weighted choice. When a function call is generated, Wasmlike has the choice to either make

27

a new function for the function call or to reuse an existing function. The available functions

for reuse are filtered to avoid recursive calls, but this choice weight allows Wasmlike to

generate more “interconnected” programs.

Idiomatic expressions are represented as single nodes in the AST, but are made up of

multiple WebAssembly instructions. For example, Wasmlike can generate an idiomatic

“for” loop construct consisting of a counter variable, an input parameter, a body expres-

sion that uses the input parameter, and a loop instruction. Generating a working “for”

loop through random chance is very unlikely because of all the necessary individual com-

ponents that have to line up, so this allows Wasmlike to generate loops consistently.

Wasmlike also generates minimum and maximum values for integers to test the edge

case handling of systems under test. This is controlled by another weighted choice during

generation. It is important to note that in WebAssembly, an integer literal is neither signed

nor unsigned; instead, the instruction that uses the integer literal interprets the value as

either signed or unsigned. Because of this, Wasmlike’s integer literal generation does

not target a particular instruction, but instead weights the generation of literal values to

produce a small proportion of bit patterns corresponding to the maximum and minimum

signed and unsigned integer values.

3.3 Current State of Wasmlike
Wasmlike supports all four WebAssembly types: i32, i64, f32, and f64. It supports

binary and unary arithmetic operations, comparisons, if/elses, branches, blocks, loops,

type conversion instructions, functions, direct function calls, memory operations,loads

and stores from memory, and local and global variable operations. Wasmlike is able to

generate programs in a restricted mode without any floating point literals or operations.

3.3.1 Limitations

There are a few limitations to the programs that Wasmlike can generate, mainly cen-

tered around certain instructions.

Wasmlike does not generate the unreachable, br_table, return, call_indirect, drop,

select, memory.size, or memory.grow instructions.

28

The unreachable instruction always results in a trap during execution, which makes

it harmful for differential testing since the behavior of this instruction is identical to a

program that crashes.

The br_table and call_indirect instructions are layers of indirection for branch in-

structions and function calls. Implementing these instructions in Wasmlike would involve

additional complexity to properly generate and link the necessary tables when the end

result would be a branch or a function call based on a random input: something that

Wasmlike already does.

The return instruction is never generated for the simple reason that it is an alias for a

branch instruction that targets the function level.

The drop and select instructions are never generated directly because they are primar-

ily used to discard items from the stack without producing new results. To better detect

semantic defects, we prefer to use data on the stack as inputs to further computation.

However, these instructions are generated as a necessary part of idiomatic expressions

such as loops, conditional branches, and dynamic checks to avoid undefined behavior.

Since Wasmlike only needs to guarantee the overall behavior of an AST node to maintain

its generation model, the uses of drop and select are balanced by special-purpose code in

Wasmlike.

The memory.grow instruction is avoided because it is nondeterministic. WebAssembly

runtimes may not provide the additional requested memory to the module. The result

of this is well-defined, but still nondeterministic. Additionally, memory access patterns

are restricted to a small portion of available linear memory in the module to encourage

overlap, making more memory not useful. Finally, multiple tests and runtimes are run in

parallel on the testing machines. Running out of memory would result in unpredictable

behavior. For example, a generated program that contains a memory.grow instruction

inside an infinite loop could consume all available memory on the machine, leading to

other systems under test failing in non-reproducible ways.

The memory.size instruction is avoided because if growing memory is avoided, the

result of this instruction is always the same.

In addition, Wasmlike does not support newer WebAssembly proposals like multi-

value returns for functions and structured control blocks. This is for two reasons: first,

29

because Wasmlike was under development before these proposals were approved and

merged into the WebAssembly specification, and second, because of technical constraints.

Wasmlike’s AST generation model does not allow for multiple values produced from

a single instruction. Furthermore, the programs Wasmlike generates contain a starting

function that returns only one value, meaning multi-value returns would need to be con-

densed down to a single value. Supporting the multi-value proposal would introduce a

lot of complexity to the implementation of Wasmlike for no discernible change in testing

behavior.

CHAPTER 4

TESTING WEBASSEMBLY IMPLEMENTATIONS

4.1 Systems Under Test
The systems under test are Node.js [16], Wasmer [23], Wasmtime [5], Firefox [15],

and Chromium [21]. Node.js is a JavaScript runtime that can directly run WebAssembly

programs. Wasmer is a fully featured WebAssembly implementation with configurable

optimization levels and compiler choices. Wasmtime is a JIT-style compiler focused on fast

compilation speed. Firefox and Chromium are web browsers. The two browsers are run

using an automated testing tool, Playwright [14]. Node.js and Chromium share the same

underlying engine for running WebAssembly. The goal of including both is to test that the

other components of Chromium or Node.js do not contain defects related to WebAssembly.

For each system under test, we created a small interface program to compile and exe-

cute a generated WebAssembly program and output the result. The compiler and runtime

API for Wasmer and Wasmtime are accessed through Rust. For Node.js, Firefox, and

Chromium, the API is accessed through JavaScript. The API for automating web browser

testing with Playwright is similarly accessed through JavaScript.

4.2 Testing Process
The testing process for the systems under test is split into three major sections. The

first is configuration, where the specific steps of running each system under test is defined.

The configuration also defines the program-generation options given to Wasmlike as well

as other necessary infrastructure for running the systems under test. The second is the

differential testing phase. Here, a generated program is run with each system under test

in turn. The output is collected and compared, and the test result is logged. The third

section is reducing and reporting test cases that trigger defects in the systems under test.

Those test cases are manually verified, reduced to a reportable size through a combination

31

of reduction tools and by hand, and reported to the developers of the system displaying

the defect.

4.2.1 Configuration

The configuration of each system under test is flexible in regard to the sequence of

tools and commands that make up that system. The configuration file details startup steps,

shutdown steps, program generation options, and the steps to run each system under test.

The startup section in the configuration details any commands that need to be run

before a testing campaign such as compiling the program generator, compiling system

interfaces, or starting local web servers. The shutdown section contains commands for

safely tearing down the testing campaign, like shutting down web servers and creating a

backup of the log file with the test results. The program-generation options are fixed for all

systems under test for the testing campaign, and influence the size of generated programs

as well as the WebAssembly features that may be used in those programs, e.g., floating

point operations. Each system under test is represented as a list of commands that will be

run, with the standard output of the last command collected as the result of the test. In this

way, a single runtime platform with different optimization levels, like Wasmer with and

without optimizations, is considered to be multiple systems under test.

The list of systems under test is in Table 4.1. Node.js, Firefox, and Chromium are all

tested without any additional optimization or runtime configuration. The systems under

test for Wasmer vary between a Cranelift or LLVM based compiler, Wasmer’s universal

or dynamic engine, and whether or not optimizations are applied. Wasmtime only varies

with optimization. For all systems under test, if optimization is an option, it is either

turned up to the most aggressive setting available or down to no optimizations at all.

4.2.2 Differential Testing

The WebAssembly programs that Wasmlike generates are combined with helper func-

tions designed to interact with the interfaces for each system under test to produce a

checksum after execution. This checksum is computed with the return value of the main

function, the values of any global variables, and the contents of linear memory. Each

system under test is subject to a timeout: if it does not produce a checksum before the

timeout occurs, the testing harness terminates the system under test and records that it

32

Table 4.1: Systems under test.

System Compiler Engine Optimization
Node.js 16.16.0 - - -
Wasmer 2.3.0 Cranelift Universal No
Wasmer 2.3.0 Cranelift Universal Yes
Wasmer 2.3.0 LLVM 12 Universal No
Wasmer 2.3.0 LLVM 12 Universal Yes
Wasmer 2.3.0 LLVM 12 Dynamic No
Wasmer 2.3.0 LLVM 12 Dynamic Yes

Wasmtime 0.1.0 - - No
Wasmtime 0.1.0 - - Yes
Firefox 108.0.2 - - -

Chromium 110.0 - - -

33

timed out. The timeout value is generally set to a small number of seconds: enough for

the most complex system under test to start up and execute the test program, plus a few

seconds as a buffer.

Differential testing is performed by giving each system under test the same WebAssem-

bly program and comparing the outputs as illustrated in Figure 4.1. There are five main

categories of results, with each having its own severity: normal, crash, timeout, inconsistent

timeout, and wrong code. A normal result means that each system under test successfully

executed its input, and the checksums from all of the systems were identical. A crash indi-

cates that at least one system under test crashed when executing the generated program.

A timeout indicates that the generated program did not finish for any of the systems under

test. An inconsistent timeout is when some systems under test successfully execute their

program and return a result, but others time out. The final category, wrong code, always

indicates a defect in at least one system under test, and is signaled when the checksums

from the systems under test are not.

Normal and timeout results do not indicate any defect. A normal result means that all

of the systems under test produced the same output. A timeout result typically indicates

that the test case contains an inadvertent infinite loop. A majority of the results from a

testing campaign will be in these two categories. Inconsistent timeout outcomes either

indicate that (1) the generated program has a section that was slow but was optimized

by some of the systems under test, or (2) that there was a defect related to a loop being

treated as infinite on one system but not the other. The vast majority of inconsistent

timeouts will be from the difference between an optimized executable and an unoptimized

executable, where both will return the same result given sufficient time. These results may

be examined further to find test cases where a timeout occurs on an optimized version

instead of unoptimized versions, but to date, we have not found any such test cases.

The final two categories, crashes and wrong code bugs, signal a defect in one or more

of the systems under test. Wasmlike is designed to avoid generating programs that crash,

such as programs that divide by zero, meaning that a crash is most likely the result of a

defect present in a system under test. A wrong code result indicates wrong code generation

in at least one of the implementations since Wasmlike is also designed to avoid generating

nondeterministic programs.

34

Wasmlike

Random
program

Test Log

Test Driver

System under test

System under test

System under test

Output

Output

Output

Figure 4.1: Testing procedure.

35

The test driver reports the result from a test case as a log entry containing the test

outcome as well as the information needed to reproduce the test case. For Wasmlike this

information includes the random seed, the generation options, and the version of Xsmith

and Wasmlike used. The choice to use log entries instead of saving the program directly

was made to avoid filling up space on the testing machines as well as being able to collect,

sort, and examine the test results on a central machine.

4.2.3 Reducing and Reporting Test Cases

A test case can be reproduced entirely from information present in its log entry. A

helper script is invoked to quickly convert the generation options from a log entry back

into the generated program. From this point, the defect must be verified, reduced, and

reported.

Verification is simple. When the helper script is passed the program generation options

along with the names of systems under test that differed in their output, the script will

regenerate the program, run the specified systems under test with the generated program,

and print the checksum of each. If the printed checksums differ, we have verified that the

defect occurs. While this step seems redundant, we have encountered extremely rare occa-

sions in which a wrong code log entry fails verification. If Wasmlike generated nondeter-

ministic programs, this would happen much more frequently since every nondeterministic

instruction would cause this behavior. Instead, our best guess is single-bit memory flips

because the checksum is sensitive to a single bit difference in a system under test’s linear

memory contents.

Reduction is performed by giving the generated program to a WebAssembly program

reducer [3]. The reducer pares down the size of the test case by using a predicate to

determine if a reduction step is still interesting. For crash bugs, the predicate is that

the crashing system outputs the same crash message and that another system produces

a checksum. For wrong code errors, the predicate is that the systems under test produce

different results. Note that the predicate is not that the systems under test each produce the

same output as the original test case, since all this would accomplish is removing dead and

unreachable code. The reducer used is not as aggressive as needed to produce a minimal

test case directly, but empirically, it will very reliably shrink the test case size by at least

36

60%. The last reduction pass is done manually by replacing structured control instructions

with their result types, forcing early returns from functions, and generally eliminating big

sections of code before moving on to the instruction level and eliminating instructions that

do not seem to be the cause of the wrong-code error.

Once a test case is reduced as far as possible, it may be reported to the developers of

the system under test. Determining the system under test that is ultimately responsible

for the defect is not an easy question to answer. If the reduced test case is able to be

manually checked, we can definitively blame a system under test. This is not always the

case, however, especially with memory errors. Having many systems under tests makes

determining blame easier, since if the difference in checksums is split with only one system

producing a different checksum, we can confidently predict that the divergent system un-

der test contains the defect. If the split in outputs is more varied, we first look at optimizing

compilers, since they are more likely to contain defects than non-optimizing compilers.

Then, if the blame is still not clear, we look at the groupings of output checksums. If

systems under test from different developers (such as Wasmer and Firefox) agree on the

result, then they are more likely correct than systems under test from the same developer

(such as Node.js and Chromium).

When reporting the defect, if the behavior can be reproduced by using a standalone

version of the system, like a command-line runtime, that option is preferred. If the defect

cannot be reproduced by a standalone runtime, which is often the case with memory

operation errors that rely on a test driver to checksum the contents of memory, a copy of the

testing interface is included with purpose-built instructions and commands to reproduce

the behavior.

4.3 Test Harness
A single instance of the test driver runs tests sequentially. The test driver can be run

on a distributed cluster and configured to report results to a central node. When run in

this distributed setup, we refer to the whole system as the test harness. The flow of data

through the experiment nodes and systems is illustrated in Figure 4.2.

We designed the test harness to coordinate multiple machines, with each machine

running multiple instances of the test driver. The test harness is designed to run on Em-

37

Leaf Node
Leaf Node
Worker Node

Filebeat

Test Harness

Logs

Test Harness
Test Driver

Central Node

Logstash Kibana

Results
Database

Web Browser

Results

Graphs

Log Entries

Figure 4.2: Organization of the test harness.

38

ulab [22] machines, with a central node responsible for collecting, sorting, and displaying

the test results, and a configurable number of worker nodes responsible for running tests.

The test harness uses Ansible [19], an IT automation tool, to coordinate and distribute

configurations to the machines as well as start multiple instances of the test driver per

machine. A large part of the test harness is ensuring that different instances of the test

driver do not overwrite each others’ tests in progress. The test harness uses ElasticStack [9]

to collect the generated log records from each test driver in a central database. The different

components of ElasticStack relevant here are Filebeat, Logstash, and Kibana. Filebeat

monitors the log files generated by the test drivers on each node and sends new log entries

to Logstash on the central node. Logstash is used to tag each log entry with its result and

filter out already-known false positives and defects related to the systems under test. The

output is sent to the Kibana database, where the user can connect to the central node with

a web browser to examine the collected data.

CHAPTER 5

RESULTS

To date, we have found and reported five defects that we discovered by testing Web-

Assembly implementations with semantically valid test cases generated by Wasmlike.

These defects are summarized in Table 5.1 and reproductions of the test cases used in the

bug reports can be found in Appendix A.

5.1 Defects Found
The first two defects found — the first two rows in Table 5.1 — were in Wasmer. They

were wrong code defects related to rotating an integer value by zero bit positions, which

led to incorrect output when running the test case. This is not something that a compiler

would generate if asked to convert a program written in a higher-level language like C to

WebAssembly, since a rotate by zero is effectively a no-op. The first of the two defects was

triggered on any rotate by zero instruction, while the second was only triggered on an i64

rotate-right instruction. The reduced test cases are presented in Figure A.1. As a result

of these bug reports, the Wasmer developers added a fuzzer to their project to catch and

correct similar edge cases.

The next defect found (Table 5.1, third row) was a compiler optimizer crash, again in

Wasmer. The LLVM IR generated by Wasmer was incorrectly handling a branch inside of

a loop, causing a crash during compilation when attempting to perform optimizations. At

one time, this crash appeared in around ten percent of the programs being generated by

Wasmlike. The behavior of the crash in the test harness is very distinct, both in the output

and in the single system under test that crashed. Once the defect was reported, a filter was

installed in the test harness to label future instances of the defect as a known bug. The

reduced test case can be seen in Figure A.2.

The next two defects (fourth and fifth rows of Table 5.1) appeared only once each in a

test run of 100,000 generated test cases. The first is a wrong-code error related to Cranelift,

40

Table 5.1: Discovered and reported defects.

System Defect Synopsis and Link Fixed
Wasmer 1.0.2 Rotate left wrong code error ✓

https://github.com/wasmerio/wasmer/issues/2143
Wasmer 1.0.2 Rotate right wrong code error ✓

https://github.com/wasmerio/wasmer/issues/2215
Wasmer 2.3.0 LLVM optimization crash ✓

https://github.com/wasmerio/wasmer/issues/3190
Wasmer 2.3.0 Cranelift and LLVM wrong code error

https://github.com/wasmerio/wasmer/issues/3251
Wasmer 2.3.0 Three way wrong code error

https://github.com/wasmerio/wasmer/issues/3323

41

a WebAssembly-specific optimizing compiler. The defect is notable simply because no

other defect was found that included Cranelift. The reduced test case is found in Fig-

ure A.3.

The second defect was a three-way difference in the output checksum between Was-

mer’s dynamic library engine with LLVM optimizations, Wasmer’s universal engine with

LLVM optimizations, and any other implementation such as Node.js or Wasmer with no

optimizations. The reduced test case is quite long, mainly because any further reduction

results in either the code generation defect not being triggered, the three-way difference

turning into a two-way difference, or a crash. The reduced test case can be seen in Fig-

ure A.4.

Table 5.1 contains the state of each bug report. The first three defects (both rotate

by zero defects and the LLVM optimization crash), have been fixed, although the LLVM

optimization crash fix has yet to be merged into a versioned release of Wasmer. The last

two defects (the Cranelift-related defect and the three-way code generation defect) have

not been fixed yet.

5.2 Testing Metrics and Throughput
To maximize the number of defects found, the testing harness must be able to generate

and test programs quickly. There are two main bottlenecks in the testing process: gener-

ating a program for each test, and running each system under test with each generated

program.

Generation speed is directly related to the depth of the AST generated by Wasmlike.

Each level of depth in a function can potentially double the size of the generated program if

all interior AST nodes have two children, such as binops. This more than doubles the time

needed to generate the program, since parts of Wasmlike that use attributes or variables

have a larger AST to consider for every choice made. In practice, a good choice for the

maximum AST depth seems to be nine. This depth consistently produces programs that

are large, have a variety of function depths, and have a generation time of a few seconds

per test. Increasing the maximum AST depth even by one increases the generation time

from a maximum of around eight seconds to upwards of forty.

42

Running each system under test with a generated program is the second major bottle-

neck in the testing process. Some systems under test, like the browsers, need much longer

to start up before returning a result. To address this, we attempt to use the resources of the

testing machines to the fullest. Instead of running each system under test for a particular

generated program in parallel, we run multiple instances of the test driver, which executes

each system under test in serial. This approach has several advantages over a directly

parallel approach. First, it simplifies the test driver and allows the test driver to easily

sandbox each system under test. Second, it allows us to load balance a testing machine by

specifying how many test drivers we want active at once. To minimize the bottleneck as

much as possible, the number of test driver instances is set to a few less than the number

of processor cores on the testing machines, to allow for network operations, logging, and

additional overhead.

A large part of the testing harness is designed to take advantage of the configurable

number of nodes in a testing campaign. Since each node contains everything necessary to

run a test, from program generation to result, increasing throughput simply means scaling

up the number of nodes in the experiment. This is also the primary reason for using Elastic

Stack: it is designed to scale extremely well and lets us connect a variable number of nodes

together with a minimal amount of configuration. Since test results are collected on a

central node, viewing test results is the same when using two nodes as using twenty.

5.2.1 Analysis of Wasmlike Generation Speed

While we would like Wasmlike to generate programs quickly, Wasmlike is not focused

on speed, since its primary purpose is to generate semantically valid test programs. That

said, a program generator that is extremely slow is not very useful. To test the speed of

generation, we ran Wasmlike in the test harness with the systems under test as a pair of

simple echo commands to be able to measure the rate at which it generates programs.

The experiment setup is for the most part system-agnostic. More powerful machines

will simply perform a testing campaign faster. The machines used for running the experi-

ment are Dell PowerEdge R430 server provided by Emulab [22], otherwise known as “d430

nodes,” each with two 2.4 GHz 64-bit 8-Core Xeon E5-2630v3 processors, 64GB of RAM,

and a 200 GB 6Gbps SSD. The CPUs are hyperthreaded for a total of 32 logical cores per

43

machine. To test generation speed, we use one node as a central database node, and one

node to run 30 instances of the test driver, leaving 2 cores available for network operations,

logging, and additional overhead.

Wasmlike generates approximately 25,000 random programs per hour with the same

generation settings that were used to discover the defects listed in Table 5.1.

5.2.2 Analysis of Test Harness Throughput

Next, we test the throughput of the test harness with the systems under test as the

full set of systems listed in Table 4.1, with the same d430 nodes as before. Except for the

systems under test, the experiment setup is identical to the setup in Section 5.2.1. The test

harness completes approximately 5,000 tests per hour, or around 80 tests per minute.

The proportion of result types from the test harness after a sufficiently long testing

campaign is around 87% normal execution results, 9% results that match a previously

discovered and reported defect, and around 4% time out results.

5.3 Defects Not Related to Program Generation
During the course of running fuzzing campaigns, we discovered and reported two

additional defects that, while interesting, are not directly related to the generation of se-

mantically valid programs. The defects are summarized in Table 5.2.

The first defect (first row in Table 5.2) involved Wasmer engine validation. When

selecting systems under test, we created configurations with the different runtime options

offered by Wasmer. One of the options selects a static library engine, designed to run pre-

compiled WebAssembly executables. When asked to compile a WebAssembly program

to an executable with the static engine, the Wasmer API would panic and crash instead

of reporting a reasonable error message. We reported this bug and the developers added

extra validation to their compilers and engines.

The second defect (second row in Table 5.2) was related to the WebAssembly program

reducer created by Binaryen [24] that we used for creating bug reports. To create idiomatic

counting loops in programs, Wasmlike uses syntax defined in the multi-value proposal for

WebAssembly, which is now approved and part of the language. Due to a limitation of the

reducer’s IR, it could not represent the construct appropriately. This is a known limitation,

44

Table 5.2: Discovered and reported defects not related to program generation.

System Defect Synopsis and Link Fixed
Wasmer 2.0.0 Wasmer API crash when compiling with staticlib ✓

https://github.com/wasmerio/wasmer/issues/2590
Binaryen 101 Unclear IR limitation error message

https://github.com/WebAssembly/binaryen/issues/5047

45

but we were not aware of it until after we submitted a bug report. The developers of the

reducer agreed that the error message could be more detailed.

5.4 Discussion
5.4.1 Distribution of Defects Found

A notable outcome of our fuzzing campaigns is that all of the defects found by Wasm-

like have been in Wasmer, using either the LLVM or Cranelift compilers with optimiza-

tions. Although this is conjecture, this result is possibly due to other implementations

using more stable tooling. Node.js and Chromium both use the V8 engine, which already

handles compiling and optimizing JavaScript programs to machine code. Adding the

ability to compile and optimize WebAssembly programs is not a big jump in capabilities,

given that once the WebAssembly program is converted to an IR form, the rest of the

toolchain remains the same. Firefox uses the SpiderMonkey engine, which performs a

similar role to V8. Wasmtime is built on Cranelift, which has a smaller scope than LLVM’s

modular system. Cranelift is an optimizing compiler specifically for WebAssembly, but

does not perform mid-level optimizations, resulting in fewer corner cases and a more

robust compiler.

5.4.2 Effectiveness

Wasmlike was built with a focus on generating semantically valid programs to discover

defects related to wrong-code generation. Effectiveness, in Wasmlike’s case, means finding

defects that are both semantic in nature and difficult to find manually.

For finding semantic defects, Wasmlike performs well in our experience. Generated

programs are semantically valid, which allows efforts to be focused on testing the seman-

tics of WebAssembly implementations instead of having generated programs rejected by

the compiler for being invalid. Four out of five of the defects described in Section 5.1

are wrong-code errors, meaning that Wasmlike successfully found semantic defects. In

addition, most of the defects found are related to optimization, an area that is difficult to

fully test because of the size and complexity of modern optimizing compilers.

In the area of finding defects that are difficult to find manually, we conclude that Wasm-

like performs extremely well. It found defects that could be considered an implementation

oversight as well as finding defects reliant on extremely convoluted chains of operations.

46

The first two defects found by Wasmlike were “rotate by zero” bugs in Wasmer, repro-

duced in Figure A.1. These small programs took a literal, and rotated that value by zero

bits, effectively doing nothing. This defect would likely not have been found by compiling

a program in some other language to WebAssembly, but because Wasmlike generated the

WebAssembly directly, the defect was able to be discovered.

The next three defects, reproduced in Figures A.2, A.3, and A.4, are composed of chains

of seemingly unrelated instructions that result in either a crash or a wrong-code error.

Finding these defects manually would be nearly impossible given their complexity and

how specific the triggering test cases are. In particular, the three-way wrong-code bug is

so specific that changing any of the lines or even adding an unreachable instruction to the

unused branch of an if statement results in the three-way difference changing to either a

crash, a two-way difference, or no difference at all.

The specificity of the last three defects found by Wasmlike highlight the usefulness of a

program generator that produces semantically valid test programs. This allows test cases

to penetrate deep into the implementation of a compiler and test the optimizer. These

defects would likely not have been found with a random mutational fuzzer.

5.4.3 Limitations and Trade-Offs

Wasmlike generates programs that assume an external API is present for testing. In

particular, the generated programs export their linear memory, import an external func-

tion, and call that function for each generated global variable. The responsibility of com-

puting a CRC value from the contents of memory and the global variables is left to the

boilerplate written for each system under test. There are a few reasons for this design, as

opposed to keeping the CRC computation purely in WebAssembly and injecting it into

a generated program. The first and primary reason is for ease of development. Writing

code for the CRC computation in Rust or JavaScript is more flexible than either writing the

computation in some higher level language and compiling it to WebAssembly or writing

it in WebAssembly directly. Being able to debug the CRC computation and verify that it is

working correctly is invaluable. The second reason for relying on a WebAssembly API is

that most contain options to modify compiler behavior, such as optimization levels. While

this means that the generated programs are simpler, it also means that standalone runtimes

47

designed to directly run WebAssembly programs, like the Wasmer command line interface

or the WebAssembly reference interpreter, are not compatible with the programs Wasmlike

generates. Future work on Wasmlike could address this by moving the CRC computation

into a WebAssembly snippet that is purpose-built to be injected into generated programs.

There are some limitations with the reduction of programs that trigger defects. The

main limitation is that the reducer built by Binaryen does not support the multivalue

proposal for WebAssembly, which Wasmlike uses as part of an idiomatic loop. Instead,

we use a less effective reducer made by Bytecode Alliance [3] that requires some man-

ual pruning to reduce a test case from mostly reduced to the smallest possible reduced

size. The trade-off is more than worth it in this case, though. First, because of the small

volume of defects triggered, doing the last step of reduction by hand is not particularly

time-intensive. With this specific reducer, much of the manual work comes from pruning

dead branches and simplifying expressions that access global state, since the reducer tries

to not modify those. Second, the inclusion of a small part of the multivalue proposal

increases the coverage of Wasmlike, and led to the discovery of the defects reproduced in

Figures A.2 and A.4. A possible alternative is to replace the idiomatic loop construct with a

version that uses local variables instead of loop parameters. This would allow us to use the

more effective reducer from Binaryen, at the cost of making the generation of loops a bit

more tedious within Wasmlike. Another possible alternative is to write our own reducer,

but because reducers already exist for WebAssembly, we deemed this to be unnecessary.

5.4.4 Future Work

In the future, Wasmlike could be enhanced to cover recent additions to the specification

of WebAssembly. Since the initial release of WebAssembly, multiple proposals have been

approved and added to the language, such as multivalue returns, reference types, bulk

memory operations, and tail call optimizations. Some of these proposals, like the multi-

value proposal, would need a comprehensive rewrite of Wasmlike to support the feature,

while others, like bulk memory operations, would simply need the instruction added to

the grammar specification in Wasmlike.

Future work could also add more systems to the test harness, such as the Safari browser.

Additionally, converting the checksum calculation from the runtime’s responsibility to a

48

WebAssembly snippet to be injected into generated programs would allow standalone

WebAssembly runtimes without an API to be tested.

APPENDIX

BUG REPORT TEST CASES

This appendix presents the test cases submitted with the bug reports to the developers

of the systems in which we found defects. The programs in Figure A.1 trigger rotate-

by-zero bugs in Wasmer 1.02 that resulted in wrong code generation. The program in

Figure A.2 causes an LLVM optimizer crash in Wasmer 2.3.0. The code in Figure A.3

triggers a Cranelift and LLVM defect that produces wrong code in Wasmer 2.3.0. Finally,

Figure A.4 contains the code associated with a three-way wrong-code error involving two

different configurations of Wasmer 2.3.0 compared to any other system under test.

50

(module
(func $main (result i32)

i32.const 235
i32.const 0
i32.rotl)

(export "_main" (func $main)))

(a) Rotate left or right with any type in Wasmer
1.0.2

(module
(func $main (result i64)

i64.const 4
i64.const 0
i64.rotr)

(export "_main" (func $main)))

(b) Rotate right with i64 in Wasmer 1.0.2

Figure A.1: Rotate bugs in Wasmer 1.0.2.

(module
(func (;0;) (type 0) (result i32)

i32.const 0)
(func (;1;) (type 1) (param i32 i64 i32) (result f64) ;; label = @1

(local i32 i64 f32 f64 i32)
;; load, const, and mul is important
i32.const 1
f64.load offset=95 align=4
f64.const 0
f64.mul
;; loop is important
loop (param f64) (result f64) ;; label = @0

i32.const 1
f64.load offset=22 align=4
f64.add
local.get 7
i32.const -1
i32.add
local.tee 7
br_if 0 (;@1;)

end)
(func (;2;) (type 2))
(memory (;0;) 1)
(export "_memory" (memory 0))
(export "_main" (func 0))
(export "_crc_globals" (func 2)))

Figure A.2: LLVM optimizer crash in Wasmer 2.3.0.

51

(module
(func (;0;) (type 0) (result i32)

(local i32 i64 f32 f64 i32 i32 i64 i64)
i32.const 0
call 1 ;; Stuff after the call is also important
i32.const 2
i32.const 1
i32.const 0
f64.load offset=37 align=4
i32.const 655
f64.load offset=40 align=4
f64.add
f32.demote_f64
f32.store offset=77 align=2 ;; This store is important
i32.const 1 ;; i32 and return is just used to return the function early
return) ;; without taking care of the types on the stack

(func (;1;) (type 1) (param i32) (result i32)
(local i32 i64 f32 f64 i32 i64)
i32.const 663 ;; Memory address
i32.const -2 ;; The negative for the value to be stored is important
i32.store offset=36 align=1
i32.const 0)

(func (;2;) (type 2))
(memory (;0;) 1)
(export "_memory" (memory 0))
(export "_main" (func 0))
(export "_crc_globals" (func 2)))

Figure A.3: Cranelift and LLVM wrong code error in Wasmer 2.3.0.

52

;; A = Wasmer/LLVM/Universal -- agrees with NodeJS
;; B = Wasmer/LLVM/Universal/Optimize
;; C = Wasmer/LLVM/Dylib/Optimize

(module
(type (;0;) (func (result i32)))
(type (;1;) (func (param i32 f64) (result f32)))
(type (;2;) (func (param f32) (result f32)))
(type (;3;) (func))
(func (;0;) (type 0) (result i32)

i32.const 0 ;; store address
i32.const 0 ;; arg 1
f64.const 0 ;; arg 2
call 1 ;; store value
f32.store offset=59 align=1
i32.const 21
return) ;; Return without needing to reduce the stack

(func (;1;) (type 1) (param i32 f64) (result f32)
(local i32 i64 f32 f64 i32 f32)
block (result f32) ;; label = @1

i32.const 1
local.set 6 ;; This local is important
;; Replacing this block with an f32.const results in B and C agreeing
;; with each other but not with A
block (result f32) ;; label = @2

i32.const 1
f32.const 0x1.ddfd56p+81 (;=4.51448e+24;)
f32.store offset=72 align=2
f32.const 0x1.b01acp+9 (;=864.209;)

end
f32.const 0x1.86c8d6p-75 (;=4.04062e-23;)
f32.max ;; Removing this max makes only B differ
global.get 1 ;; Must be this specific global variable.
;;f32.const -0x1.2feb5p-113 (;=-1.14322e-34;)
f32.const 1 ;; If set to 0, makes only C differ
f32.min
f32.sub
loop (param f32) (result f32) ;; label = @2

i32.const 0
i32.const 0
i32.load8_u offset=9 ;; load is important

;; continued below

Figure A.4: Three way code generation difference in Wasmer 2.3.0.

53

if (result f32) ;; label = @3
;; This whole unused branch is important

i32.const 1
f32.const 0x1.7978d4p+9 (;=754.944;)
f32.store offset=62 align=1
local.get 7
f32.const 0x1.bd60bap-4 (;=0.108735;)
f32.min
;; !!! Putting an unreachable here makes all three
;; implementations produce the same result !!!
;; unreachable

else
i32.const 0
local.set 6
i32.const 1
f32.load offset=11 align=1
;; removing this loop makes B agree with C but not A
loop (param f32) (result f32) ;; label = @4

f32.const -0x1.bd2fe2p+9 (;=-890.374;)
f32.add
local.get 6
br_if 0 (;@4;)

end
global.get 1 ;;Must be a global
f32.sub ;; Cannot replace with a drop

end
f32.store offset=66 align=2
f32.const -0x1.9acb68p+56 (;=-1.15628e+17;)
local.get 0
br_if 1 (;@1;) ;; removing this branch results in

;; a crash from B and C
drop
local.get 7
f32.const 1
f32.mul ;; Removing the mul results in C agreeing with A
f32.add ;; Add is important
local.get 6
br_if 0 (;@2;)
;; putting a return here causes a crash in B and C

end
;; same here

end
f32.floor) ;; Must be some kind of funop or a const and fbinop.

(func (;2;) (type 3))
(memory (;0;) 1)
(global (;0;) (mut f32) (f32.const 0x1.c701dcp+9 (;=910.015;)))
(global (;1;) (mut f32) (f32.const 0x1.0e8962p+8 (;=270.537;)))
(export "_memory" (memory 0))
(export "_main" (func 0))
(export "_crc_globals" (func 2)))

Figure A.4 continued.

REFERENCES

[1] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for deep bugs
with grammars. In Proceedings of the 26th Network and Distributed Systems Security
Symposium (San Diego, California, Feb. 24–27, 2019), 15 pages.

[2] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schumilo,
Simon Wörner, and Thorsten Holz. 2018. GRIMOIRE: Synthesizing structure while
fuzzing. In Proceedings of the 28th USENIX Security Symposium (Santa Clara, Califor-
nia, Aug. 14–16, 2019). ACM, Inc., New York, NY, 1985–2002.

[3] ByteCode Alliance. 2023. wasm-shrink. https://github.com/bytecodealliance/
wasm-tools/tree/main/crates/wasm-shrink.

[4] Bytecode Alliance. 2023. wasm-smith. https://github.com/bytecodealliance/
wasm-tools/tree/main/crates/wasm-smith.

[5] Bytecode Alliance. 2023. Wasmtime. https://wasmtime.dev.

[6] Junjie Chen, Jiaqi Han, Peiyi Sun, Lingming Zhang, Dan Hao, and Lu Zhang. 2019.
Compiler bug isolation via effective witness test program generation. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Tallinn, Estonia, Aug. 26–30,
2019). ACM, Inc., New York, NY, 223–234.

[7] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao Wu,
and Wenke Lee. 2021. One engine to fuzz ’em all: Generic language processor testing
with semantic validation. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy (Santa Francisco, California, May 24–27, 2021). Curran Associates, Red Hook,
NY, 642–658.

[8] Eric Eide and John Regehr. 2008. Volatiles are miscompiled, and what to do about it.
 In Proceedings of the 8th ACM InterIn Embedded Software (Atlanta, Georgia, Oct. 19–24,
 2008). ACM, Inc., New York, NY, 255–264.

[9] Elasticsearch B.V. 2023. Elastic stack. https://www.elastic.co.

[10] WebAssembly Community Group. 2023. Binaryen fuzzing. https://github.com/
 WebAssembly/binaryen/wiki/Fuzzing.

[11] William Hatch, Pierce Darragh, and Eric Eide. 2023. Xsmith. https://pkgs.
racket-lang.org/package/xsmith.

[12] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Eval-
 uating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

55

Communications Security (Toronto, Canada, Oct. 15–19, 2018). ACM, Inc., New York,
NY, 2123–2138.

[13] William M. McKeeman. 1998. Differential testing for software. Digit. Tech. J., 10, 1,
100–107.

[14] Microsoft. 2023. Playwright. https://playwright.dev.

[15] Mozilla Corporation. 2023. Firefox. https://www.mozilla.org/en-US/firefox/.

[16] OpenJS Foundation and Node.js contributors. 2023. Node.js. https://nodejs.org/
en/.

[17] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
2019. Semantic fuzzing with Zest. In Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (Beijing, China, July 15–19, 2019).
ACM, Inc., New York, NY, 329–340.

[18] Árpád Perényi and Jan Midtgaard. 2020. Stack-driven program generation of Web-
Assembly. In Proceedings of the 18th Asian Symposium on Programming Languages and
Systems (Fukuoka, Japan, Nov. 30–Dec. 2, 2020). ACM, Inc., New York, NY, 209–230.

[19] Red Hat, Inc. 2023. Ansible. https://www.ansible.com.

[20] Andreas Rossberg. 2020. WebAssembly specification version 1.1. https://
webassembly.github.io/threads/core/_download/WebAssembly.pdf.

[21] The Chromium Projects. 2023. Chromium. https://www.chromium.org/Home/.

[22] University of Utah, Flux Research Group. 2023. Emulab d430. https://wiki.
emulab.net/wiki/d430.

[23] Wasmer, Inc. 2023. Wasmer. https://wasmer.io.

[24] WebAssembly Community Group. 2023. Binaryen. https://github.com/
WebAssembly/binaryen.

[25] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understand-
ing bugs in C compilers. ACM SIGPLAN Not., 46, 6, (June 2011), 283–294.

[26] Michał Zalewski. 2023. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/
afl/.

	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	1. INTRODUCTION
	2. RELATED WORK
	3. GENERATING WEBASSEMBLY PROGRAMS
	3.1 WebAssembly Specification
	3.1.1 Program Structure
	3.1.2 Types and the Runtime Stack
	3.1.3 Structured Control Instructions
	3.1.4 Text Format and Examples

	3.2 Semantically Valid Program Generation
	3.2.1 Generating Programs for Random Differential Testing
	3.2.2 Abstract Syntax Tree Generation
	3.2.3 Wasmlike AST Generation Model
	3.2.4 Avoiding Undesirable Behavior
	3.2.5 Generating Interesting Programs

	3.3 Current State ofWasmlike
	3.3.1 Limitations

	4. TESTING WEBASSEMBLY IMPLEMENTATIONS
	4.1 Systems Under Test
	4.2 Testing Process
	4.2.1 Configuration
	4.2.2 Differential Testing
	4.2.3 Reducing and Reporting Test Cases

	4.3 Test Harness

	5. RESULTS
	5.1 Defects Found
	5.2 Testing Metrics and Throughput
	5.2.1 Analysis of Wasmlike Generation Speed
	5.2.2 Analysis of Test Harness Throughput

	5.3 Defects Not Related to Program Generation
	5.4 Discussion
	5.4.1 Distribution of Defects Found
	5.4.2 Effectiveness
	5.4.3 Limitations and Trade-Offs
	5.4.4 Future Work

	APPENDIX: BUG REPORT TEST CASES
	REFERENCES

