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ABSTRACT

If you survey computer systems’ users, most of them will agree that one of the most

important system properties is dependability. The dependability of a system expresses the

users’ trust in that system and how confident they are relying on these systems. It conveys

the extent of the user’s confidence that it will operate as users expect. In general, depend-

ability includes inter-dependent systems properties such as availability, safety, security,

and resilience.

In this dissertation, I look closely at different complicated computer systems. The goal

is to enhance the systems’ trustworthiness and eventually improve their overall depend-

ability.

First, I look at the edge computing paradigm, specifically content distribution net-

works. Although CDNs are widely used and highly beneficial, they require end-users

to share their secrets with the CDN to maximize benefits. This imposes a serious security

threat. To tackle this issue, I present Harpocrates. It is a framework that utilizes Intel’s SGX

technology to maintain the privacy of sensitive secrets while still allowing the end-users

to leverage the CDN’s capabilities.

Second, I look at complex system logs and attempt to model the system’s normal

behavior using invariant mining. This study aims to answer two questions: Are automated

anomaly detection tools, specifically invariant mining useful in datacenters? And; does the

anomalous behavior persist over time? To answer these questions, I study the logs from

one year of operations coming from the Cloudlab testbed. The results contained valuable

insights indicating that although some of the invariants persisted throughout the year, the

detectors must be re-trained systematically to capture new invariants.

Finally, after studying different anomaly detection tools, I found that they do not specif-

ically label malicious anomalies. They either disregard the malicious class, or they consider

all anomalies malicious. These approaches pose a problem for system admins who need

to differentiate between benign anomalies and malicious requests. To solve this problem,



I designed Deep-Sec. It is an anomaly detection framework that introduces a novel fine-

grained scoring system that enables system admins to distinguish between benign and

malicious anomalies and enhances accuracy on long sessions driven by human behavior

rather than program structure.
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CHAPTER 1

INTRODUCTION

Looking at the complicated structure of modern computer systems, especially data cen-

ters and cloud environments, and the exponential growth in the number of users depend-

ing on these systems, you will quickly realize the significant need for robust, trustworthy,

and dependable systems. In 2017, the CDN provider Cloudflare [19] had the famous

Cloudbleed incident [36], where a bug caused a leak in private data from one website’s

sessions into other website’s sessions. This may have led to personal information being

leaked, and it may have even leaked website’s private encryption keys. With these keys, an

attacker could fully impersonate a website, authenticate himself to other websites, and de-

crypt it’s traffic. In 2015, the famous open-source CMS WordPress [81] was compromised

due to a vulnerability that enabled attackers to carry Cross-site Scripting (XSS) attacks.

This attack enables adversaries to execute any code they want or reveal any information

on the target website. It is also very hard to model the correct or expected behavior of these

systems. This behavior modeling is crucial because it helps us identify system error and

anomalies and protect the systems from malicious adversaries. These incidents and many

more prove that some of the systems that users rely on for critical services have serious

design flaws.

In this dissertation, I considered different domains where I aim to improve systems’

dependability.

I look at three specific aspects that are important to ensure the trustworthiness of

systems. First, in Chapter 2, I look at the privacy of CDN networks. Content Distribution

Networks (CDNs) offer websites and web services the ability to host content on servers

near the edge of the network, close to users. Benefits of this arrangement include low

latency, scalability, and resistance to Denial-of-Service attacks. The current emergence of

pushing active computation to the edge in CDNs offers a wealth of new opportunities
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for web services to become faster and more scalable. However, it also increases the ex-

posure to new security threats such as the leakage of secret materials that are accessed

by this function. To mitigate this issue, I present a framework called Harpocrates. This

framework allows active code to be pushed from an origin web server out to workers at

the edge of a CDN without compromising the privacy of the secrets. Harpocrates makes

use of Intel’s SGX technology to keep data private and presents an environment similar

to the JavaScript WebWorker API to simplify the process of code that can run on either

origin servers or the CDN. To demonstrate the capabilities of Harpocrates, I implemented

four useful applications: The first application allows CDNs to maintain protection against

DDOS attacks while keeping the origin server services available to genuine users, the CDN

performs a security check at the edge by checking the secure login cookies generated by the

origin server. The second application improves on the first application by adding a new

security measure handled within the CDN by checking the users’ password at the edge

without compromising any sensitive information. The Third application allows the CDN

to perform data aggregation from multiple sources at the edge to provide improved latency

and scalability to the users. The fourth application is an improvement of keyless SSL[20],

it allows CDNs to serve HTTPS requests without compromising the origin server’s private

keys.

In Chapter 3, I look at complex system logs and try to understand the correct and

anomalous behavior of systems using anomaly detection. The set of anomalies seen, how-

ever, can change over time: as the system evolves, is put to different uses, and encounters

different workloads, both its typical behavior and the anomalies that it encounters can

change as well. This naturally raises two questions: how effective is automated anomaly

detection in this setting, and how much does anomalous behavior change over time? I

examine these questions for a dataset taken from a system that manages the lifecycle of

servers in datacenters. I look at logs from one year of operation of a datacenter of about

500 servers. Applying state-of-the-art techniques for finding anomalous events, I find that

there are a core set of anomaly patterns that persist over the entire period studied, but that

in to track the evolution of the system, I must re-train the detector periodically. Working

with the administrators of this system, I find that, despite these changes in patterns, they

still contain actionable insights.
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In Chapter 4, I attempt to tie system logs to security incidents in the system. I achieve

this by designing an anomaly detection framework, i.e., Deep-Sec. This framework im-

proves on DeepLog [24], rather than performing just binary classification of the data into

normal or anomalous, it divides log data into three classes: normal sessions, benign anoma-

lies, and malicious anomalies. Deep-Sec achieve this by introducing a novel identifier

called anomaly-score that can help distinguish between the three classes of anomalies espe-

cially the two anomalous classes. To evaluate the performance of Deep-Sec I have collected,

manually labeled, and released a dataset from a real datacenter environment that has the

three classes of data. To the best of our knowledge, no such dataset exists. This dataset

is specifically interesting because it reflects a real human behavior within a website over a

period of four months, and thus it is much harder to find a pattern in the data compared

to datasets that represent a code execution or an automated process. The performance

of Deep-Sec was evaluated quantitively by computing its accuracy and showing that its

performance is acceptable and qualitatively by examining the types of attacks discovered

and how useful can it be for system administrators. Furthermore, I measure the predictive

ability of Deep-Sec to evaluate how early in a session can Deep-Sec attach the correct label

to a session. This is done to measure the feasibility of implementing a future version of

Deep-Sec that can block malicious requests online. Tests has shown that Deep-Sec cannot

only work with regular logs deployed in systems but also expose new malicious behaviors

not found by other tools, and hence it can be considered a complementary tool with other

intrusion detections systems or any vulnerability detection tool.

Combined, these studies aim to address the aforementioned reliability issues. By de-

ploying Harpocrates, users will no longer worry about incidents like Cloudbleed, because

they are no longer relying on the typical security measures used by the CDNs to protect

their sensitive information. And by using Deep-Sec as a complementary tool to other

vulnerabilities detection tools, system admins will have peace of mind knowing that they

will be alerted in case of malicious attacks or a compromised vulnerability like the XSS

attack rather than not being able to prioritize system anomalies and knowing what is

urgent and what is not.



CHAPTER 2

HARPOCRATES: GIVING OUT YOUR

SECRETS AND KEEPING THEM TOO

Content Distribution Networks (CDNs) offer websites and web services the ability to

host content on servers that are near the edge of the network, close to users. Benefits

of this arrangement include low latency, scalability, and resistance to Denial of Service

attacks. Traditionally, CDNs have hosted primarily static content, but increasingly, there

is an interest in pushing active computation to the edge as well. This active computation,

which is similar in style to the “serverless” computing becoming popular in clouds, offers a

wealth of new opportunities for web services to become faster and more scalable. With this

opportunity, however, comes a much greater exposure to security threats. One is leakage of

secret materials (such as keys, identities, etc.) that are accessed by these functions. Another

is the possibility that sensitive calculations are not executed faithfully in the CDN; e.g. a

modified version of the customer’s code is run.

In this chapter, we present the design of Harpocrates, a framework that allows ac-

tive code to be pushed from an origin webserver out to workers at the edge of a CDN.

Harpocrates makes use of Intel’s SGX technology to keep data private, and presents an

environment similar to the JavaScript WebWorker API to simplify the process of code that

can run on either origin servers or the CDN. We use Harpocrates to design a number of

interesting services, including a service that generates and checks secure cookies within

the CDN, and a framework that protects against denial-of-service attacks in a way that is

customized to a specific website. We show that the framework performs well enough to

be deployable in practice.

2.1 Introduction
Content distribution networks (CDNs) are widely used to enhance user experience,

reliability, and security through providing a system of distributed servers and networks
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that can deliver internet-based services to the user from locations at or near the network

edge. Many CDNs [1, 35, 54] work by “fronting” for an origin webserver. In this config-

uration, DNS lookups for the origin server resolve to IP addresses belonging to the CDN

rather than the origin server itself. The CDN then acts as a reverse proxy or “man in the

middle,” processing all requests for the website and deciding whether to serve pages out

of its cache, relay requests to the origin server, apply DDoS prevention methods, etc.

While this model is simple for the origin server, and provides strong protection against

DDoS by hiding the true IP address of the origin, it leads to a number of security prob-

lems such as leakage of tenant data [36] and sharing of private keys between the content

provider and the third-party hosting entity [15]. It has also, historically, been limited to

static content, leaving the actual application code running on origin servers or in the cloud,

where the latency benefits of caches at the edge are not realized.

Computing, however, is starting to become available at the edge. Cloudflare JavaScript

Workers [73] are one example of “edge-computing” available in a CDN. The basic principle

behind Cloudflare Workers is to allow origin servers to provide JavaScript code which

will be run within the Cloudflare CDN itself, reducing latency for dynamically-generated

content, and offering the origin server a simple way to scale. The high configurability

offered with Cloudflare workers turns Cloudflare from just a CDN service into an edge

computing platform.

Another example of this type of edge computing is AWS Lambda@Edge [2]. This

service also allows the client to push code to the edge, allowing it to be closer to the end

user to minimize latency. This code will typically be triggered by events from the Amazon

CloudFront CDN. After pushing the code to the edge, AWS will take responsibility of code

management duties such as replication, scaling and routing.

This arrangement increases security and privacy concerns for the CDN’s clients. Gen-

erally, CDN clients want to keep most of their code secured and protected against both the

CDN and possible malicious entities access, and using such a facility requires the client to

distribute both code and potentially sensitive data throughout the CDN’s network.

In this chapter, we present Harpocrates1, a system that allows origin servers to dis-

1Harpocrates was the ancient Greek god of secrets and confidentiality
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tribute sensitive code and secret information throughout the world without having to

worry about it being leaked. This enables secure computation at the edge, and will allow

for faster, more responsive, and more dynamic web services. Harpocrates makes use of

Intel’s Software Guard Extensions (SGX). It provides an abstraction based on the JavaScript

Worker model, which is widely used on both the client and server side (Node.js) of web

applications; this enables ease of offloading to the CDN from either direction.

We claim that Harpocrates enables multiple interesting applications that can help im-

prove CDNs by providing storage for more critical information on the CDN without com-

prising the privacy and security of data and code. To demonstrate the power of the

framework, we designed four such applications. The first two use cases help keep the

origin webserver available to legitimate users during Distributed Denial-of-Service (DDoS)

attacks. They check secure login cookies set by the origin server to identify users who have

legitimately logged in to the service; they use a secret provided by the origin server to

establish the authenticity of the login cookies, and use Harpocrates to prevent compromise

of that secret. The second application goes beyond simple checking of an existing cookie

by adding an additional authentication step, handled entirely in the CDN and using the

user’s own password for the website. Our third use case allows aggregation of data from

multiple sources to occur at the edge of the network, in the CDN, for scalability and latency

reasons. The fourth is an adaptation of the Keyless SSL [20] protocol to allow the CDN to

serve HTTPS requests for the origin without requiring access to the latter’s private keys.

The rest of this chapter is organized as follows: We begin by giving background on

the technologies that we use in Section 2.2 and covering the related work. Our threat

model, in particular the details of the materials that we seek to keep secret, is described in

Section 2.3. The design of Harpocrates is covered in Section 4.4, followed by a description

of several applications that it in enables in Section 2.5. Section 2.6 has some brief notes on

the implementation, and Section 2.7 provides an evaluation of the overheads associated

with using SGX in this setting and demonstrating the benefit to website performance of

moving active code to the edge. We conclude and discuss future work in Section 4.6.
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2.2 Background and Related Work
In this section, we provide background on the technologies that we use and cover

related efforts.

2.2.1 Intel SGX

Intel Software Guard Extensions (Intel SGX) is a set of extensions to the Intel architec-

ture that are designed to provide integrity and confidentiality for application running in

ring 3 from parties running in the privileged ring, including the operating system, BIOS,

Virtual Machine Manager, etc. This allows users to run trusted code on untrusted servers.

It gives users a high level of confidence that private data will be as secure in a Cloud or

Edge Cloud as it would be running in a local trusted environment.

An SGX application consists of two parts: an untrusted part and a trusted part. The

trusted part is also referred to as an “enclave”. An enclave is an execution container

instantiated by an untrusted application. After being instantiated, the untrusted part can

issue an Enclave Call (ECALL) to switch into the enclave and start the trusted execution.

Similarly, the code inside enclave can switch to the untrusted world by making an Out

Call (OCALL). An ECALL is a call made into an interface function within the enclave,

triggering the enclave to execute a piece of code after necessary security checking, while

and OCALL allows code in the enclave to make use of outside services like system calls or

other functions that requires privileged permissions [41].

Harpocrates mainly uses two features of SGX. One is its secure execution environment:

data belonging to an enclave is presented as plaintext within the CPU, but this data is

encrypted with integrity protection applied when it is flushed from the cache to DRAM.

Because SGX flushes the CPU cache and other memory mappings when switching in or

out of an enclave, not even a privileged party, e.g. the kernel, can see the plaintext of the

enclave’s memory: it cannot see the previous contents of the CPU’s cache, and can only

see the encrypted copy of the content in the memory 2. Any modification to the encrypted

content in physical memory will lead to general protection fault when the trusted entity

get scheduled to run again.

2Recently, Spectre-like attacks have been discovered against SGX [16]. Like all other SGX-enabled appli-
cations, Harpocrates’ security will depend on the development of effective countermeasures against these
attacks.
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The other SGX feature Harpocrates uses is remote attestation. Because most trusted

code requires some set of secret data to operate on, there must be a way to securely

communicate that data to the enclave. Furthermore, it is critical that the party sending this

secret data have a way to trust that it is indeed talking to specific, known, trusted code,

and that this code is running in a real SGX enclave (and not, say, an emulation of SGX that

will allow the attacker to access the data). SGX provides these facilities through a feature

called “remote attestation” that enables an enclave to “attest” the identity and integrity of

the code to a remote party. The Harpocrates design uses this mechanism to transfer secrets

from the origin server into the enclave, and to give the origin server confidence that its

functions are being faithfully executed.

2.2.2 TLS and Keyless SSL

The traditional TLS protocol is primarily designed to secure end-to-end communica-

tion. This was appropriate for older styles of web service when communication was

only between two parties: the client (browser) and the webserver. However, when the

connection is terminated in an intermediate node (such as a “reverse proxy” CDN) the

security guarantees of these protocols no longer apply. In the CDN world, in order to

provide HTTPS service, CDN providers that “front” for their clients domains needs to

impersonate the original content provider by having the private key at hand, which brings

with it security problems inherent in sharing a private key with a third party. To mitigate

the problems brought by key sharing, Keyless SSL [20] was introduced by Cloudflare.

Keyless SSL exploits the fact that private key is only used once in each TLS handshake to

split the whole TLS handshake geographically, with most of the handshake work happen-

ing at the Cloudflare’s edge. The private key itself remains on the origin server, which is

contacted once per SSL/TLS handshake to identify the origin server. The security property

of Keyless SSL has attracted significant attention and has been successfully applied in

the wild [67]. However, Keyless SSL suffers from significant performance degradation

and limited scalability due to the extra round trip from the CDN to Key Server in each

handshake [78]. Researchers have sought alternative solutions to this problem and one of

the main directions is using SGX to enable the private-key-holding sever to run in or near

the CDN [78], eliminating the additional round trip.
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2.2.3 Related Work

There is significant other work on exploiting SGX capabilities to enable trusted com-

putation in the Cloud and Edge. For example, Haven [8], SCONE [3] and Graphene-

SGX [71] make attempts to run entire containers in a shielded environment. mbTLS [51],

ShieldBox [70] and EndBox [34] use SGX to protect middleboxes. This work makes all

execution and data within the enclave trusted, and essentially only uses the third party

infrastructure as a computation support. However, we argue that to make full use of the

benefits conferred by a CDN provider, a tenant needs to expose some information to the

CDN so that it can help the tenant optimize their performance and security, e.g. caching

and DDoS prevention. Harpocrates targets a different point in the design space in which

we do allow the CDN to see less-critical “derived secrets” while avoiding catastrophic

incidents in which “master secrets” are leaked.

Bhargavan et. al [9] explore a means to optimize Keyless SSL itself, but does not

consider computation need at the edge. mcTLS [52], Blindbox [62], and Splitbox [4] explore

different ways to keep secrets from untrusted parties, but they emphasize the protection

of content instead of of private key protection. STYX [78] does explore the space of key

management, using SGX to enhance key distribution. Harpocrates differs from it in that

we focus on pushing execution of code from the origin server to the edge, a broader use

case than SSL key management.

2.3 Threat Model
The first element of our model is that the origin server has a “master secret” from which

other secrets are generated, and that protecting this secret is higher priority than protecting

the values that are derived from it. This situation is common in modern web services. For

example, a master secret is often used to generate cryptographically secure cookies. Theft

of an individual cookie is undesirable, as it allows the thief to impersonate a user for the

duration of the cookie’s validity or until the theft is discovered and the affected user can

have her cookie re-generated. Theft of the master secret, on the other hand, is catastrophic,

as it allows the thief to generate correct cookies, and therefore impersonate any user, and

it can only be remedied by regenerating all users’ cookies. Similar situations arise with

TLS/HTTPS: leaking the key for a specific session is problematic, but leaking the private
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key used to authenticate the server is much worse. Our goal in Harpocrates is to protect

the master secret, as it is not always possible to protect derived secrets and still have the

CDN do its job.

Second, we assume that the CDN needs to be able to see requests and responses “in

plaintext” to do its job; without this, it cannot know whether to serve responses from its

cache, whether to send requests to the origin server, whether to dispatch them to a secure

function, etc. All of these decisions are based on information in the HTTP request, such as

the request URL and headers (particularly cookies). This is why we only seek to protect

master secrets: for example, if a secure function sends a cookie to a client, that cookie

will be seen by the CDN in the next request the client makes. We do assume that the

connection between the client and the CDN is, or can be made, over HTTPS; techniques

such as Cloudflare’s Keyless SSL [20] make this possible while keeping the origin’s private

key secret (though they may leak session keys).

Third, we assume that the CDN may leak any information that it sees in plaintext;

this includes the contents of HTTPS connections that are decrypted by the CDN through

mechanisms like Keyless SSL. This may be due to a bug, such as in the case of Cloud-

Bleed [36], in which Cloudflare inadvertently leaked memory belonging to one origin in

bytes of connections for other origins’ clients. It could also be due to a malicious insider at

the CDN or a malicious third party that has compromised the CDN.

Finally, we assume the correctness of Intel’s SGX and remote attestation protocols.

While there do exist attacks against SGX [55], we assume that mitigations are available

or that they are closed in future revisions of SGX.

2.4 Design
The fundamental element of security in Harpocrates comes from leveraging Intel SGX.

SGX supports code secrecy by putting sensitive code and data into CPU-hardened pro-

tected regions called enclaves. Intel also provides a remote attestation mechanism which

can prove to others that they are really communicating with the specific, known, code in

a real SGX enclave, and not an impostor. As part of this process, the remote party can

provide data (master secrets, in our design) that can only be decrypted inside the enclave.

Harpocrates, following the SGX Developer Guide [41], splits code into two parts: un-
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trusted code, which runs outside of an SGX enclave, and trusted code that runs inside of it.

All entry points are in the untrusted code: the CDN delivers requests that it receives from

clients to untrusted functions, and expects to receive a reply from an untrusted function as

well. Once invoked, an untrusted function may choose to call a trusted one: for example,

to perform operations involving secret data.

We offer an API based on the JavaScript WebWorker, an abstraction that allows a caller

to start a task by posting an event and registering a function to receive the completion of

that event. These two calls map well to the ECall and OCall interface offered by SGX.

An ECall is made from untrusted code, and invokes code inside of an enclave; this is

analogous to posting an event. An OCall is made by trusted code inside an enclave,

and calls the untrusted code registered to receive the completion. Another advantage of

adopting the WebWorker design is that it is frequently used in server-side JavaScript in the

Node.js environment, and thus facilitates moving code from an origin server to a CDN. It

is also used in Cloudflare’s Workers.

There are some differences between our design and the “normal” WebWorker. We

require the user to supply a function in the trusted code that will be called on initialization

of the enclave: typically, this code will perform remote attestation with the origin server

to securely transfer a secret(s) into the enclave. In addition, the untrusted code cannot call

arbitrary functions when it posts an event: it can only call functions that the customer has

defined for the enclave and exported to be available for ECalls. Untrusted code may still

register arbitrary functions to receive completions.

Figure 2.1 shows a typical CDN operating in “reverse proxy” mode. Note that though

we depict the CDN as a simple “stack” of servers, in practice, it is typically a set of servers

distributed around the world, and clients are directed to the closest one through DNS

resolution or IP anycast. The basic goal of the CDN is to use the path represented by the

solid arrows for as many requests as possible: these are the requests for which the CDN,

sitting near the user at the edge of the network, can respond out of its cache. The dotted

lines are essentially a fallback: when the content is dynamic or not yet cached, the CDN

must forward the request to the origin server, and relay the response back to the client.

Figure 2.2 shows the data flow within the CDN in Harpocrates. Requests enter on the

left from clients (marked #1 in the diagram) and reach the director. This director examines
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Client CDN Origin

Figure 2.1. Typical “reverse proxy” CDN. Solid lines represent the CDN serving content
out of its cache. Dotted lines represent the CDN forwarding traffic to the origin, and
forwarding back the results.

Figure 2.2. The design of Harpocrates. The client is to the left, and the origin server is to
the right.
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the HTTP request (acting as the endpoint of the TLS session for HTTPS connections), and

selects one of several options. First, for static content, it may serve the content directly

out of the CDN’s cache (#2). Second, if the request URL belongs to an endpoint registered

by the origin server’s code, it forwards the request to the untrusted part of the extension’s

code (#3). This is the portion of the code supplied by the user that does not run inside of an

SGX enclave and does not handle master secrets. In some extensions, no secret data may

be needed, and this function returns data to the director (which passes it back to the client)

without calling into an enclave at all; this looks similar to Cloudflare’s Worker model.

For computations on secret data, the extension calls into the enclave (#4) by posting a

SecureWorker event. Computation on the secret data—such as secure cookie generation—

occurs in the enclave, which returns the data to the untrusted code, and from there, back

to the director and client. Finally, the director still has the option of sending requests that

cannot be handed by either the cache or local code back to the origin server (#5).

The CDN is responsible for deciding when and where to bring up new instances of

the customer’s function, along with the associated enclave. Each enclave must have an

initialization function; typically, this function will contact the origin server, use remote at-

testation to authenticate itself, and be given the master secret through this secure channel.

While this bootstrapping procedure does put some additional load on the origin server, it

only needs to happen once for each host in the CDN network, which is much lower than

the total number of end clients.

An important point that developer should keep in mind is the fact that secrets and

sensitive information should not be statically compiled into the enclave, and must only be

securely transferred to the enclave at runtime during remote attestation. Code and data

used to initialize an enclave are, by design, unencrypted in SGX. Any secret loaded before

attestation can possibly be inspected by the unauthorized CDN or a malicious party.

2.5 Example Applications
Using a content delivery network (CDN) to host scripts, files, and even sensitive in-

formation that are frequently accessed can improve the overall performance of the origin

website and conserve bandwidth. But unfortunately, using CDNs also comes with a risk. If

an adversary gains access to these files he can inject arbitrary malicious content to change
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or even replace those files.

According to surveys [15], it was reported that 76% of all organizations that use third-

party hosting services such as CDNs share at least one of their private keys with this entity.

Sharing such crucial data is risky, because the origin site has to trust not only the CDN’s

software, but also the CDN’s system administrators, all those who have physical access

to the provider’s hardware, and any law-enfrocement body that might have authority to

access the origin site’s replicated data in the provider’s physical location.

We now describe four applications that could be built using Harpocrates, the benefit

they would have to users and origin sites, and the way that they fit into our security model.

2.5.1 Secure Cookie DoS Prevention

The most basic service that reverse proxy CDNs offer to their customers—after caching—

is the ability to withstand denial of service attacks. Because end hosts—including attackers—

see the CDN’s IP address, rather than the origin’s true location, all traffic, benign and

malicious, passes through the CDN. The CDN aims to have enough capacity, in terms of

bandwidth and servers, to withstand any DoS attacks that may be directed at its customers.

For static (cachable) content, the attack becomes against the CDN’s resources and is

up to the CDN to handle appropriately. For dynamic content, however, the problem

is trickier: normally, requests for this content would be forwarded to the origin server,

which would customize the response for the session, user, etc. Forwarding all requests for

dynamic would clearly expose the origin server to the DoS attack, but the origin would

often like to allow some class of requests—such as those coming from logged-in users—to

be forwarded. Offloading these decisions to the CDN is problematic, as in order to make

them securely, the CDN will need some way of identifying valid requests through, e.g. a

cookie set in the request, and checking this cookie requires a secret.

In Harpocrates, this tension is resolved by allowing the origin to write a function that

checks login cookies. These cookies are generated by the origin server on successful login

using a widely-used method of applying a cryptographic hash to a concatenation of the

username, a nonce, an expiration date, and a master secret. These cookies are quick to

generate and check; all information other than the secret is sent in plaintext in the request,

so all that must be done to check the validity of the cookie is to concatenate the secret
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and check that the hash of this string matches the hash in the request. This master secret

can be generated on the origin server, and shared with the enclaves running in the CDN.

The untrusted code supplied by the origin to the CDN can parse the request, extract the

necessary fields from headers, etc., and pass the appropriate fields to the trusted code to

test. The trusted code, with access to the master secret, simply returns success or failure

depending on whether the cookie validates, and the untrusted code takes the appropriate

action to block or forward the request. The path of an individual request is shown in

Figure 2.3.

2.5.2 Site-Specific DoS Authentication

The procedure above works so long as the adversary does not have access to a legit-

imate, valid cookie. If he does have one, such as by compromising a legitimate client,

he can distribute this cookie to all attackers and pass the security check, allowing attack

traffic to reach the origin server. Our next scheme protects against this case. When there

is some indication that a particular cookie might be involved in an attack (e.g. evidenced

by seeing the same cookie in many requests), we can enter a more cautious mode in which

possessing a login cookie is not enough: one must also have a cookie that is tied to the

user’s IP address to prevent the same login cookie from being used by an entire DDoS

botnet.

Login cookies are not typically tied to a particular IP address, because users are of-

ten on DHCP, behind NAT, move between networks, move between mobile and WiFi

networks, etc. When one wants to verify that the user behind a particular IP address is

a person, rather than a bot, a typical way to do so is is through a CAPTCHA [76]. In

many cases, today’s reverse-proxy CDNs issue CAPTCHA tests to clients coming from

IP addresses that they consider suspicious. A major problem with this arrangement is

that this CAPTCHA test is essentially conducted “outside” the website; e.g. it provides

a confusing user experience by serving up a page from the CDN rather than the origin

website, asks the user to input information that they are not used to providing the website,

etc.

Our scheme works much more cooperatively with the original website, as shown in

Figure 2.4. When the regular login cookie checking function at the CDN decides that a
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Figure 2.3. Simple checking of a login cookie in an enclave in the CDN.

Figure 2.4. Exchanges when the enhanced protection mode is enabled. For visual simplic-
ity, individual calls into the enclave are not shown.
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login cookie might be being abused, it serves the client a page—clearly coming from the

origin website, but served from the CDN—requesting that the user re-enter their pass-

word. This is shown as interaction #1 in the figure: the request contains a valid login

cookie, but not an IP-binding cookie. The login cookie is checked as in Figure 2.3, and if it

is correct, the worker in the CDN returns a page asking the user to re-enter their password,

instead of forwarding the request to the origin server.

The user login database is shared from the origin to the enclaves: enclaves can easily

contain tens of megabytes of memory, sufficient to hold login credentials for hundreds of

thousands of users. The user’s response is received by the origin’s function on the CDN,

where the password is checked inside the enclave (here, the password database is the

master secret), and if successful, a new secure cookie, similar to the one used for normal

logins is generated. This cookie, however, is tied to a particular client IP address. Thus, any

bots attempting to use it from other IP addresses can be quickly and easily rejected within

the CDN; requests coming from the correct IP address can be forwarded to the origin. If

the user does roam to a different IP address, they will simply have the slight inconvenience

of having to enter their password again. This is shown as interaction #2 in the figure: here,

the request contains the user’s password, the enclave checks that password, and, if the

password is correct, the worker returns the IP-bound cookie and a redirect to the page the

user was originally trying to access. In interaction #3, the request now contains a correct

IP-bound cookie, and the function within the CDN checks this cookie and forwards the

request to the origin.

Note that that this new authentication procedure takes place within the CDN: the

origin server sees no additional load from the requests to re-enter passwords, whether

successful or not. This solution therefore scales with the CDN, and this additional level

of protection comes without additional load on the origin. The end user only sees the

additional password dialog once (unless she or he changes IP address while the attack is

ongoing).

2.5.3 Content Aggregation at the Edge

One of the documented use cases for Cloudflare’s workers is aggregating information

from multiple points within the CDN [18]. In this configuration, the worker grabs infor-
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mation from multiple sources and creates a unified page to serve back to the user. This

information can come from third-party APIs such as weather, mapping, stock, and social

media services.

In many cases, such services are accessed by having an “API token” that belongs, in

this case, to the origin server, and which is used to authenticate to the API. We treat this

as a “master secret.” For some APIs—particularly, those dealing with financial or personal

information—the information being handled is very sensitive, and disclosure of the key

can be very dangerous. For example, consider a bank which has a relationship with a

credit reporting agency, which it uses to display credit scores to the bank’s customers:

displaying this information within the bank’s website is a valuable service, but the bank

must take great care to ensure that the key that it uses to authenticate itself to the credit

agency is not compromised.

In Harpocrates, the origin’s API keys can be kept within the enclave; this allows the

origin to benefit from the latency and scaling advantages of aggregating information at

the edge, without needing to worry about compromise of the keys it uses to gather that

information.

2.5.4 Keyless SSL

Keyless SSL [20] is a design that allows a CDN to serve HTTPS connections with the

origin’s SSL/TLS certificate without needing to have access to the origin’s private key. It

does so by having a small server that runs (in the original design) on the origin, which

keeps the private key and is contacted during TLS session establishment to perform the

cryptographic operations that authenticate the server. Others have shown that the server

holding the private key can be run within an SGX enclave, and that there are substantial

latency and scalability benefits to doing so [78]. Harpocrates can be used as an alternate

way to implement the keyless server.

2.6 Implementation
To implement Harpocrates, we use an existing package called SecureWorker [47] that

allows JavaScript workers to run inside the trusted environment provided by an Intel

SGX enclave. The execution environment outside of the enclave (for untrusted code)
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is provided by Node.js, a popular engine for server-side JavaScript. Node.js is much

too large and has too many dependencies to be practical for running inside of an SGX

enclave, so SecureWorker uses the Duktape [25] JavaScript engine to provides a familiar

Worker-like environment inside the enclave. Duktape is designed to be embedded in other

environments, and is therefore very lightweight and has few dependencies. SecureWorker

allows users to write isometric code and use the same code on client, server, and inside

enclaves, it presents the secure workers as just another, secure and trusted, component in

the JavaScript-based architecture. The SecureWorker package provides a rich API in which

we can start a new worker, terminate it, receive and send messages between the trusted

and untrusted part of the system, and even perform remote attestation services.

The original SecureWorker package provided wrappers for a subset of the JavaScript

webcrypto API [77]; however, this subset was small, and only covered a few symmetric

key ciphers and has functions provided by early releases of the Intel SGX SDK. Because we

expect cryptography to be the main use case for trusted code, we extended these wrappers

to cover public key cryptography and a larger set of ciphers and hashes from the OpenSSL

library.

For the sake of this prototype, we focused on the design aspect of the system and did

not include the full remote attestation in our implementation. The full remote attestation

process requires a license from Intel, a signed certificate from a recognized certificate au-

thority, and a registered service provider ID [74]; this does not add to the proof-of-concept

value of our implementation.

2.7 Evaluation
We evaluate the feasibility of our approach by showing that it does not cause undue

overheads on worker functions; showing the latency benefits that are to be gained from

moving these workers to the edge; and showing the utility of the system by presenting a

detailed case study showing how to build a website-specific DDoS defense mechanism.

Our evaluation was done in the CloudLab [69] testbed. All hardware SGX evaluation

was done using an Intel i5-6260U processor.
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2.7.1 Microbenchmarks

In general, small functions that do not use large amounts of memory execute at a similar

speed within an SGX enclave with outside of ones [11]. We found this to hold for the types

of functions needed for many fingerprinting and secure cookie schemes: we ran a SHA-256

hash of 20 bytes of data using the JavaScript js-sha256 library. Outside of the enclave,

this function was run in Node.js; inside, it was run using the Duktape JavaScript engine.

In both cases, the actual hash implementation is native code. Outside of the enclave, we

found that it took, on average, 0.0017ms (averaged over 10,000 repetitions) and 0.0029ms

(averaged over 100,000 repetitions), while the same hash, run entirely within an enclave

took only 0.0041ms on average (averaged over 100,000 repetitions). We found that the gap

between the execution speed outside and inside the enclave gets smaller, in relative terms,

as we increase the input message size. From this, we can conclude that for many small

functions, running inside SGX will not, itself, introduce overheads that are significant in

comparison to network RTTs.

There is, however, another source of overhead that we must consider: crossing the trust

boundary to enter and exit an enclave does have a noticeable performance effect. We as-

sume that workers implemented in our system will have two such boundary crossings: one

ECALL made when the untrusted code posts an event that causes execution of the trusted

code, and one OCALL when the trusted code posts results back. Under this assumption,

the effect is still within reasonable range compared to wide-area network delays: when

we re-factor the function above to put the testing loop in the untrusted code and the hash

itself in the trusted code, the average time is 0.9ms. This is significant, but still well under

the typical network round trip time between a client and origin server.

We do note that initialization of the enclave adds additional latency: in our experi-

ments, this amounted to an extra 16ms, and would be much higher with fully implemented

remote attestation. This is a one-time cost per CDN server, and CDNs have two choices

for how to handle it. One would be to implement SGX enclave initialization on-demand

and to shut down an enclave after some period of inactivity. This would keep overheads

low by preventing the CDN from having to maintain many enclaves, but would result in

occasional higher latencies seen by clients (e.g. the first to use the origin from a particular

geographical region). Another would be to proactively and predictively bring up enclaves;
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this could reduce the occasional latency spikes, but would require more sophisticated

workload prediction and could mean more resources spent maintaining inactive enclaves.

2.7.2 End-to-End Benchmark

For the deployed topology configuration, we emulated link latencies for the user-to-

CDN and CDN-to-origin links. In [10], the authors found that a typical round trip time

between a client and the Cloudflare CDN was 16ms; we approximate this in the emulated

topology using a 10ms (one-way) delay between the end user and the CDN. (We do not

model the time it takes for the client to find the closest CDN server.) For the link between

the CDN and the origin server, we used a 30ms (one-way) delay, approximating an inter-

continental link of about 9,000 km.

The function we used for this evaluation is a simple one which calculates a secure

one-time user cookie for the end user. The primary computation done by this function

is the hash described above. The request made for this experiment is minimal, as is the

response from the server.

From the client to the origin, passing through the CDN, the time to retrieve the result

averaged 118ms. (This includes the time to set up the TCP connection, send the request,

compute the secure cookie, etc.) When the function is moved to the CDN, the time is only

38ms, a reduction of almost 2/3. The exact benefit in practice will, of course depend on

how close the CDN is to the end user (the closer, the higher the benefit), how close the

origin server is to the CDN (the farther, the greater the benefit), and the amount of time

the function takes to execute (long functions may dominate network RTT).

2.7.3 Case Study

To illustrate how Harpocrates can be used to implement one of the applications from

Section 2.5, we show snippets of code from our implementation of the cookie-checking

DOS protection.

Listing 2.1 gives the general sense of what the untrusted portion of the code for this

function does. Lines 1 and 2 set up the SecureWorker package, loading in the binary

(enclave.so) and Javescript (cookies.js) that implement the trusted portion of the cookie

checker; recall that the binary run inside of the enclave is the lightweight Duktape JavaScript

engine. Lines 4–10 are the function that will receive the completion event from the un-
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Listing 2.1. Partial code listing for untrusted portion of cookie checking function
var SecureWorker = require(’./lib/real.js’);

const worker = new SecureWorker(’enclave.so’, ’cookies.js’);

worker.onMessage(function (message) {

if (message.result) {

// Forward request to origin

} else {

// Drop request

}

});

// Parse username, nonce, expiration, and cookie from request

worker.postMessage({name: username, n: nonce, exp: expiration, c: cookie});

trusted code; we omit the body of this function, which simply forwards the request to the

client or drops it depending on the message sent by the trusted code. Line 13 is where the

message is posted to the secure worker; here, the username, nonce (to prevent replays),

and expiration are available in plaintext in the request, as is the cookie.

Listing 2.2 shows the trusted code that runs in the SGX enclave in response to the

postMessage from the untrusted code. Line 2 performs the concatenation of the data

passed in with the secret In a full implementation, this secret would be obtained (just once)

from the origin on enclave initialization via SGX’s remote attestation; our prototype does

not implement remote attestation. Line 3 hashes this concatenated value, and line 4 checks

this concatenation against the cookie sent by the client and sends a completion event to the

untrusted code via postMessage.

Listing 2.2. Partial code listing for trusted portion of cookie checking function
SecureWorker.onMessage(function (message) {

var hashstring = message.name.concat(message.n,message.exp,SECRET);

var hashvalue = crypto.subtle.digest({name: ’SHA-256’}, hashstring);

SecureWorker.postMessage({result: hashvalue == meassage.c});

});
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2.8 Conclusion
In this chapter, I have presented Harpocrates, a system for moving computation from

origin webservers to nodes in a CDN network, which typically reside at or near the net-

work edge. Using SGX enclaves, our system allows the origin webserver to place “master

secrets” in these enclaves, giving them strong assurance that these secrets will not be

leaked even if the CDN needs to be able to “see” data derived from them in order to do

its job. By using JavaScript and an API similar to the WebWorker API, we make it easy for

the CDN’s customer to move computation from the server to the CDN. We demonstrate

that the overheads inherent in this arrangement are not high, and that there is significant

benefit to end users in the origin being able to offload secure computations to the CDN

servers near them.

Harpocrates is designed for applications with small amounts of trusted code and small

master secrets. This is due to the limited enclave size provided by SGX and the costs

associated with crossing the enclave boundary. These have performance implications for

bigger applications, due to page swapping or the need to build multiple enclaves with

secure communication channels between them. We look to other work that has focused

on running larger, more intensive applications in SGX [3, 56] for ways to alleviate this

limitation in the future.



CHAPTER 3

A YEAR OF AUTOMATED ANOMALY

DETECTION IN A DATACENTER

Anomaly detection based on Machine Learning can be a powerful tool for understand-

ing the behavior of large, complex computer systems in the wild. The set of anomalies

seen, however, can change over time: as the system evolves, is put to different uses,

and encounters different workloads, both its ‘typical’ behavior and the anomalies that

it encounters can change as well. This naturally raises two questions: how effective is

automated anomaly detection in this setting, and how much does anomalous behavior

change over time?

In this chapter, we examine these question for a dataset taken from a system that

manages the lifecycle of servers in datacenters. We look at logs from one year of operation

of a datacenter of about 500 servers. Applying state-of-the art techniques for finding

anomalous events, we find that there are a ‘core’ set of anomaly patterns that persist over

the entire period studied, but that in to track the evolution of the system, we must re-train

the detector periodically. Working with the administrators of this system, we find that,

despite these changes in patterns, they still contain actionable insights.

3.1 Introduction
A key task for administrators of large computer facilities is understanding the steady-

state operation of their facilities and reacting to any anomalies that might occur. The

sequences of events that actually take place in “normal” operation may or may not align

with administrators’ intuition about the behavior of the facility and its users; having a

full understanding is important to effective system administration. Exceptions to normal

sequences may indicate problems with the facility’s hardware, software, or configuration

and may require administrator attention. Such exceptions could also signal new uses or

emergent behaviors that administrators should be aware of.
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Understanding “normal” and anomalous behavior is not always straightforward. Events

from these types of systems are typically collected in logfiles [24], and simply looking for

“errors” in these logfiles is not always informative [13]. Some “errors” may be benign:

they might correspond to ways in which the facility is used that were not anticipated by

software writers, or they may represent transient states that the system is able to recover

from itself. On the flip-side, some sequences that are not explicitly flagged in logs as

“errors” may be quite worrying, such as increased frequency of certain operations or

cessation of others. The examination of logfiles for anomalies and errors is thus a ripe

area for machine learning and data mining [14, 24, 50].

In this chapter, we apply the technique of anomaly detection by invariant mining [40,

45] to the administration of CloudLab [26], a facility used by thousands of researchers

and educators in computer science. CloudLab collects extensive logfiles regarding the

provisioning of the servers under its control; as we lay out in more detail in Section 4.3, the

dataset used for this chapter covers a year of operation of 583 servers, comprising a total

of 15,018,235 log entries. Invariant mining looks at the relationships between frequencies

of entries in these logfiles, finding patterns that describe typical operation (“invariants”)

and log sequences that “violate” those invariants and are thus anomalous. Our goal is to

look at the following questions to find whether invariant mining is a useful technique to

aid administrators in this setting:

1. Does invariant mining successfully create discriminators capable of distinguishing

“normal” behavior from anomalous behavior?

2. Do the invariants found provide information that is interpretable by the administra-

tors of these systems?

3. Do the set of invariants change over time, and if so, how much?

3.2 Related Work
The high risk posed by compromised systems, anomalies, and security threats has led

to substantial interest in analyzing system logs to debug system failures and perform root

cause analysis.
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Moreover, Machine Learning (ML) and data mining techniques have been used widely

to monitor large scale systems for the purpose of anomaly detection and system diagnosis.

Several statistical and machine-learning models have been proposed to analyze the behav-

ior of systems and detect failures or problem by deeply analyzing systems logs and other

sources of data. In this section, we discuss the most closely related efforts in the area of

anomaly detection and log file analysis.

3.2.1 Anomaly Detection

There are some generic methods that use system logs for anomaly detection. Typically,

this is done by using a log parser to parse the unstructured log entries into a structured

form [23] that can be analyzed and modeled by different machine learning techniques.

These machine learning techniques are divided into supervised and unsupervised methods.

For supervised methods, labels are required to complete the analysis and perform

anomaly detection. The simplest labels for this use would be “normal” and “anomalous”.

In practice, however, it is usually hard to obtain labeled data in log files: system logs

commonly contain hundreds of thousands to millions of entries, making manual labeling

by administrators too time-consuming. Additionally, because anomalies are, by definition,

rare, it is not practical to use small subsets of system logs for training, since this would risk

including too few, or even zero, anomalies.

Related work in the area of anomaly detection in systems goes back several decades.

For example, Bates et al. [7] proposed an event definition language that allow programs to

generate logs with deep semantics information, such as hierarchical relationships between

events. However, this approach requires access to the source code. Some more recent

methods [14] perform anomaly detection on log files without requiring hand-crafted fea-

tures or pre-processing of data. These work on raw text data and output a score for each log

entry, which enables the systems administrator to classify the log entry as either anoma-

lous or normal. Baseman [6] proposes a framework that performs anomaly detection by

combining graph analysis, relational learning and kernel density estimation. Moreover, it

presents a novel event block detection algorithm that extracts related syslog messages from

the log files. The proposed methods analyze individual messages rather than event blocks

which limit the application scope. Furthermore, Baseman [5] introduced Interpretable and
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Interactive Classifier-Adjusted Density Estimation with Temporal components (iCADET).

This framework utilizes random forest classifiers to explain the labeling of certain points

as likely anomalous. This technique is more suitable for smaller scale data.

There are also some open source solutions for log files inspection and anomaly detec-

tion. For example, Project Scorpio 1 connects to streaming sources and uses unsupervised

machine learning methods to generate a prediction of anomalous log entries.

3.2.2 Logfile Analysis

Other research efforts have specifically targeted logfile analysis for anomaly detection.

For example, DeepLog [24] proposes a deep neural network model utilizing Long Short-

Term Memory (LSTM). This model allows DeepLog to train a model unsupervised based on

the log pattern and report an anomaly when log patterns deviate from the expected result

by the trained model. Several other approaches based in machine learning have been

proposed for different systems. Many of these are rule-based approaches, which limits

them to specific application and requires domain knowledge. For example, M. Cinque [17],

performs a change in the logging mechanism itself, which requires both effort and domain

knowledge to implement the change to the logging system first. Other kinds of tool rely

on comparing anomalous logs against normal ones, such as [50]. A limitation of such tools

such tools is the fact that it is hard to detect new kind of anomalies that the model has not

been exposed to before. Because our goal in this work is to study how anomalies change

over time, it is important that we be able to find anomalies that were not seen during earlier

periods.

Furthermore, some methods were developed to reduce the size of the log files and thus

reducing the effort needed for analysis. For example, LSTM, which have been recently

used for log analysis purposes in data centers. T. Yang and V. Agrawal. [85] introduced a

framework that highlights the messages it deems to be the most important text in the failed

log messages, making it less tedious for the human operator or even automated software

to analyze the cause behind the failures.

Invariant mining [45] is a general approach that does not rely on the nature of the

data or require any significant domain knowledge and unlike rule/keyword based log

1https://github.com/AICoE/log-anomaly-detector
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analysis tools the rules are easier to update when components are upgraded or changed

as they usually tend to do. Our work builds on this work, which we give an overview of

in Section 3.4.1. Lou et al. [45] applied invariant mining to two case studies, Hadoop

and CloudDB (a structured data storage service developed by Microsoft). The testing

environment was setup specifically for the purposes of this research. In contrast, our our

work uses real-life data from a time span of one year, giving us the opportunity to gain a

better understanding of the nature of anomalies and the benefits of using invariant mining

to detect anomalies in real datacenter systems.

3.3 Dataset
In this section, we describe the dataset. We talk about CloudLab2, the facility our

logfiles come from. In addition to describing the contents of the logs themselves, we also

cover the process we used to prepare the data for analysis. The dataset used for this chapter

is available with DOI https://doi.org/10.5281/zenodo.4073861.

3.3.1 CloudLab

CloudLab [26] is a facility that serves the computer systems research community. It

operates as an environment in which researchers can build their own clouds: it provisions

resources at a “bare metal” level, enabling its users to see, control, and modify portions

of the cloud software stack including virtualization, networking, and storage. It has ap-

proximately 5,00 users around the world who have, to date, run 150,000 experiments on

it. CloudLab has three main clusters; the data that we use for this chapter comes from its

cluster at the University of Utah [68].

We chose CloudLab for this study because we have access to both its logfiles, which

are collected centrally, and its administrators, who can help us interpret our results and

evaluate their utility. While CloudLab is a unique facility in terms of the specific features it

offers to users, its basic functionality of managing the provisioning of servers, interaction

with users via a web interface, etc. has much in common with other facilities and should

lead to generalizable results.

In this chapter, we focus on CloudLab’s node booting process: the automated process of

2https://cloudlab.us/
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booting servers into various operating systems for user experiments, utility tasks (such as

re-imaging local hard drives), and general system administration. Though a conceptually

simple task, this process involves interactions between firmware and BIOS on the servers

themselves, standard network protocols such as DHCP and TFTP, and a number of services

that CloudLab runs to track server state [53] and inform servers what their next actions

should be. There is substantial emergent complexity in this system and large amounts of

parallelism that are difficult to control. As a result, failures to boot are not uncommon,

and the CloudLab code includes many measures to detect and automatically recover from

common failure modes. Because of the way CloudLab allocates resources, it is common

for a server to be part of several experiments in a single day in sequence, and thus to

go through this boot process every few hours. It is also common for some servers to be

allocated to an individual experiment for long periods of time, meaning that they may not

reboot for a period of days or weeks.

3.3.2 Data Collection

CloudLab log data is collected, processed and stored using the ELK (Elasticsearch3,

Logstash4, Kibana5) stack. In our configuration, the ElasticSearch cluster is composed of

five data nodes and one client node that also serves the Kibana frontend. As is common

with the ELK stack, we have Filebeat6 aggregate and forward logs from the main CloudLab

servers to be processed by Logstash and stored in the ElasticSearch cluster.

The logfiles that we collect come from a mix of standard server software, such as

Apache, ISC DHCPD, and tftpd; and custom software that has been developed for Cloud-

Lab and other related testbeds [31, 79]. Overall, we collect on average 350,000 logs entries

per hour (though only a subset of those is used in this analysis.)

3https://github.com/elastic/elasticsearch

4https://github.com/elastic/logstash

5https://github.com/elastic/kibana

6https://github.com/elastic/beats
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3.3.3 Parsing and Cleaning

To be used for data mining and machine learning, log messages must be individually

identified and parameters, etc. parsed out; the relatively unstructured text found in the

logfiles must be converted into structured data. For invariant mining in particular, each log

message must be assigned a corresponding event ID, (also called a log key) that indicates

the message type. These event IDs are matched to specific patterns, where the pattern

represents the constant parts of the message and the variable parameters that the message

contains. To get this information, we process each message against a set of Grok [28]

patterns. While this log parsing method is sometimes automated [23, 39, 86], our initial

attempts to use these automated systems did not produce satisfactory results; thus, we

created the Grok patterns by hand to ensure accuracy and to further explore our data. Lists

of patterns are consumed by a script to automatically generate a LogStash configuration

file to process messages, and we version these patterns: each entry in Elasticsearch is tagged

with the version number of the pattern set, so that when we add or change patterns, we

can re-parse all stored log entries.

An interesting aspect of processing logfiles is that sometimes mapping is required be-

tween different identifiers for the same entity. One way this manifests in the CloudLab

data is that in some logfiles, machines are identified by their “node ID”, the primary

identifier CloudLab uses to track its resources. In others this information is not available.

For example, in DHCP logs, initial requests are identified only by their MAC address. As

part of our parsing process in Logstash, we use mapping tables to augment records with

all identifiers for the node to make it easier to relate entries with each other.

With the data processed and stored using our ELK stack, the data must be collected

and formed into data files before applying invariant mining. Data files were created using

a script that generated ElasticSearch queries based on selected node type, node range, date

range and log types. Each entry from the resulting query had its message and event ID

written to an output file along with its assigned session ID. The session ID is formed from

the node ID and date to delineate chunks of log entries into sessions, where each session

represents a 24 hour period for a particular node.

To provide clean datasets, some data had to be excluded because of inconsistencies

or errors. As a result of abnormal node ID formats and deformed log messages, some
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log entries were not correctly matched with a pattern and any such entry was excluded

from generated data sets. Additionally, each message has two timestamps; one from the

machine time which contains the message and another assigned by Logbeat at its collection

time. In some cases, the two timestamps differed significantly, with Logbeat retrieving

the log months after the machine timestamp. Such occurrences had to be excluded from

datasets to ensure that the date used to form session IDs were accurate.

3.3.4 Resulting Dataset

For the purposes of this chapter of the dissertation, the dataset was formed from logfiles

of all CloudLab nodes of the types m400 and m510, and was gathered from January 1 to

December 31 of 2019. The resulting dataset contains over 15 million log entries for those

583 nodes and forms 51,375 sessions.

The dataset we use for this chapter is formed from four specific logfiles, each of which

has its own set of message patterns. All of these logfiles record events related to the process

of provisioning and booting nodes. Typically, a reboot of a node is initiated by the CloudLab

server in response to a user starting or ending an experiment, though users can reboot

nodes themselves either intentionally or as a side effect of a kernel crash on the node.

• reboot is a log that contains the system’s high-level “intent” with respect to reboot-

ing nodes; that is, when a node is intentionally rebooted, an entry is created in this

logfile.

• stated reports the status of an internal state machine used in some CloudLab pro-

cesses [53]. Each state (such as BOOTING) has a set of expected successor states (such as

DHCP, RELOADING, etc.) and some states have timeouts associated with them. Cloud-

Lab uses this state machine to detect and attempt to recover from certain kinds of

faults.

• bootinfo is a CloudLab-specific daemon that is used to inform nodes of what they

should boot next (eg. boot into a special memory-based filesystem used for re-

imaging, boot from a partition on the disk, etc.) The first-stage bootloader contacts

this service, so it provides information that a node has reached a certain point in the

boot process and gives context regarding what the node is booting.
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• dhcpd records DHCP events from the server’s perspective. Because nodes contact

the DHCP sever at multiple points during the boot process (from the PXE ROM,

OS initialization, etc.), this provides fairly fine-grained information regarding nodes’

progress through the boot process.

To parse these log files, we used 48 unique log patterns with bootinfo and stated

having the most unique patterns, with 25 and 15 respectively.

3.4 Analysis Methodology
We took the dataset described in Section 4.3 and applied invariant mining [45] to find

what constitutes “normal” behavior for the CloudLab provisioning process, and to find

deviations from this normal. In addition to mining invariants for specific time periods,

we also develop a method for examining how they change over time so that we can

understand if the steady-state behavior of the facility changes or not.

As mentioned before, manual inspection of log files is infeasible due to the system’s

large scale and high complexity. Moreover, the software that manages this system is

updated frequently, which makes it impractical to rely on rule-based log analysis solutions.

Since invariant mining does not utilize constant rules, does not require labels for training,

and does not depend on the domain knowledge of system admins, it is more appropriate

for use with regularly-revised, large-scale systems.

3.4.1 Invariant Mining

The idea behind invariant mining [45] is that what we consider to be normal behavior

can be learned by mining the log files to discover the inherent linear characteristics of the

program workflow. Any log entry that does not match the workflow will be considered

anomalous. This method can be used to automatically define rules for anomalies and thus

automatically detect them. The linear invariants reflect the properties of execution path

and so a violation of an invariant can often reflect the physical meaning of the system

problem which makes it a superior diagnostic tool for human operators.

The input that we provide to the invariant miner is a set of sessions (described in

Section 3.3.3), with each session containing a count of how many times each log key

occurred during the session. The miner looks for sets of keys that typically occur with
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linear relations and outputs these ratios. For example, the miner might discover that each

message indicating that a server has begun rebooting is typically paired with a message

indicating a successful boot. Or, it might find that a message indicating that a server has

begun PXE booting typically matches with two DHCP requests: one from the PXE ROM,

and another from the OS once the server has booted into the OS.

Each ratio is called an invariant, and log sessions that do not follow this relation are said

to violate the invariant; sessions that contain violations are said to be anomalous. Once we

have this set of invariants, finding anomalies is straightforward: to check an individual

session, we simply count occurrences of log keys and check whether they violate any

invariants.

The invariant miner has a simple data model in that it just looks for integer ratios in

the counts of event occurrences. Advantages of this approach include the fact that it does

not require the semantic information that would be required to truly match up specific

events, and that these ratios stay the same (under normal conditions) no matter how many

boot cycles are observed in a given window. What it gives up in return is that while it

can identify the presence of an anomaly, the invariant miner but itself cannot point to

specific log messages that caused this anomaly. For example, if the anomaly detector finds

that there are more “started booting” messages in a session than “successfully booted”

ones (violating the expected one-to-to ratio), it can flag an anomaly, but finding which boot

attempt failed requires additional processing or manual inspection.

For this chapter, half of the data set is used as a training dataset and the other half is

used as a test dataset.

3.4.2 Comparison Across Time

To analyze change over time, we divided the data from year 2019 into four quarters

(January–March, April–June, etc.) and trained the invariant miner with each quarter’s

data independently. We then compared the sets of invariants found in each quarter. These

results were used to study how usable the invariants are (that is, whether administrators

found them accurate and actionable), which invariants are persistent over the year, etc. We

also compare the number of invariants violated in each quarter and analyze the reasons

behind the difference in invariants violations between the quarters. Since the persistent
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violations occur in different time periods through the year, we highlight them as the most

persistent violations.

3.4.3 Implementation

Our implementation is based on loglizer [40] by the Logpai team7. The original

tool’s invariant mining output was not sufficient by itself to list all invariants and sessions

that violated them, so modified the source code to produce the needed information. This

information included the mapping between the numbering of event types and the actual

Event IDs in our log files. It also included the number of violations for each invariant,

which sessions violated which invariants and which sessions are completely “clean.”

We also wrote a post processing program to map the arbitrary session numbering used

internally by loglizer to the original session IDs from the log files. It also maps the event

in the invariants to its original text format to make it easier for human interpretation.

We programmed our data parser to output log files in the same format needed by the

invariant miner. The most important feature in the obtained log files is to group log events

according to their types. These logs groups are formed into session which contain all log

entries for a particular server in a single day. The invariant miner counts the number of

occurrences for each type, this count is used to find the ratio for occurrences for multiple

event types and thus finding the needed invariants.

3.5 Findings
We now return to the main motivating questions for this chapter of the dissertation: Is

invariant mining accurate at finding actual anomalies in this dataset? Are the invariants it

finds meaningful to administrators? Are the set of anomalies fairly constant over time, or

do they vary? We start by looking at the invariants themselves.

3.5.1 Invariants Found

In the invariant mining process, log messages are grouped together according to a set

of parameters that correspond to the same event type. The invariant miner then utilizes

the event types and their frequencies to produce invariants such as the following:

7https://github.com/logpai/loglizer
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(11, 29): [ 1.0, -1.0]

(17, 18): [ 1.0, -1.0]

(1, 65): [-4.0, 1.0]

The first invariant corresponds to two event types, 11 and 29, and the ratio of their

occurrences in a normal session is 1 : 1.8 When this ratio is not satisfied the invariant is

considered violated and an anomaly is reported. The second invariant shows another pair

of event types that appear in a one-to-one ratio in normal sessions, and the third reports a

one-to-four ratio.

Mapping the event IDs to actual log messages, a set of example invariants are shown in

Figure 3.1. Each shows a pair of log lines that are expected to appear in a one-to-one ratio

in a “normal” session.

In our dataset, the miner found an invariant space dimension of 16 in the first quar-

ter, meaning that it found 16 unique invariants. For the second quarter of the year, the

invariant miner produced 17 different invariants. For the third quarter, the result was

13 invariants. And for the last quarter of the year, the result was 19 different invariants.

Table 3.1 shows the total number of sessions and percentage of anomalies for each quarter

in both the training data set and test data set.

8One part of the ratio is always shown as negative, as the miner is solving equations of the form a · x + b ·
y = 0. Which part is positive and which is negative is arbitrary.

Invariant 1: Ratio: [’1.0’, ’ -1.0’]

<DATE> <TIME> <NODE_ID>: in PXEWAIT, sending PXEWAKEUP

<DATE> <TIME> boss bootinfo[<PID>]: <IP>: SEND: query bootinfo

Invariant 2: Ratio [’1.0’, ’ -1.0’]

<DATE> <TIME> [<PID>]: <NODE_ID>: RESET done, bootwhat returns NORMALv2

<DATE> <TIME> [<PID>]: <NODE_ID>: Clearing reload info

Invariant 3: Ratio: [’-1.0’, ’ 1.0’]

<DATE> <TIME> <NODE_ID>: ssh reboot returned 255

<DATE> <TIME> <NODE_ID>: waiting 30s for reboot

Figure 3.1. Example invariants found by the invariant miner.
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Dataset
Jan-Mar Apr-Jun Jul-Sep Oct-Dec

sessions anomalies sessions anomalies sessions anomalies sessions anomalies
Training dataset 5220 3.8% 5713 4.4% 6154 2.7% 8600 4.7%
Test dataset 5220 3.1% 5713 5.0% 6154 1.9% 8601 4.8%

Table 3.1. Number of sessions and percentage of anomalies found per quarter in our
dataset.

3.5.2 Usefulness and Interpretability

We found that while some invariants were “useful”, not all were. Here, we define

“useful” by three criterias.

First, they must be non-trivial in the sense that it is possible to violate them. In some

cases, the invariant miner found two types of log entries that are produced by the same

function in the same program. In this case, it is nearly impossible to see one message

without the other: the program would have to hang or crash within a few lines of code.

No violations of this type were found in this dataset. We found six distinct invariants of

this type.

They are easy to identify, because they are never violated, and do not affect the accuracy

of the anomaly detection.

Second, an invariant must be sensible. We evaluate this by looking at the expected ratio

produced by the miner. While most invariants have ratios such as 1 : 1 or 2 : 1 that would

be expected from a system of this type, the miner found some “invariants” with ratios as

high as 311, 785 : 1. The highest-ratio event that, by manual inspection, appeared sensible

was 1 : 7. This corresponds to the number of times that one of the processes will retry

apparent failures before giving up. Over the full year, the miner found 14 “invariants”

with ratios of 15 : 1 or higher. We find it highly likely that “violations” of these represent

false identification of anomalies. Fortunately, they are easy to filter out, since there is a

large gap between the largest “sensible” ratio (7 : 1) and the smallest “insensible” ratio

(15 : 1); we can simply filter out invariants with ratios above 10 : 1. We speculate that

these false invariants were found due to a few highly-anomalous nodes that had behavior

that persisted over multiple sessions. For example, one node was stuck in a “boot loop” for

months, unnoticed by the operators. This resulted in many thousands of spurious DHCP

messages intermingled with a few messages of other types. These sessions tended to be
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flagged as anomalous due to violating other invariants.

Third, invariants must be interpretable, meaning that administrators are able to under-

stand, in a general sense, what the reasons behind a violation are or what the consequences

of it might be. This is a much harder criterion to evaluate quantitatively, so we examine it

qualitatively. The pattern that we find among the most interpretable invariants is that they

follow one or more of the following properties:

• They involve entries that appear in more than one logfile. In other words, to detect

the invariant, it is necessary to correlate information across logfiles. This provides

significant value to administrators, who tend to inspect a single log file at a time.

• There is a clear way to match events. That is, it is possible, either through timing

or unique identifiers, to confirm that one event is in some way a response to or

consequence of the other. Note that the invariant-based anomaly detector does not

produce such a matching itself, but this can generally be done by additional process-

ing or manual inspection.

• They are asynchronous operations: an operation on a node is started by one process;

the node performs some actions that are not directly in the logfiles, may take a

variable amount of time, and may fail; and the success or failure of those actions

are observed by a different process.

An example of invariant that meets all of these criteria would be one that relates a log

message indicating that a node is to be rebooted with one that logs a successful DHCP

response to the node later, after the node has shut down, made it through BIOS, and the

NIC’s boot ROM, etc. We found five invariants that we deemed highly interpretable by

these criteria: some of these are discussed in more detail in the following subsections.

3.5.3 Accuracy of Anomaly Detection

In order to assess the accuracy of anomaly detection using invariant mining, we com-

pared the labels produced by the invariant-based detector with labels assigned by humans.

To do this without requiring undue operator effort, we ran the invariant miner on the

dataset described in Section 4.3 and labeled sessions according to the invariants found.

We then created five sets, each containing ten sessions that the invariants had labeled as
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“normal” and ten that it had labeled as “anomalous”. After correcting for a few invariants

with “insensible” ratios, the base rate of “normal” sessions in the dataset we gave to

administrators was 56%. Each set was given to a different administrator of the CloudLab

testbed, who was asked to label each session. The administrators were told that their set

contained a mix of normal and anomalous sessions, but were not told how many there

were of each, and were not given a definition of “anomalous”; the intention behind this

methodology was to see how well the precise ratios found by the invariant mining process

match up with human intuition.

In our evaluation, we consider a “normal” label as negative result and an anomalous

label as positive results. Therefore, a false negative refers to an incorrect labeling by the

classifier for a truly positive results and a false positive refers to an incorrect labeling by the

classifier for a truly negative result. The accuracy of the invariant miner was reasonable:

it correctly labeled 70% of sessions identified by the administrators as normal, and 73% of

the sessions labeled as anomalous. This gives us an overall false positive rate of 30% and

false negative rate of 27%. The overall precision obtained is 0.7087, recall is 0.7300 and the

F1-score is 0.7192.

There were two other interesting findings from this portion of our study. First, we

found that the administrators made a distinction between behavior that indicated a prob-

lem with the system and unusual user behavior. One example of this in our context

is that most boot sequences are initiated by the system in response to higher-level user

requests, such as the start or termination of experiments. These kinds of sessions have

telltale log entries indicating the start of the process. If users shut down or reboot machines

themselves (eg. by running shutdown on the machine itself), these telltale log entries are

absent, and there may be log entries indicating an unexpected shutdown. Most admin-

istrators independently came up with this third label, which, in terms of frequency, is

anomalous, but is likely to not require administrator intervention. For the purposes of

the calculations above, we considered these to be anomalous, but it suggests the potential

for future work to distinguish known-benign classes of anomalies from those that might

require intervention.

Our second finding was that the sessions that were mis-labeled by invariants tended to

fit very specific patterns. One of the biggest discrepancies was a single server that exhibited
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the same anomalous behavior (according to the administrator) over three different days,

but was labeled as normal according to the invariants. Nearly all the rest of false positives

were caused by a single set of three related invariants, that caused sessions identified as

normal by the administrators to be flagged as anomalous by the detector. This seems to

suggest that relatively simple heuristics could be used to greatly improve the accuracy

rates, and suggests an avenue for future work.

3.5.4 Evolution of Invariants Over Time

First, we compared the invariants through the four quarters of the year 2019 using

the number of unique invariants in the current quarter compared to the previous quarter

and next quarter. We also used the number of shared invariants between quarters as a

measure for the evolution of invariants. In our study of the invariants, we focus more on

the persistent invariants through quarters as they are the most meaningful invariants.

Figure 3.2 shows the comparison between the number of invariants obtained through

the year. From quarter to quarter, we see that approximately half of the invariants change;

that is, the number of invariants that each quarter has in common with its neighboring

quarters is about half of the total number of invariants for the quarter. This points out the

need to periodically re-train the anomaly detector.

When comparing the invariants across all quarters, we find that we have 6 core in-

variants that persist through the year. This means that in most cases, when Figure 3.2

shows invariants in common with the previous and/or next quarters, it is referring to this

set. As with most useful invariants that we find, these all occur with ratio 1 : 1. Two of

these invariants have to do with using ssh to “gracefully” reboot nodes. (One of these

can be seen as Invariant 3 in Figure 3.1.) These two often cause false positives; they are

two of the three associated with false positives (as determined by human administrators)

above. Another pair (such as Invariant 2 from Figure 3.1) have to do with CloudLab’s

disk imaging process: they show the state transitions that are supposed to occur when the

imaging process finishes and the node boots into its new image. The fifth invariant is a

trivial one as defined in Section 3.5.2: it documents a node requesting information from

the bootinfo process and the reply that is sent out.

The sixth (Invariant 1 from Figure 3.1) is the most interesting: it contains one message
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Figure 3.2. Comparison of number of invariants throughout one year. Note that the first
quarter has no preceding quarter, and the last has no succeeding one.

from the reboot log, and another from bootinfo. The former indicates that the CloudLab

software has decided to reboot a node, and the latter indicates that the node has reached an

important point, several steps into the boot process. This is interesting not only because it

crosses multiple log files, but because the point identified comes after several other log

messages (such as ones from dhcpd) would normally be seen. This strongly suggests

two things: (1) Nodes that CloudLab decides to reboot do normally come up, which is

expected (2) The lack of earlier invariants from the dhcpd log suggests that it is not terribly

uncommon for nodes to fail early in the boot process and require power cycling by the

CloudLab control software. If the sequence “reboot, DHCP, PXE, bootinfo” (the ’normal’

boot sequence) were dominant, we would expect to see invariants for the “reboot, DHCP”

part of the sequence. This lack suggests that CloudLab not infrequently times out waiting

for the DHCP message and power cycles the node. The fact that the “reboot, bootinfo”

invariant does exist implies that when this power cycle occurs, the node does eventually

reach the “bootinfo” stage, suggesting that these kinds of failures are transient. This

understanding meshes well with our findings in Section 3.5.3, in which we found that
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there are a significant number of abnormal occurrences that are dealt with automatically

by CloudLab and do not require operator intervention.

3.6 Conclusion
We find that invariant mining is fairly accurate on our real-world dataset, agreeing with

the “anomaly” labels assigned by system administrators more than 70% of the time. The

patterns of these inaccuracies suggest that simple heuristics, or occasional manual pruning

of invariants, may substantially improve accuracy. Applying such heuristics is a topic for

future work. We found that, in contrast to the binary nature of classification performed by

most anomaly detection, administrators naturally and independently arrived at a trinary

system of classification. This classification system subdivides anomalous events into those

that require human attention, and those that, while rare, are in some sense “expected”

and do not require additional attention. Building this distinction into anomaly detection

is likely to be another fruitful avenue for future work.

We also found that anomaly rates vary substantially between quarters (from 1.9% to

5%), and that the set of invariants that describes these anomalies varies as well. This points

to the need to periodically re-train anomaly detectors, as they become stale over time.



CHAPTER 4

DEEP-SEC: FINDING MALICIOUS NEEDLES

IN LOGFILE HAYSTACKS

System administrators must deal with a wide range of behaviors on the systems that

they operate, including steady-state “normal” behavior, traffic spikes, anomalies due to

bugs, etc. One of the most important classes of such behavior is malicious behavior that

represents attempts to compromise the security of the facility. Such behaviors require

special attention, because they may require swift action to block the perpetrators, look

for evidence of successful compromise, and potentially clean-up if an attack succeeded.

For this reason, it is useful to be able to distinguish malicious behavior from other types

when examining system logfiles.

Previous work has used a variety of anomaly detection techniques to find usual be-

havior in system logs with machine learning. This work, however, has generally not

distinguished malicious behavior from other types of anomalous behavior: a common

assumption, for example, is that all anomalous behavior is malicious. In this chapter, we

present Deep-Sec, an anomaly detection tool that takes a more nuanced view of ML-driven

anomaly detection. Using a novel fine-grained measure of anomalous traffic, we train a

classifier to distinguish between benign and malicious behaviors. We apply this technique

to a large dataset from logs on a production webserver, and show that our technique is

very effective at distinguishing between these classes of anomalous behavior. We also

show that this method is complementary to other methods for detecting vulnerabilities:

when compared to professional scans performed on the same system, Deep-Sec found a

substantially different set of URLs probed by malicious requests.

Computer security has a large impact on how systems are administered, especially with

evolving attacks and the constant discovery of new systems vulnerabilities. As systems

become larger and more complex, they become harder to secure.
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System logs are a rich information source for system debugging, anomaly detection,

and identification of threats. They record the system state from different aspects such

as booting information, network traffic, and security-related information. However, as

systems grow and see more activity, it becomes less and less feasible to find anomalies

through manual inspection of system logs. It also becomes harder to distinguish anomalies

that represent malicious activity from other types of anomalies.

One promising method for finding security incidents—and other out-of-the-ordinary

events—from logfiles is by using learning techniques to identify anomalies in them [27, 45,

49, 66]. There has been extensive research in the area of anomaly detection in general, and

more specifically, in the area of detecting suspicious or malicious activity using system

logs. Most of the existing anomaly detection approaches for solving the problem of detect-

ing malicious actions either considers any anomalous behavior found as malicious without

looking deeper at the nature of this abnormality (such as in Gao et al. [33]), or performs

binary classification of the data to anomalous and normal without dividing the anomalous

sessions into multiple classes (such as in Du et al. [24]).

We go beyond this binary classification system in our design of Deep-Sec, an anomaly-

detection system that further subdivides anomalies into benign and malicious sets. This

enables administrators to more directly and effectively deal with security incidents, which

are in fact a fairly small subset of all anomalies. Deep-Sec leverages an LSTM network to

model a system log as a natural language sequence. The result of this model is used to

detect anomalies in the system and specifically detect malicious sessions based on a novel

identifier called the anomaly-score. The anomaly-score value is determined according to

the dataset using a clustering algorithm. Any session that attains a score equal to or higher

than this anomaly-score is considered malicious.

In this work, we build a security anomaly detection system and perform extensive

evaluation and testing on the log files of a scientific research testbed called Cloudlab [69].

Deep-Sec can use multiple logs types such as the web-data logs, and does not require a

specialized security-related logging system. Building on DeepLog [24], Deep-Sec utilizes

LSTM to memorize long-term dependencies over sequences of events.

The contributions made by this dissertation in this chapter are:

• We introduce a three-class system for logs in which anomalies are further subdivided
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into benign and malicious categories. This helps system administrators, who typically

must take different investigative and remediation actions for malicious activities.

• We present the design of Deep-Sec, an anomaly detection system that improves on

DeepLog by introducing fine-grained scoring system that (a) enables us to distin-

guish between benign and malicious anomalies, and (b) improves accuracy on long

sessions driven by human behavior rather than program structure.

• We have collected, and manually labeled a dataset for ML research that makes the

benign/malicious distinction. This dataset is from a real datacenter environment,

and was collected over a time span of 4 months. To our knowledge, this is the first

such publicly-available dataset that specifically subdivides anomalies into benign

and malicious categories.

• We demonstrate that Deep-Sec is complementary to other methods of detecting vul-

nerabilities by showing that it uncovers attempts by adversaries to scan for potential

vulnerabilities that are quite different from those probed by professional vulnerabil-

ity scans.

We begin in Section 4.1 by going into more detail regarding our motivation for devel-

oping Deep-Se, and cover related work in Section 4.2. The dataset we have collected and

labeled is described in Section 4.3, and we describe how it is processed and how we extract

features from it. Section 4.4 describes Deep-Sec’s design, including the full end-to-end

pipeline from data collection to label prediction and Deep-Sec’s feedback system. We eval-

uate Deep-Sec in Section 4.5 in two ways: quantitatively (accuracy rate) and qualitatively

(types of malicious behavior found, etc.) Section 4.6 concludes, including thoughts on

future work and the availability of the system and dataset.

4.1 Motivation
From a system administrator’s point of view, prioritizing among all anomalous session

is challenging: some may need immediate attention, and others are less dangerous. For

example, in a large institution, security incidents might be assigned to be handled by a

different team. Thus, it is very valuable to have the ability to assign priority labels to

anomalous sessions based on their possible imposed threat to the system.
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While some sessions are truly abnormal, not all abnormalities are malicious. For ex-

ample, web crawlers are considered anomalous since they don’t represent genuine user

behavior. Another example of a benign anomalous session is a user that can behave in

a way that does not resemble typical user behavior, such as leaving a web page open for

days or weeks. Some of the other benign anomalies could be caused by a bug in the website

itself that breaks the expected workflow. All of these behaviors are indeed anomalous but

should not be considered malicious since they are non-threatening. Hence, there is a need

for an anomaly detection tool that can further subdivide the anomalies and flag the most

likely malicious sessions. To the best of our knowledge, all existing anomaly detection

tools either assume all anomalous sessions are malicious or rely solely on security-related

logs to detect malicious sessions.

Since false positives and false negatives directly and dramatically impact the effective-

ness of any security measures, it is critical that system administrators understand the false

positive rates and false negatives rates of each security system they rely on. In the case

of deploying any anomaly detection system that considers all abnormalities benign, the

danger arises from the false negatives since system administrators will overlook all the

malicious sessions and consider them non-threatening. Conversely, in security systems

that considers all anomalous session malicious, system administrators will have to han-

dle each session as a true positive and waste their resources studying these sessions to

differentiate between the false and true positives.

The impact of false positives and false negatives on the reliability of security systems

is extensively discussed in research. For example, Vassilev et al. [22] present a theoretical

model, algorithms, and quantitative assessment of the impact of false positives and false

negatives on the security risks during transaction processing.

Anomaly detection tools that target malicious sessions can produce false negatives

(some attacks are not being reported) or false positives (label a benign anomaly caused

by something like a unique user behavior as malicious). False positives cause immediate

problems to system administrators who have to sift through them and try to differentiate

between the true and false positives, but false negatives are much more dangerous because

they lead to a false sense of security. Deep-Sec aims to minimize the false positives by

utilizing an automated feedback loop using the initial result of Deep-Sec itself without the
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need for human expert intervention.

Moreover, it can be very valuable for organizations to perform post-mortem analysis in

case they want to analyze the status of their system security. Deep-Sec can be specifically

useful for this because it does not rely on intrusion detection systems logs or any security-

specific logging system. Rather, it can utilize the basic logs produced by the system.

Deep-Sec is a computer security tool that can be used with or without IDS. It studies the

behavior of systems and tries to construct a pattern of expected normal behavior. Thus it

can detect security incidents that have not been seen before or specifically tailored to attack

a specific machine as long as they deviate from the usual patterns considered normal.

The primary dataset used to evaluate Deep-Sec is a web dataset from Cloudlab. Each

session in this dataset represents a week’s worth of Apache logs for a single IP or user.

These sessions are much longer compared to the HDFS dataset used to evaluate DeepLog [24]

and many other recent anomaly detection systems, making the “one surprising entry makes

the whole thing anomalous” rule used by Deeplog less applicable. The sessions represent

human activity instead of just the workflow of a code. This means it is much harder

to define what is considered a normal activity and how to define anomalies, but since

there is a structure to any website we believe that there is also structure for the expected

human behavior in this website even if the range of “normal” behavior is much wider. We

hypothesize that the more surprising the session, the more likely it is malicious since it

highly deviates from the normal range of behavior. In Section 4.5, we demonstrate that

using the Cloudlab dataset, we have found that almost all of sessions that are more than

80% anomalous are indeed malicious, proving our hypothesis holds true.

Deep-Sec can be used with the logs from the common logging mechanism of the system

and does not rely on security-related logs to detect malicious sessions. This makes the

deployment of Deep-sec less tedious.

4.2 Related Work
Broadly speaking, the techniques used for anomaly detection depend mostly on two

factors. One is the type of input data, which means that the instances of the input data

possess some sequence, for example, natural language, text, etc. The second is the avail-

ability of labels for instances of data. Based on the data labels, there are three techniques
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used: supervised, unsupervised and semi-supervised.

4.2.1 Supervised

Anomaly detection through supervised techniques involves training classifiers with

normal and abnormal labels [32, 46]. The availability of labeled training data with different

classes (ie. normal an anomalous) and class imbalance (ie. the fraction of the data that

is anomalous) are the two factors that impact the popularity and performance of these

models. Patterns in our webserver logs possess a high degree of variation as they are

highly coupled with user behavior. This makes detecting new normal or abnormal patterns

challenging as the classifier is trained on pre-existing normal and abnormal instances.

4.2.2 Unsupervised

Unsupervised techniques are used when it is difficult to label data instances as normal

or abnormal. The major setback for unsupervised techniques is that they have a high

false-positive rate and suffer from low detection rates. The most common traditional

methods are principal component analysis (PCA) [80], support vector machines (SVM) [21]

and Isolation Forests [44]. There are many recent unsupervised models like recurrent

neural network (RNN) [58], generalized denoising autoencoders [75], and deep belief

networks [60]. These methods have better performance as compared to the traditional

methods but the high variation in patterns in websites and absence of labels yield ineffi-

cient results in terms of detection.

4.2.3 Semi-Supervised

Semi-supervised techniques allow training with only normal or abnormal instances.

The instances that do not exhibit the same behavior as the training instances are considered

outliers or false cases. Usually, it is easier to recognize and mark at least one label for all the

instances in data, which may be normal or abnormal depending upon the data. This is one

of the key reasons that this technique is widely used [49, 66]. There are semi-supervised

techniques based on Autoencoders [27, 30], Deep Belief Networks [84], Generative Ad-

versarial Network [38, 59], Convolution neural networks [57]. In webserver logs it is not

possible to label and train on all the abnormal instances. Hence it is best suited to train the

model with normal instances and detect instances which don‘t exhibit this behaviour.
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4.2.4 Anomaly Detection on Logfiles

In terms of input data, it may exhibit sequential patterns or not. Based on this, different

techniques can be applied. As our website logfiles involve the human aspect, it is widely

distributed, but it exhibits some sequential pattern on the series of websites/webpages vis-

its by a user. The key idea is that anomalies will not exhibit the same sequential behavior as

genuine users. After exploring different machine learning methods for anomaly detection

such as log clustering [43] which groups and organizes logs to ease log-based problem

identification, invariant mining [45], and isolation forests [44] which is a model-based

method that explicitly isolates anomalies rather than profiles normal instances, we found

that LSTM or more specifically DeepLog [24] is the most suitable tool on which Deep-Sec

can be built. Wu et al. [83] found that the LSTM-based model has superior performance

when compared to other models such as the Hidden Markov model (HMM-based mod-

els). In addition, DeepLog can detect anomalies at the log-entry level rather than at the

session-level like most other methods and can support online training to the LSTM model

by incorporating user feedback.

The anomaly-based approach has been deployed in the field of system security and

intrusion detection system. It examines the behavior of the network and finds patterns,

automatically creates a data-driven model for profiling the normal behavior, and thus

detects deviations in the case of any anomalies. For example, Sarke et al. [61] present an

intrusion detection tree (IntruDTree) machine-learning-based security model. Liu et al. [42]

presented an approach to classify the predefined attack categories such as DoS, Probe or

Scan, U2R, R2L, as well as normal traffic utilizing the popular KDD’99 Cup [72] dataset

by using a hyperplane-based support vector machine classifier. Sommer and Paxson [65]

discuss the imbalance between the extensive amount of research conducted in the field

of machine-learning-based anomaly detection for intrusion detection systems versus ac-

tual deployment of such systems in the industry. They conclude that this imbalance is

caused by some domain-specific challenges that make it significantly harder to deploy it

effectively. Siddiqui et al. [64] use an Isolation Forest [44] to detect cyber-security attacks

on a particular network using anomaly detection, then generate an explanation of why a

specific user or computer was identified as anomalous. This explanation is given to the

system administrators to collect feedback on whether the identified anomalies were true
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or false positives. The model is then updated according to the administrators’ feedback to

improve its detection capabilities further and minimize the false positives rate.

There is extensive research in anomaly detection and computer security using deep

learning and machine learning methods. Most of the work in the area of anomaly detection

in large-scale log files performs binary classification on data and classifies log entries to

either anomalous or normal, without further considering the nature of the abnormalities.

A common assumption [33] is that all anomalies detected are malicious. This approach has

many shortcomings because we have multiple classes of anomalies in most of the datasets.

For example, some of the anomalies in our dataset consist of legitimate bugs in the Cloud-

lab website or web crawlers and not actual malicious behaviors. While administrators

need to be aware of all of these anomalies, the type of response required is quite different

between anomalies that are malicious and those that are not.

Deep-Sec differs from previous work in that it seeks to distinguish anomalies that rep-

resent malicious behavior from those that are benign. Specifically, we build on Deeplog [24]

and expand it from binary classification to multi-class classification based on LSTM pre-

dictions. Our classifier can tell with reasonable certainty whether a session is anomalous

or not. And if it is anomalous, whether it is malicious or benign. Moreover, our prototype

can be easily deployed in most systems with a logging mechanism because it does not

rely on intrusion detection systems logs, firewall logs, or any unique security-related logs

to train the classifier. Instead, we utilize regular system logs such as the Apache log files

from Cloudlab.

4.3 Cloudlab Dataset
Our dataset was gathered on Cloudlab over a period of four months. To the best

of our knowledge, it is unique: unlike existing public datasets, the data is not divided

into normal and anomalous sessions only, but we have manually labeled the sessions as

normal, benign, and malicious. This allows us to test the capabilities of Deep-Sec.

4.3.1 Webserver Logfiles

Our dataset comes from the Apache webserver log files from Cloudlab. They consists

of a total of 127 million entries. After preprocessing of data we got 1,317 different source IP
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addresses in the log, and 24,296 different webpages accessed by these users. Cloudlab has

two sections of its website—some pages accessible to the public, and others only accessible

to logged-in users. Our dataset covers both.

4.3.2 Forming Sessions

We parse the logs to extract certain fields. In Deep-sec, we use source IP addresses and

their respected visited web address as our features. We use the path portion of the URL and

discard the query portion—thus, visits to the same page, but with different parameters (eg.

viewing different users, objects, etc.) are considered to be the same URL. An IP address is

termed as a “user,” and set of URLs visited by it is termed as an event. Usually, a session

has many events. Some of the sessions have an enormous number of event IDs (hundreds

of thousands), and it consumes a huge amount of time and memory for training due to

the relatively smaller sliding window size. To reduce the training time and increase the

efficiency of Deep-sec we divided sessions on weekly basis where each session consists

of all the events encountered in the particular week in chronological order. We omit short

sessions (less than ten entries) as they are unsuitable for behavior analysis. Dividing all the

sessions on weekly basis and omitting short sessions produced 3,118 different sessions.

Our goal is to classify these sessions as normal, benign or malicious sessions based

on the sequence of the events. Normal sessions consist of events that exhibit a genuine

user, such as a logged-in user of the facility or a person visiting a set of the public-facing

web pages. Typically, after fetching a page, normal users will fetch the associated assets

(scripts, stylesheets, images, etc.) of the web page—though this behavior is affected by

client-side caching of those objects as well. Benign sessions exhibit a slight deviation with

respect to the normal sessions, the majority of these sessions are crawlers or misspelled

web address. Malicious sessions consist of events that are intended to discover, exploit, or

take advantage of a vulnerability forcefully.

4.3.3 Feature Extraction

Our implementation uses sequences of log keys as input. We process logfiles to assign

an index to each unique URL. Every line in the input file will represent a session, and each

entry in that session represents an event. An annotated example of a session is show in

Figure 4.1.
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7 : /

15265 : /wp-includes/js/jquery/jquery.js

15266 : /administrator/help/en-GB/toc.json

15267 : /administrator/language/en-GB/install.xml

15268 : /plugins/system/debug/debug.xml

1370 : /administrator/

15269 : /misc/ajax.js

7 : /

15270 : /admin/view/javascript/common.js

15271 : /admin/includes/general.js

15272 : /images/editor/separator.gif

15273 : /js/header-rollup-554.js

15274 : /vendor/phpunit/phpunit/build.xml

50 : /.env

7 : /

Figure 4.1. Annotated session—only integer IDs are included in the data used for training
and testing, URLs are added here for readability.

The sample log entry shown in the figure shows 15 events, and each entry in the figure

represents an event occurring in this session. The integer is an event ID (also called a “log

key” in some anomaly detection literature) that uniquely identifies the URL. As can be

seen, if a URL is seen multiple times, it is assigned the same ID each time; this is true both

within an individual session and across all sessions.

Since our dataset consists of URLs that represents specific users’ activities, in the data

processing phase we decided to omit all URL parameters that tie the URL to a certain user.

The idea is to make the URLs generic enough to construct patterns across different users.

4.3.4 Splitting the Dataset

After manually labeling the dataset, we split the data into a training dataset and a test

dataset. The training dataset consists of normal sessions that exhibit normal behavior. It

is important to point out that if is a certain behavior pattern or event is considered normal

but is not included in the training dataset, Deep-Sec will consider it anomalous as it hasn’t

seen such event in any pattern or variation of the data. We use two different feedback

mechanisms, described in Section 4.4, to correct for such omissions in the original training

set.
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We train Deep-sec in a semi-supervised manner. We have labeled the normal sessions

in our data and used these sessions for the training.

4.4 Design
Deep-Sec is designed to detect anomalies in log files and flag the security-related inci-

dents and malicious sessions. The key intuition for Deep-Sec is that system logs are usually

constructed by programs or human behavior workflows and thus we can expect them to

have patterns that can be predicted. Our hypothesis is that malicious sessions are far less

predictable compared to benign anomalous sessions and so using a non-binary classifier

i.e. Deep-Sec we can further subdivide the anomalous sessions and flag the malicious

data. Deep-Sec is automatically updated through a feedback loop that can reduce the false

positives rate in future runs.

Figure 4.2 explains the workflow of Deep-Sec, beginning with the raw web logs, struc-

turing them into sessions, and performing the necessary data processing and feature ex-

traction as described in the previous section.

4.4.1 LSTM Training

After processing our dataset into a sequence of log keys, we train an LSTM network

on a subset of the dataset that only consists of normal sessions. The goal is to predict the

probability of having ki ∈ K as the next key after sequence S = {k0, k1, . . . ki−1}. In other

words, for a sequence of log keys S, we train the LSTM to return a set of predicted next

keys along with probabilities for each key. The key actually seen after S in the training set

should be associated with a high probabilities—the loss function penalizes the network for

mis-predicting the next key.

We use a sliding window to produce sequences S from longer sessions, so for a session

of length n, there are n− |S| windows. Our current implementation uses |S| = 20 , which

we find to be effective for web logs: each window needs to be long enough to capture a

set of repeated dependent actions, such as loading a web page and then loading the assets

(CSS, javascript, images, etc.) that it references. This is a longer window than used in

previous work, and is a hyperparameter that depends on the system being analyzed.

This step the same as in DeepLog [24], which automatically learns a model of log
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Figure 4.2. Deep-Sec workflow.
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patterns from normal execution. Deep-sec leverages LSTM networks to model a system

log as a natural language sequence, just as in DeepLog [24].

The final output of the LSTM network is a model that, given a sequence of log keys,

predicts probabilities for all possible next keys. This model is used as input to the next

step.

4.4.2 LSTM Prediction

Once the LSTM is trained, we are ready to use it to flag new sessions as normal or

anomalous. Again following DeepLog, Deep-Sec divides up each session into sequences

of size |S| using a sliding window, as was done during training. For each sequence, the

trained model is asked to produce a vector of probabilities giving the likelihood of seeing

each of the possible keys next. If the key that actually came next was decided to be probable,

this is considered normal—if it was improbable, the outcome is considered anomalous.

Whether or not a next-key was considered probable is determined by whether it ap-

pears in the top J most-likely keys (with the vector sorted by probability.) Deep-Sec differs

substantially from its predecessors in the value it uses for J: while earlier work uses small

values for J such as 5, Deep-Sec uses a value that is a substantial fraction of the total

number of possible keys: our implementation uses J = 2000 for a total possible keyspace

of |K| = 24, 296. This is due to the much wider range of behaviors exhibited by humans

than by automated processes: where a typical program may be well-modeled by a state

machine with a small number of successor states, a human navigating a web interface

has many more options regarding clicking on different links, using the Back button, using

bookmarks or history to visit different pages, etc.

The other change we make from previous work is our scoring, as described next:

previous work considers that if any key in a session is anomalous (low-probability) this

marks the entire sessions as anomalous. Instead, we calculate an anomaly score using the

predicted values.

4.4.3 Score

To distinguish benign and malicious behaviors, Deep-Sec computes a novel metric

called the anomaly-score. This anomaly-score is an indication of how anomalous a certain

session is. The anomaly-score is defined as:
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∑n−|S|
i=0 F(Si)

n− |S|

. . . where n is the number of keys in the session, Si is a sub-sequence (window) of the

session), and F(Si) is 1 if the LSTM considers the key following Si to be unlikely (using the

definition above) and 0 otherwise. Thus, a session that has no anomalous windows gets

a score of 0, and one in which every window was deemed anomalous gets the maximum

score of 1. We find that in order for the score to be meaningful, it must encompass a

reasonable number of predictions—our current implementation uses a minimum of n −

|S| > 15. Below this length, sessions are assumed to be non-malicious. This results in a

very small number of false negatives among short sessions.

For a session to be considered malicious it has to obtain an anomaly-score above a

certain threshold. Most of the other related work either performs binary classification

(anomalous and normal) without further considering the nature of the abnormalities, or

they assume that all anomalies detected are malicious. This approach has many shortcom-

ings because we have multiple classes of anomalies in most of the datasets. For example,

in our dataset, some of the anomalies consists of legitimate bugs in the Cloudlab website or

web crawlers and not only malicious behaviors. To determine the appropriate threshold,

we use a clustering step.

4.4.4 Clustering and Labeling

The clustering is performed to determine the threshold value for the anomaly-score

above which a session is considered malicious. This is in place of arbitrarily choosing

a threshold and then relying on trial-and-error until we reach the ideal anomaly-score.

We use the anomaly-scores produced by Deep-Sec during classification to cluster sessions

based on their anomaly score. The clustering algorithm used is DBSCAN[29], which relies

on a density based notion of the clusters.

Figure 4.3 shows the clustering for our Cloudlab dataset. It is clear from this figure that

the appropriate threshold for the anomaly-score is 80%.

Density based clustering is efficient for the case of arbitrary shaped clusters. According

to DBSCAN, if a point is close to many points of another cluster, then that point belongs

to that cluster. There are two parameters on which it bases its clustering. The first is the
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Figure 4.3. DBSCAN clustering of the Cloudlab dataset. The points belonging to the two
clusters found by DBSCAN are shown as yellow and blue.

distance between points which specific neighborhood: eps. If the distance between two

points are less than or equal to eps than those two points are considered neighbors. The

second is the minPoints, which is the minimum number of data points that can form a

cluster. The minPoints depends on the dimensionality of the data set (D), minPoints ≥

D + 1. Here we set eps = 0.075 and minPoints = 2. This produces two clusters, which is

the number we are looking for: we are trying to divide anomalies into two classes. The

output from the clustering determines the predicted label: if the anomaly-score is 0 or very

close to it (0 + ε), the session is considered normal. If it is below the threshold determined

by the clustering process, it is benign, and above this threshold, it is considered malicious.

4.4.5 Administrator Feedback

Deep-Sec incorporates a method for administrators to provide feedback to improve the

system: if any of the sessions labeled as Malicious are false positives, administrators can
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mark them as such. False-positive sessions are then added to the training set, causing them

to be learned by the LSTM as “normal.”

4.4.6 Automated Feedback

In addition to utilizing administrators’ feedback, Deep-Sec includes a novel feedback

loop in its design. To reduce the dependence on human experts needed for identifying

the false positives, and make this process more automated, we apply a recursive approach

where we take the results of one pass of Deep-Sec and apply it to a second pass using only

the sessions originally identified as anomalous. Because the malicious anomalies are less

likely to have a specific pattern or look like each other, we train Deep-Sec using the benign

class of anomalies—in this pass, they are considered “normal,” and any session that is

found to be highly anomalous according to this trained model is very likely malicious.

This serves as a confirmation for the malicious labels obtained in the first pass. To make

sure that our training dataset has only benign anomalies we only train on the sessions

that have an anomaly-score less than 50% (less than half of the session is anomalous) from

the first pass of Deep-Sec. In this second-pass of Deep-Sec, we will record the sessions

classified as normal and add them to the training dataset from the first pass to improve

its accuracy. This method reduces the false positives, as shown in the evaluation, and

allows Deep-Sec to expand its definition of a normal behavior without the need for human

intervention.

4.5 Evaluation
The code for Deep-Sec was built on top of Wu’s implementation of DeepLog [82]. Our

evaluation was done in the CloudLab [26] testbed on a machine with two Intel Xeon Silver

4114 10-core CPUs at 2.20 GHz and one NVIDIA 12GB PCI P100 GPU.

To measure the performance of our prototype, we have divided our evaluation into

three parts: (a) We perform a quantitative evaluation by calculating the confusion matrix

to measure the performance in terms of accuracy, precision, specificity, sensitivity, and F1-

score. This is mainly done to estimate how reliable Deep-Sec is in subdividing anomalies

into malicious and benign. (b) We examine the types of malicious sessions detected by

Deep-Sec to demonstrate its ability to give helpful information to system administrators.
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(c) We measure the predictiveness of Deep-Sec on prefixes of full sessions to evaluate the

feasibility of building an online version of Deep-Sec that can block malicious requests as

they occur.

4.5.1 Quantitative Evaluation

The dataset used to evaluate Deep-Sec comes from Cloudlab log files. These sessions

were grouped based on specific user activity within a given week. From a total of 3,118

sessions, 404 sessions were used for training, and 2,714 were used for testing.

Table 4.1 measures the performance of Deep-Sec in detecting malicious activity in a

given dataset with mixed entries of normal sessions, benign anomalies, and malicious

anomalies.

Figure 4.4 display the true positives, false positives, true negatives, and false negatives

obtained from using Deep-Sec to identify the malicious sessions in our dataset. Out of

2,714 sessions used for testing, 1,408 were identified as anomalous, including both be-

nign and malicious abnormalities. From these 1,408 sessions, 50 sessions were labeled as

malicious. Only 3 of them are false positives due to a new pattern appearing in the test

dataset that wasn’t introduced before in the training dataset. This can be mitigated by

using a feedback loop and adding these sessions to the training dataset for future passes.

In the first run of Deep-Sec, we initially found 9 false positives due to a mistake in the

manual labeling of some of the normal sessions as anomalous. These 9 false positives were

identified by the automatic feedback loop and removed for future runs.

More importantly, out of 2714 sessions, Deep-Sec only mislabeled two malicious ses-

sions as benign. Both false negatives were due to sessions that fell below our threshold for

meaningful scoring—while their anomaly scores were high, Deep-Sec did not consider the

sessions long enough to reliably label as malicious. This is promising because it indicates

Measure Value
F1-score 0.9495
Precision 0.9400
Recall 0.9592
Accuracy 0.9982

Table 4.1. Performance evaluation.
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Figure 4.4. True and prediction classes.

that it is unlikely for system administrators to overlook attacks that could compromise the

system by using Deep-Sec.

Since 47 of the 1,408 sessions that were originally identified as anomalous are labeled

as malicious this means that without Deep-Sec, system administrators who rely solely

on LSTM for binary classification would have two options: (a) Either to consider every

anomalous session malicious and end up wasting time checking on all of the 1,408 ses-

sions where only 3.5% are indeed malicious, (b) Or more dangerously, consider all of the

anomalous sessions benign and risk compromising the system security by not properly

handling those 47 sessions.

4.5.2 Qualitative Evaluation

To get a better understanding of the types of malicious anomalies present in our dataset,

we took a closer look at the malicious sessions. In this section, we present a qualitative

description of some notable sessions. Most malicious sessions appear to be looking for
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the presence of software with known security vulnerabilities—some of it very common,

such as WordPress [81], but others that seem more obscure, such as apparent e-commerce

platforms that appear to be limited to specific language groups such as Russian or Dutch.

The ‘common’ thing that we find amongst these sessions is the lack of consistent pat-

terns. There is wide variety among the malicious sessions, any many seem to use strategies

for looking for specific URLs that are disjoint with each other. This illustrates why Deep-

Sec is effective at finding malicious sessions—their anomaly scores are high due to this

varied behavior—and suggests that it would be difficult to capture many of them with

pre-formed list of “suspicious” URLs.

4.5.2.1 Security Scans

Cloudlab’s institution contracts with an outside security firm to do periodic scans of

its network, looking for known vulnerabilities. We classify these as malicious in our

dataset, as they represent clear attempts to find vulnerable software. Such sessions show

up approximately once a week (six times), and comprise the longest malicious sessions, at

about 16,000 requests each. These sessions follow fairly predictable patterns, though they

do vary from week to week, presumably as the scanning company updates its database of

known vulnerabilities.

One interesting thing we note about these scans is that they have almost no overlap

with URLs requested during the other malicious sessions that we found. The little overlap

that does exist is in the form of very generic URLs such as / and /login—in other words,

the vulnerabilities searched for by the security scanning firm and malicious sources seem

entirely disjoint. We believe this helps to illustrate the value of Deep-Sec’s approach of

learning from client behavior: to the best of our knowledge, the security firm is using a

(large) list of known vulnerabilities that likely come from public sources such as CVEs and

the firm’s own vulnerability databases. While it is no doubt valuable to watch for, and

fix, any vulnerabilities found by these professional scans, Deep-Sec uncovers a different

set that, if they were present, could represent a problem for the site owner. Deep-Sec’s

approach finds malicious behavior that may not be widely known, reflects ongoing attacks,

and is specialized to a particular site. This gives the site a more specific set of malicious

behaviors to defend against.
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4.5.2.2 Complex Scans for WordPress

WordPress is widely deployed and the subject of numerous security advisories, so

it is not surprising that it is a common target of malicious sessions. What we found

more surprising, however, is that some malicious actors seem to put significant effort

into finding copies of it installed in alternate locations. Looking at sessions that have

clear WordPress-scanning behavior, we find them looking in alternate paths such as blog,

2020 (and other years), new, old-site, bak, and many others. Some malicious actors

look for the presence of specific WordPress plugins, presumably ones with vulnerabili-

ties. Others try to fetch WordPress configuration files (which may contain secrets such as

database passwords or other information that could help an attacker exploit the system);

some go to significant effort to find backup or temporary versions of such files, likely

because such files might be missed in rules designed to block access to the config file

itself. Examples of such filenames include .wp-config.php.swp (used by the vim editor),

wp-config.php~ (used by Emacs), wp-config.orig (which can be created by the patch

utility), and wp-config.php.bak. Overall, we found 16 malicious sessions that had clear

signs of scanning for WordPress; what is notable is that most of these sessions had very

little in common with each other in terms of the specific sequence of URLs they visited.

This is why they ended up with high anomaly scores. Interestingly, some of these sessions

contained short sections of ’normal’ behavior (such as fetching the front page or other

prominent public pages), suggesting that the attacker either visited the page manually

before launching the scan or that the scan includes a webcrawler phase.

4.5.2.3 Attempts to Find Archive or Backup Files

Three sessions exhibited interesting behavior in which they were looking for apparent

archives of the entire site, with filenames such as <sitename>.tar.gz, <sitename>.zip,

etc. There were a number of variations of these filenames that replaced <sitename> with

strings such as www, wwwroot, web, etc. We surmise that these attackers are looking for cases

in which the site was deployed by copying, say, a tarball, to the webserver, untarring it,

and neglecting to remove the original tarball. Such archive files could contain the source

for server-side code that would not normally be fetchable, configuration files that could

contain secrets, and other files that might otherwise be blocked from public access by rules
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in the webserver. Variants of this attack also look for files with suffixes .sql, .sql.zip,

etc., presumably looking for uploads or backups of database contents.

4.5.2.4 Other Behaviors

We found a variety of other interesting behaviors in the malicious sessions. Some, for

example, appear to look for other prior signs of breakins (eg. indoxploit.php, shell.php).

These sessions also contained more innocuous-looking URLs, such as new license.php

and V5.php—this may provide an interesting list of files to look for that may (at least

according to this attacker) be indication of a previous compromise. Others seem to look

for guest books and contact pages (sometimes using spellings in multiple languages, such

as gaestebuch and gastenboek) and/or trying a variety of different file extensions (.html,

.php, .jsp, .aspx, etc.) We consider it likely that these are attempts to harvest email

addresses or other contact information. Scans looking for specifically for Russian-language

pages were fairly common, as evidenced by paths with /ru/, ru utf8, etc. Other particu-

lar language locales appear as well, including en-GB. Various other CMS, administration

tools, e-commerce software, developer tools, and server-side frameworks was looked for,

including kcfinder, jboss, magneto, owncloud, and phpunit None were anywhere near

as common as WordPress, which dominated the clearly-identifiable software packages

scanned by attackers. Many malicious sessions looked for .env files under a wide variety

of paths; we presume this is an attempt to gain more metadata about the site. We found one

session that tried to fetch a variety of what appeared to be RSS feeds, many of which were

clearly unrelated to the websites hosted on the server, including feeds/justice-news.xml

and /pittsburgh/Rss.xml. We surmise that this was a buggy or misconfigured crawler

or feed aggregator.

4.5.3 Predictive Ability

The final question we ask is how predictive our malicious anomaly detection system is:

that is, if it sees just a subset of a full session, does it produce the same label as it would

for the full session? This gives us a sense of how effective Deep-Sec would be for building

a system that blocks malicious requests on-line. We leave the actual construction of such a

system as future work, but use this measurement to show that such a system is feasible.

To evaluate the predictive ability of Deep-Sec, for a session S, we define a prefix pn
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of the session to be the ordered elements of the session S0...Sn. Note that the shortest

meaningful prefix in this context is the window size used by Deep-Sec plus one (|S|+ 1),

since this is the minimum required to make a prediction; the longest prefix is the complete

session. Label L(S) is the label assigned by Deep-Sec for the whole session, and label L(pn)

is the label that Deep-Sec assigns if shown only pn. What we are looking for is the length

n of the prefix at which Deep-Sec latches to the correct label: that is, the value N at which

∀n ≥ N, L(pn) = L(S). Said another way, this is the prefix length at which Deep-Sec

assigns the correct label to the session, and then continues to produce the correct label for

all other prefixes up to the full length of the session.

We report N as a fraction of the full length of the session. If this value is close to one,

Deep-Sec does not converge on the correct label until it has seen nearly the whole session,

and therefore would not be useful in deciding whether to block further requests in this

session. If it is close to zero, this means that Deep-Sec produces the correct label given a

short prefix, and could reliably indicate whether the rest of the session should be allowed

or blocked.

Figure 4.5 shows a histogram of the values of N. As can be seen, most of the time,

Deep-Sec can produce correct labels given less than 5% of a session, meaning that, for

malicious sessions, 95% of the session could be blocked. The cases in which it takes Deep-

Sec a higher fraction of the session tend to be short sessions: if they are not much longer

than the window size, Deep-Sec is only able to start making predictions after a substantial

fraction of the session has passed. This shows that Deep-Sec has great potential to be used

on-line to block malicious sessions as they are seen in real-time.

In 67% of the test dataset, Deep-Sec could predict the correct label in the first window

examined. And in 2.5% of the data, it correctly labeled the session in the second window.

And only 0.5% of the datasets needed more than 10 windows examined to latch to the

correct label. More importantly, Deep-Sec was able to flag 84% of the malicious sessions in

≤ 5 windows, and 66% of these malicious sessions could be flagged and blocked from the

first window examined.
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Figure 4.5. N-values for test dataset.

4.6 Conclusion
It is important for system administrators to be able to distinguish between anoma-

lous incidents that require a security response, and those that come from other sources.

Deep-Sec builds on earlier anomaly detection work to distinguish between benign and

malicious anomalies, giving administrators and security teams the information they need

to do their jobs. It has proved to be highly accurate on a dataset drawn from a production

web system, and we attribute this to two facts: First, malicious anomalies turn out to

be more anomalous according to the detectors than benign ones. Second, events in the

class of benign anomalies have more in common with each other than do events in the

class of malicious anomalies. As a result, we are able to label highly-anomalous results as

malicious, and can train an auto-feedback step on benign anomalies, further reducing false

positives.



CHAPTER 5

CONCLUSION AND FUTURE WORK

Systems failures do not only involve systems’ unavailability. It can also include the

failure in delivering any guarantees or services users rely on these systems for. These

failures affect many people depending on these systems for critical services or for storing

sensitive information. The costs of system failures may be extremely high for both ends,

the service provider and the user, because failures generally have a financial impact and

can cause costly physical damages. For example, the Facebook outage on October 5th,

2021, lasted for only six hours but costed Facebook an estimated total loss of revenues of

roughly $99.75 million and prevented more than 2.89 billion users from accessing Face-

book’s services [48]. Additionally, data breaches are extremely expensive, especially to

more prominent institutes, the average global cost of a cybersecurity data breach is $3.83

million [12].

In this dissertation, I presented studies on complicated computer systems and their

respective dependability with a goal of proposing practical methods that can improve the

reliability and assist systems’ users achieving their goals.

In Chapter 2, I examined users’ privacy in content distribution networks. CDNs im-

prove the overall performance by bringing the services closer to the end-users. It also

enhances reliability by allowing origin servers to offer uninterrupted service even during

some failures. And most importantly, it improves the resilience against attacks by im-

personating the origin server. However, this arrangement requires the end-users to share

some of their sensitive secrets with the CDN to allow it to fully impersonate the origin

server. This inflicts a dangerous system vulnerability especially with the emergence of

serverless computing such as in the AWS Lambda@edge service [2] and Akamai’s delivery

of edge computing solutions [37], because even if we assume the integrity of the CDN,

sometimes failure within the CDN can cause data leakage, such as in the Cloudbleed
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incident [36]. To address this problem, I presented Harpocrates. It is a framework that

utilizes Intel’s SGX technology to protect the privacy of users’ secrets by protecting it from

direct CDN access without limiting the users from fully leveraging the CDN’s capabilities.

Harpocrates enables the users to push active computation that might require private users’

information to the edge without relinquishing any privacy guarantees.

Although this proposed design improves performance and scalability by eliminating

the need for the long-distance connection to the origin server, the scalability in the current

prototype can present a problem because of the need for a separate SGX enclave for each

origin server. This problem can be mitigated with a method to guarantee clean separation

between different CDN’s clients’ data. Furthermore, I propose to further improve perfor-

mance by leveraging Intel QuickAssist Technology (QAT) [63]. QAT-based accelerators

can speed HTTPS connection services by securely offloading TLS operations on private

keys to the NIC. The use cases I presented demonstrate the power of Harpocrates, but

this prototype is certainly not limited to those use cases. It is also possible to implement

additional cloud-related applications, for example, in banking, healthcare management,

government services, or any service that requires both secrecy and high performance.

In Chapter 3, I examined systems logs that manifest code execution in data center

environments. This study aims to model the correct system behavior and help systems

administrators find anomalies before being reported by users. I also investigated the per-

sistence of systems invariants through time to evaluate if anomalies detectors need to be

periodically re-trained or not. Furthermore, I explored the usefulness and interpretability

of the mined invariants to measure how useful they can be for system administrators.

In this dissertation, I have used fixed time periods for sessions (24 hours) and re-

training periods (3 months); for future work, it might be interesting to investigate other

values, including using sliding windows for sessions or flexible size windows. It might

also provide insightful information if applied to other system’s provisioning logs other

than the boot info logs.

In Chapter 4, I looked at a different kind of logs that are derived from human behaviors

rather than automated processes. To help system administrators detect malicious needles

in the logfiles haystacks, I designed a framework called Deep-Sec. It is an anomaly de-

tection system that improves on DeepLog [24] by introducing a novel scoring system that



67

enables system admins to prioritize different anomalies by labeling them as malicious and

benign. To evaluate the quantitative and qualitative performance of Deep-Sec on. I used a

labeled dataset from Cloudlab. To the best of my knowledge, this dataset is unique: unlike

existing public datasets, because not only did I group the data into sessions, but it was

manually labeled into three different classes instead of two: normal, benign, and malicious.

Moreover, Deep-Sec achieved adequate performance in a dataset that reflects actual human

behavior within a website rather than reflecting an automated code execution.

There is still more work that can be done to expand this research. Though I have some

promising preliminary experiments with predicting classes for ongoing (partial) events,

more work would still need to be done to turn this into a system that could block malicious

traffic in real-time. It would also be interesting to apply this work to other types of security-

relevant logfiles, beyond web server logs; I expect that Deep-Sec will be most valuable

on logs that record human behavior—in this setting, malicious behavior, which is often

automated, stands out. Furthermore, although the linear scoring system used in Deep-Sec

has achieved upstanding results, it might be valuable to explore different scoring systems

on other datasets.

Collectively, these studies aim to improve systems’ dependability by enhancing avail-

ability, safety, resilience, and security.
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pagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste, Multi-context TLS (mcTLS):
Enabling secure in-network functionality in TLS, Comput. Commun. Rev., 45 (2015). pp.
199–212.

[53] M. Newbold, Reliability and state machines in an advanced network testbed, Master’s
thesis, University of Utah, Salt Lake City, UT, 2004.

[54] E. Nygren, R. K. Sitaraman, and J. Sun, The Akamai network: A platform for high-
performance internet applications, Oper. Syst. Rev., 44 (2010), pp. 2–19.

[55] D. O’Keefe and J. Tian, SGXSpectre: Sample code demonstrating a Spectre-like attack
against an Intel SGX enclave. https://github.com/lsds/spectre-attack-sgx. (18
March 2018).

[56] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, Eleos: Exitless OS services for
SGX enclaves, in Proceedings of the 12th European Conference on Computer Systems,
2017, pp. 238–253.

[57] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, C. Pal, et al., Extremeweather: A large-
scale climate dataset for semi-supervised detection, localization, and understanding of extreme
weather events. https://arxiv.org/abs/1612.02095. (10 July 2021).



72

[58] P. Rodriguez, J. Wiles, and J. L. Elman, A recurrent neural network that learns to count,
Connect. Sci., 11 (1999), pp. 5–40.

[59] M. Sabokrou, M. Khalooei, M. Fathy, and E. Adeli, Adversarially learned one-class
classifier for novelty detection, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 3379–3388.

[60] R. Salakhutdinov and H. Larochelle, Efficient learning of Deep Boltzmann Machines,
in Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 693–700.

[61] I. H. Sarker, Y. B. Abushark, F. Alsolami, and A. I. Khan, Intrudtree: A machine learning
based cyber security intrusion detection model, Symmetry, 12 (2020), p. 754.

[62] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, Blindbox: Deep packet inspection over
encrypted traffic, Comput. Commun. Rev., 45 (2015), pp. 213–226.

[63] X. Shuai, L. Yao, and Z. Wang, Qat: Evaluation of a dedicated hardware accelerator
for high performance web service, in 2018 20th International Conference on Advanced
Communication Technology (ICACT), 2018, pp. 277–280.

[64] M. A. Siddiqui, J. W. Stokes, C. Seifert, E. Argyle, R. McCann, J. Neil, and J. Carroll,
Detecting cyber attacks using anomaly detection with explanations and expert feedback, in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 2872–2876.

[65] R. Sommer and V. Paxson, Outside the closed world: On using machine learning for
network intrusion detection, in 2010 IEEE Symposium on Security and Privacy, 2010,
pp. 305–316.

[66] H. Song, Z. Jiang, A. Men, and B. Yang, A hybrid semi-supervised anomaly detection model
for high-dimensional data, Comput. Intell. Neurosci, 2017 (2017).

[67] N. Sullivan, Keyless SSL: The nitty gritty technical details, Cloudflare blog. (23 August
2017).

[68] The CloudLab Team, Cloudlab hardware (documentation). https://docs.cloudlab.

us/hardware.html#(part._cloudlab-utah). (10 March 2020).

[69] , The CloudLab website. https://cloudlab.us. (13 January 2020).

[70] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer, Shieldbox:
Secure middleboxes using shielded execution, in Proceedings of the Symposium on SDN
Research, 2018, p. 2.

[71] C. Tsai, D. E. Porter, and M. Vij, Graphene-SGX: A practical library OS for unmodified
applications on SGX, in Proceedings of the USENIX Annual Technical Conference
(ATC), 2017, p. 8.

[72] UCI Knowledge Discovery in Databases, KDD Cup 1999 data. http://kdd.ics.uci.
edu/databases/kddcup99/kddcup99.html. (5 June 2021).

[73] K. Varda, Introducing cloudflare workers: Run javascript service workers at the edge, Cloud-
flare Blog. (28 June 2018).



73

[74] H. Vill, SGX attestation process. https://courses.cs.ut.ee/MTAT.07.022/2017_

spring/uploads/Main/hiie-report-s16-17.pdf. (30 May 2018).

[75] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol, Extracting and composing
robust features with denoising autoencoders, in Proceedings of the 25th International
Conference on Machine Learning, 2008, pp. 1096–1103.

[76] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, CAPTCHA: Using hard AI
problems for security, in Proceedings of The International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2013.

[77] W3C, Web crypto API. https://developer.mozilla.org/en-US/docs/Web/API/

Web_Crypto_API. (17 October 2018).

[78] C. Weng, J. Li, W. Li, P. Yu, and H. Guan, STYX: A trusted and accelerated hierarchical SSL
key management and distribution system for cloud based CDN application, in Proceedings
of the ACM Symposium on Cloud Computing (SOCC), 2017.

[79] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,
C. Barb, and A. Joglekar, An integrated experimental environment for distributed systems
and networks, in Proceedings of the USENIX Symposium on Operating System Design
and Implementation (OSDI), 2002.

[80] S. Wold, K. Esbensen, and P. Geladi, Principal component analysis, Chemom. Intell. Lab.
Syst., 2 (1987), pp. 37–52.

[81] WordPress, Wordpress. wordpress.com. (13 September 2021).

[82] Y. Wu, DeepLog. https://github.com/wuyifan18/DeepLog. (1 May 2021).

[83] Y. Wu, Y. Sun, C. Huang, P. Jia, and L. Liu, Session-based webshell detection using machine
learning in web logs, Secur. Commun. Netw., 2019 (2019).

[84] D. Wulsin, J. Blanco, R. Mani, and B. Litt, Semi-supervised anomaly detection for EEG
waveforms using deep belief nets, in 2010 9th International Conference on Machine
Learning and Applications, 2010, pp. 436–441.

[85] T. Yang and V. Agrawal, Log file anomaly detection, CS224d Fall, 2016 (2016).

[86] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, Tools and benchmarks
for automated log parsing, in Proceedings of the International Conference on Software
Engineering (ICSE), 2019.


