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Abstract—Network slicing was adopted as a solution for future
networks to support various applications with diverse require-
ments. While active research has focused on this functionality,
most of the work targets RAN or packet core slicing and leaves
the transport network nearly untouched. With packet core func-
tions moving to data centers and parts of RAN functions moving
to edge clouds, the transport network will gain significantly more
importance. To ensure stringent service level agreements (SLAs)
and facilitate slice management, it is imperative for the transport
network to support live slice mobility with no disruption of
current services. In this paper, we present FestNet, a Flexible and
Efficient Sliced Transport Network, achieved by our virtualized
Programmable Data Plane (vPDP) and two-layer design. Not only
conventional protocols but also stateless and stateful network
functions (NFs) can be integrated as slices in FestNet. We
implemented a FestNet prototype. Our evaluation shows that
FestNet supports live slice migration with no packet loss and no
state loss for stateful slices and that FestNet provides many times
faster slice operations than implementations in related work.

I. INTRODUCTION
It is envisioned that a significant number of diverse IoT

devices will be simultaneously connected to future networks.
The coexistence of user- and machine-centric applications
implies a broad range of throughput, latency, and reliability re-
quirements. Today’s one-size-fits-all network is no longer able
to accommodate such a diversity of use cases simultaneously.
In order to tackle this problem, the Next Generation Mobile
Networks (NGMN) Alliance adopted the concept of network
slicing, which allows multiple end-to-end logical networks
to run on top of the same physical infrastructure, providing
a network-as-a-service (NaaS) and multi-tenancy model for
differentiated use cases.

Network slicing has drawn considerable attention in both
academic and industrial communities ever since its invention.
Numerous technologies, such as SDN and NFV [1]–[3] have
been proposed to realize this innovative network functionality.
However, most of the literature has targeted either RAN or
packet core slicing [4]–[6], and transport network slicing has
remained largely unexplored [19]. With end-to-end network
slicing being a standard in future networks, the transport
network should also be able to operate as slices, and thus,
the traditional transport network consisting of optical or IP

routers/switches will no longer be suitable. Moreover, with
packet core functions moving to data centers and parts of
RAN functions moving to edge clouds, the role of the transport
network becomes much more significant. To better facilitate
connections among these data centers and edge clouds, the
transport network should extend its functionality and be able
to run not just transport protocols but also stateless and stateful
network functions (NFs).

To guarantee stringent service level agreements (SLAs) and
facilitate slice management, it is necessary for the transport
network to support live slice mobility without disruption of
current services. The authors of [7] show the necessity of
live slice mobility in use cases where transport network slices
are required to move with autonomous vehicles and drones
to support their mobility with the consistency of services and
allocated resources. Non-disruptive slice mobility implies not
only the migration of a slice instance, but also the duplication
of current states if the slice is running a stateful NF. Ensuring
no state loss makes the transport network more resilient and
elastic. When failover occurs, assuming perfect early detection
[8], flows can be redirected to a new slice instance on another
physical node with no penalty. In the scenario of scale-out,
traffic flows can be distributed to newly started slice instances
on other physical nodes without disruption of current services
since the states of traffic flows are also copied to these new
slice instances.

Live slice mobility also facilitates energy efficiency and
slice management. At night when user traffic is expected to
decrease substantially, slices can be migrated to a small section
of the network, with unneeded physical nodes powered down
or put into hibernation [22]. Since the energy consumption
of network equipment is dominated by the transmission of
pilots (when there is no service data transmitted) [9], a
considerable amount of energy cost will be conserved every
night. Over time, the deployment of slices in the transport
network may develop unbalanced traffic loads, and hotspots
may be generated in certain sections of the network. To avoid
bottlenecks, some slices running on busy physical nodes can
be moved to relatively idle ones. For scheduled maintenance,
slices on physical nodes to be maintained can be moved to
other physical nodes with no need for mistake-prone changes978-1-6654-0522-5/21/$31.00 ©2021 IEEE



of routing configurations.
In this paper, we present FestNet, a Flexible and Efficient

Sliced Transport Network. A slice in FestNet could run
“conventional” protocols such as TCP/IP, Segment Routing,
NDN, or other to-be-invented protocols as well as stateless
and stateful NFs such as NAT, firewall, IDS, and load balancer.
FestNet not only realizes network slicing but also supports live
slice mobility without disruption of current services.

In designing FestNet, we face the following major chal-
lenges: (i) How to ensure there is no packet loss when
moving a slice; (ii) How to move a slice without having to
change routing configurations of slices running on other nodes,
especially neighboring ones; (iii) How to move states with the
slice during the live migration process when the slice being
moved is running a stateful NF and ensure the consistency of
states.

To solve these challenges, our key insight is that architecting
FestNet with a strong separation between the link layer and the
network function layer, and managing those layers separately,
can be exploited to realize isolated and movable slices. FestNet
assumes that the future transport network will be realized
through Programmable Data Plane technology [10], and fur-
ther assumes a composable and virtualized Programmable
Data Plane (vPDP) to realize the two-layer strategy [11]–
[13]. Within this context, FestNet realizes its two-layer design
principle through a virtual Link Layer (vLL) and a virtual
Network Function layer (vNFL). vLL runs underneath vNFL
to provide link-layer support by establishing virtual links and
tunnels connecting virtual network functions in the vNFL layer
across physical nodes. The use of a tunneling mechanism
ensures that live slice migration destinations do not have to
be adjacent physical nodes. Instead, they could be anywhere
in the network as long as reachable by the tunnels. The strong
layer separation allows FestNet to be agnostic to the exact
functioning at the vNFL layer. I.e., vLL deals with “link man-
agement” while vNFL realizes the functionality of different
network functions. FestNet achieves no packet loss and no
configuration changes of neighboring slices by manipulating
forwarding databases (fdb) in the vLL layer. vNFL network
functions are realized with different data plane programs, e.g.,
using P4 [10]. Each vNFL program, together with virtual links
connecting to it, form one distinct slice on a physical node
in FestNet. The use of data plane programmability not only
allows customization of programs running in a slice but also
the migration of NF states. There are two types of states: static
(e.g., firewall policy table) and dynamic (e.g., firewall flow
table). Static states can be realized via P4 runtime commands,
and they will be loaded into the P4 program when a slice
is created. Dynamic states can be realized by using stateful
objects counter and register in P4, with which most
if not all popular stateful NFs can easily be programmed.
APIs can be developed to facilitate fast read and write of
counter and register arrays in a specific P4 target (the
device that runs P4 programs), which enables dynamic state
migration. Since handling static states is straightforward in
FestNet, within the context of this paper, if not specified, we

mean dynamic states when referring to stateful NFs.
Our contributions are threefold. First, we present the Fest-

Net architecture and show that the two-layer design facilitates
fast creation, deletion, and non-disruptive live migration of
both stateless and stateful slices. To the best of our knowledge,
FestNet is the first transport network model that simultane-
ously supports network slicing and live slice mobility. Second,
we implemented a FestNet proof-of-concept prototype with
five slices to illustrate typical use cases, ranging from popular
protocols suitable for future networks to stateful NFs. We
also implemented a controller application that controls slice
operations and management. Third, we evaluated our FestNet
prototype and showed that FestNet indeed achieves non-
disruptive live slice mobility to adjacent and non-adjacent
physical nodes, and slice operations can be completed within
hundreds of milliseconds, much faster than implementations
of related work, which cost hundreds of seconds to provision
services.

II. RELATED WORK

FestNet is related to network virtualization and slicing in
general [14], slicing in future networks [1], [15], [16], and
slicing of the transport network [7], [17]–[20]. The survey
in [14] and [15] provides a thorough overview of network vir-
tualization, including early network slicing concepts. Several
other efforts focus on specific technologies that enable network
slicing and its use cases [1], [16].

Efforts related to the slicing of the transport network include
enabling multi-tenancy through slicing [17], the use of SDN
and NFV in transport network slices [18], and the challenges
associated with transport slices [19]. More closely related to
our work are more recent efforts that, similar to FestNet,
suggest the migration of transport slices [7] and touch on slice
management through orchestration [20]. FestNet is different
from these earlier efforts in proposing the use of vPDP tech-
nology to realize transport slices, in defining clear architectural
principles (strong layer separation, independent management
of these layers, and live slice migration) to address challenges
associated with transport slices, and in providing a proof-
of-concept implementation illustrating the feasibility of our
approach.

FestNet is also related to various node migration ap-
proaches [21], [22]. Work on live virtual machine (VM)
migration [21] is likely the earliest work related to migrating
nodes, albeit in this case, not network nodes per se. More
recent work on using SDN and NFV to realize a network
architecture follows a similar approach to migrate virtualized
network elements (i.e., in their realization, virtualized network
functions are realized as VMs that can be live-migrated).
FestNet is more closely related to earlier work on the migration
of network nodes [22], which uses conventional transport
network technologies to realize link-layer management and
migrates conventional IP router functionality between differ-
ent physical router instances. FestNet makes use of vPDP
technology, which affords it the ability to realize a similar
approach using a single base technology, allowing for slice



differentiation and rapid evolution (enabled by data plane
programmability).

[8] and [23] propose new network architectures and meth-
ods to reliably transfer states when moving a stateful NF
in scenarios of failover, scale-in, scale-out, etc. However,
their solutions demand a change of network architectures and
modification of existing NF code. FestNet achieves the easier
and faster transfer of states for stateful NFs, with no need to
alter the network architecture or NF code.

III. FESTNET ARCHITECTURE

Slices running in FestNet are isolated, able to be assigned
with different levels of resources, and movable without im-
pacting on current traffic.

We separate FestNet into two layers: vLL and vNFL.
As shown in Figure 1(a), FestNet assumes a composable
vPDP [11]–[13] as the basis for the FestNet node architecture.
In this vPDP framework, FestNet’s link and network function
layers are realized as separate data plane programs, i.e., one
vLL and several vNFL instances, with one vNFL for each
slice. Figure 1(b) depicts the FestNet network architecture,
showing physical links between nodes, logical links associated
with the “yellow” slice, and the FestNet controller with its
links.

a) The Two-Layer Design: In FestNet, P4 is used to
program the network function running in a slice. A single data
plane provided by P4 can only have one network function
running on top of it. P4 itself does not enable the data
plane to perform multiple network functions simultaneously.
To solve this problem, vPDP has been proposed by further
extending the P4 abstraction [11]–[13]. The use of vPDP
indeed allows a physical node to be divided into slices of
logical nodes. However, vanilla vPDP is not flexible enough
to support live slice migration. When moving a slice (a P4
program in this case), runtime commands of this P4 program
have to be modified to adapt the new link-layer environment
on the target physical node. Moreover, runtime commands of
the P4 programs on the immediate upstream and downstream
physical nodes also have to be updated to be able to redirect
traffic since links are not moved with slices. These runtime
command modifications will undoubtedly suspend user traffic.
Is it possible to move a slice without having to modify any
P4 runtime commands? FestNet’s separation of the link layer
and the network function layer in vPDP is designed to solve
this issue.

To bolster smooth live slice migration, the vLL layer can
create multiple isolated virtual Ethernet networks across the
same shared physical infrastructure by tunneling layer-2 mes-
sages over layer-3 networks. This tunneling mechanism allows
slices to be moved to not only adjacent physical nodes, but
also non-adjacent ones. Both slice migration patterns will be
shown in section V. When a vLL virtual interface is created, a
remote tunnel endpoint (a physical interface) is required to be
specified so that this virtual interface can choose the physical
route to tunnel its layer-2 messages. As shown in Figure 2,
although the virtual interface of the blue slice and that of

the orange slice have the same destination, they can establish
different tunnels by specifying different remote endpoints on
the destination physical node. To contribute immediate traffic
redirection when moving a slice, we adopt the notion of “soft
local and hard remote” in configuring tunnel endpoints for
vLL virtual interfaces. Although it is required to specify the
remote tunnel endpoint when creating a vLL virtual interface,
it is allowed that the local tunnel endpoint is left unspecified.
The blank configuration for the local tunnel endpoint allows
vLL to choose automatically whichever local tunnel endpoint
that has a reachable route provided by the physical network to
the remote tunnel endpoint. This feature is essential for traffic
redirection in live slice migration.

In the vNFL layer, just like the vanilla vPDP, one or more
P4 programs can run simultaneously, but the difference is that
they bind virtual interfaces in the vLL layer to communicate
with the outside world instead of physical interfaces. With this
separation design, when moving a slice across physical nodes,
both vLL and vNFL programs are moved, and there is no
configuration change required on both layers.

Thus, with vLL configurations and vNFL programs, a
physical network is “sliced” into multiple virtual networks
with diverse programmable network functions.

b) Isolation & Resource Allocation: FestNet ensures that
slices are isolated and can only run with assigned resources. A
slice consists of one vNFL program and multiple vLL virtual
interfaces it binds. In vLL, each virtual interface can only
communicate with its peer(s) in other physical nodes, which
makes sure that virtual links do not interfere with each other.
For vNFL programs, several isolation methods can be used,
including running them as processes, in VMs, in containers,
or even in special hardware.

The most important resources of a slice to differentiate
SLAs include bandwidth, CPU power, and memory. Band-
width isolation can be conveniently achieved in vNFL by using
P4’s stateful object meter. VMs, containers, or cgroups
configurations can be adopted to allocate CPU power and
memory for a slice.

c) Live Slice Migration: FestNet allows stateful NFs with
static states, dynamic states, or both to run as slices. Static
states are realized via P4 runtime commands and can be
loaded into the newly created P4 program on the target node
during live slice migration. Dynamic states are realized by
using P4’s stateful object counter and register. Thanks
to register, most if not all popular stateful NFs can be
programmed in P4. With the help of APIs that interact with
a specific P4 target, fast read and write operations on the
counter and register arrays can be achieved, which
enables state copying when moving a stateful slice with
dynamic states.

In FestNet, when moving a slice, the following are mi-
grated: vLL configurations, the vNFL program with its runtime
commands, and vNFL states if the program is a stateful NF.
Figure 3 shows the procedures of moving the second slice on
the physical node S2 (source) to S3 (target):



Fig. 1: FestNet: (a) Node architecture (b) Network architecture

Fig. 2: vLL tunneling mechanism

Step 1: On S3, establish the same vLL configurations as
on S2. I.e., create vLL interfaces Vx a′ and Vx b′ with the
same MAC and IP addresses as Vx a and Vx b, respectively.
Step 2: On S3, establish the same vNFL configurations as
on S2. I.e., start vNFL2′ on S3 with the same P4 program,
runtime commands, and computing resources (CPU power
and memory) as vNFL2 on S2, binding vLL interfaces Vx a′

and Vx b′. Step 3: On S1 (upstream), if the moving slice
is stateless: redirect traffic from going through Vx a on
S2 to going through Vx a′ on S3; if the moving slice is
stateful: stop traffic and buffer packets at Vx u on S1, copy
states from vNFL2 on S2 to vNFL2′ on S3, then release the
buffer and redirect traffic from going through Vx a on S2
to going through Vx a′ on S3. Step 4: On S2, remove vLL
interfaces Vx a and Vx b, terminate the vNFL2 program, and
release all resources assigned. On S4 (Downstream), update
the permanent vLL fdb entries to point to Vx b′ on S3 (for
future use after the learned dynamic entries expire). Now the
live slice migration process is complete.

The procedures for stateless and stateful live slice migration
differ in Step 3. If the moving slice is stateless, only traffic
redirection is needed. In the case of moving a stateful slice,
traffic has to be stopped, and packets need to be buffered on
the upstream node to wait for the state copying process to
complete. In FestNet, we devise data plane buffers on every
physical node in the network to facilitate this process. One
buffer can be associated with one vLL interface for buffering
and releasing packets running through this interface. Only
when all states have been copied to the target slice will the
buffer of the vLL interface on the upstream node be released.
In the designs of [24] and [23], it is the controller that buffers
packets during the migration of NF states. On the other hand,

in the FestNet design, we adopt data plane buffers, which is a
more robust solution since the control plane should be focusing
on handling control messages instead of intervening in the data
plane’s job.

How to enable immediate traffic redirection without packet
loss in Step 3 for both stateless and stateful slice migration?
To address this challenge, we devise vLL to inherit the “flood
and learn” mechanism from Ethernet switches and maintain
an fdb for each virtual interface. Moreover, vLL extends the
mechanism by storing more information in the fdb. In addition
to the MAC address of a peer virtual interface and the switch
port number through which this MAC address can be reached,
the IP address of the remote vLL tunnel endpoint on the peer
physical node is included in an fdb entry. The MAC address
recorded in an fdb entry can be reached by tunneling Ethernet
messages to the IP address recorded in the same entry. Another
contributing feature is vLL’s “soft local and hard remote”
configuration when creating vLL virtual interfaces. With the
help of these vLL features, now we examine in detail what
occurs in the vLL layer during the traffic redirection illustrated
in Figure 4. The process can be divided into two stages:

Stage 1: When the vLL virtual interface Vx u is created, the
remote tunnel endpoint of Vx u is originally specified as the
physical interface Ph2Int1 on S2. This configuration generates
a permanent fdb entry containing the IP address of Ph2Int1
(192.168.12.2) and the MAC address of the peer vLL virtual
interface Vx a on S2 (00:aa:bb:00:02:01). vLL guarantees that
Vx u and Vx a are in the same virtual Ethernet. When a
packet arrives at Vx u and needs to be forwarded to the vLL
virtual interface with the MAC address of 00:aa:bb:00:02:01,
its fdb is checked, and there is a match. The packet is then
passed to the local tunnel endpoint Ph1Int1 and tunneled to
192.168.12.2 (the IP address of Ph2Int1). Finally, Ph2Int1
passes the packet to Vx a. Now suppose we want to move
a slice from S2 to S3. First, we need to establish vLL virtual
interfaces and the vNFL program exactly the same as on S2.
For instance, Vx a′ has the same IP address and MAC address
as those of Vx a.

Stage 2: Then we can update the fdb entry of Vx u from
the original mapping of 00:aa:bb:00:02:01 - 192.168.12.2 to
00:aa:bb:00:02:01 - 192.168.13.3. After the change, when a
packet arrives at Vx u destined to the vLL virtual interface
with the MAC address of 00:aa:bb:00:02:01, an fdb check



Fig. 3: Slice moving procedures

Fig. 4: Redirecting traffic by manipulating fdb

returns the IP address of a new remote tunnel endpoint
Ph3Int1. Thus the packet is tunneled to 192.168.13.3 through
the local tunnel endpoint Ph1Int2. Ph3Int1 then passes the
packet to Vx a′ for further processing. Now the traffic has
been redirected.

d) vNFL Agnostic: During the live slice migration pro-
cess, not only is there no disruption on user traffic, but also
there is no need to change any vNFL configurations, including
both the P4 program and its runtime commands on all other
physical nodes. The reason is that traffic redirection is solely
achieved by manipulating fdb on the vLL layer. If we replace
vNFL with other routing methods, e.g., routing and forwarding
in the Linux kernel, the traffic redirection still works with
no packet loss. The live slice mobility mechanism is not
constrained by upper-layer network functions. With the vNFL
agnostic feature, after a slice migration, not only does the
logical topology of the data plane stay unchanged, but also
the functionality of this data plane requires no modification
or additional re-configurations, which significantly simplifies
network management tasks.

e) FestNet Controller: A central controller that connects
to all physical switches in the network is included in the Fes-
tNet architecture. The controller is responsible for performing
slice operations such as creation, deletion, modification, and
migration of slices. The controller also keeps a record of real-
time global topology information as it creates and deletes
slices. The knowledge of real-time global topology is crucial
for designing algorithms that help automate slice operations.
OpenFlow controllers have to discover the network topology
through the topology discovery mechanism (OFDP), which
decreases control plane performance and poses security threats
[25], [26]. The FestNet controller design does not have these
disadvantages.

IV. IMPLEMENTATION

This section describes our proof-of-concept implemen-
tation of the FestNet prototype. With reference to Fig-
ure 1(a), the FestNet implementation uses P4 behavioral model
(BMv2) [27] with appropriate P4 programs to realize the vNFL
layer and VXLAN to realize the vLL layer. The controller
application is implemented using Python. The code consists
of the controller part running on the controller node and
the switch part running on each switch node. The runtime
CLI APIs developed to interact with BMv2 are adopted and
integrated into the controller part to enable fast read and write
of NF states. Multiple physically connected Linux boxes in the
Emulab [28] testbed are used as the platform of the FestNet
prototype. Figure 5 illustrates the topology of the prototype,
which is a typical snippet of a physical transport network that
could support three logical subnets. A slice can be moved
among S2, S3, and S3′.

a) vLL Configurations: VXLAN is used to create virtual
interfaces and establish virtual links across physical nodes.
VXLAN interfaces are able to tunnel MAC layer messages
over the IP layer. Just like physical switches bind physical



Fig. 5: FestNet prototype topology

interfaces, BMv2 softswitches can bind VXLAN interfaces.
The connected virtual links and softswitches form a slice in
the network. Inside a physical node, actions on the flow of
packets running in and out of VXLAN interfaces are defined
by P4 programs and their runtime commands.

When moving stateful slices, a buffer is required to stop
traffic and buffer packets during the states copying process.
We implemented the buffer using the plug Qdisc, which can be
attached to a VXLAN interface and perform packet buffering
and releasing.

Before releasing the buffer of a VXLAN interface, a htb
Qdisc needs to be attached to the local endpoint to smooth
the traffic burst for the flow running through this VXLAN
interface by specifying the burst and cburst parameters,
with a filter ensuring that only the specified flow is smoothed.
Otherwise, the flood of packets running out of the buffer
will overwhelm the BMv2 softswitches along the traffic path
and cause them to drop packets. BMv2 itself is a research
prototype that focuses on data plane programmability. It is
never designed to provide comparable performance as in-
dustrial switches. If P4 hardware adopts our FestNet design,
performance will not be an issue, and there will be no need
to add the htb Qdisc.

b) vNFL Programs: We adopted an approach of instan-
tiating multiple BMv2 processes in the Linux environment as
one vPDP instance. On a single physical node, multiple BMv2
processes can be started with different P4 programs running
in each one of them.

We implemented five illustrative slices for the FestNet
prototype: (1) IPv4 router: A stateless router for bandwidth-
sensitive applications such as HD movie streaming, HD video
conference, web page surfing, and other legacy applications.
(2) End-to-End Segment Routing over IPv6 (E2E SRv6): A
stateless SRv6 router for reliability- and latency-sensitive
applications such as autonomous vehicles, drones, and smart
factories. (3) GPRS Tunneling Protocol (GTP) Segment Rout-
ing over IPv6 (GTP SRv6): A stateless GTP based SRv6
router for the same collection of applications as E2E SRv6
but provides transition and adaptation for legacy 4G LTE
networks. (4) Stateful firewall: A firewall with dynamic states
(connection status and flow information), representing various

stateful NFs that can be integrated into FestNet. (5) State-
ful IPv4: A stateful IPv4 router with dynamic states recording
the number of packets and IP bytes (IP header + IP payload)
passing through its interfaces. We use this slice to illustrate
stateful live slice migration.

We chose SRv6 to illustrate FestNet due to its prominence
recognized by both academic and industrial applications. It is
proposed by 3GPP release 16 as one of the candidate user
plane protocols for the 5G transport network to accommo-
date upcoming heterogeneous requirements of new use cases
[29]. SRv6 significantly improves the network’s controllability,
reliability, efficiency, and flexibility, by simplifying both the
control plane and data plane.

All the five vNFL programs were written in P4 16, the most
up-to-date version of P4. We implemented them by modifying
open-source code and adapting it to the FestNet platform. The
original Stateful firewall only supports TCP, and we added the
code that supports UDP with “pseudo” connection status and
flow information. We implemented Stateful IPv4 by adding
counting functionalities to IPv4 router. There are other open-
source P4 programs that are suitable to provide services for
future networks, including Inband Network Telemetry (INT)
[30] and Named-Data Networking (NDN) [31]. They can also
be loaded as slices in FestNet with some modification and
adaptation.

c) Slice Isolation & Resource Assignment: In FestNet,
each slice consists of vLL and vNFL configurations. In our
prototype, VXLAN provides vLL isolation [32], and vNFL
isolation is guaranteed by Linux since BMv2 softswitches
exist as processes. Bandwidth resources can be assigned by
specifying meter parameters in the runtime commands of P4
programs. CPU power and memory resources are allocated to
slices via cgroups.

d) Slice Operations and Management: We integrated
slice operations and management into the controller applica-
tion, from which the following commands can be executed:
(i) create slice: create the specified slice on the specified
physical node; (ii) delete slice: delete the specified slice
on the specified physical node; (iii) runtime cmd: enter the
runtime CLI for the specified slice on the specified physical
node to change runtime configurations of the slice such as
adding/deleting table entries and setting meter parameters;
(iv) move stateless slice: move the specified stateless slice
from the specified source physical node to the specified target
one; (v) move stateful slice: move the specified stateful slice
from the specified source physical node to the specified target
node.

Upon executing create slice, computing resources are al-
located, vLL configurations are established, and the vNFL
program is instantiated with its runtime commands loaded.
move stateless slice first creates a new instance of the spec-
ified slice on the target node, then redirects traffic on the
upstream node, updates fdb entries on the downstream node,
and finally deletes the old slice and assigned resources on
the source node. move stateful slice is more complicated and
does more work under the hood. Before traffic redirection, it



signals the buffer attached to the VXLAN interface on the
upstream node to stop traffic and start buffering packets. Then
the controller reads states from the moving slice on the source
node and writes them to the newly created slice on the target
node. Upon completion of copying states, it redirects traffic on
the upstream node, releases the buffer, and updates fdb entries
on the downstream node.

V. EVALUATION

By evaluating the FestNet prototype, we aim to answer
the following questions: How much overhead does FestNet
introduce? Does FestNet work as expected, with no packet
and state loss after live slice migration? What is the impact
of live slice migration on stateless and stateful slices? How
fast does FestNet perform slice operations, compared with
implementations in related work?

a) Environmental Settings: Figure 5 shows the prototype
network topology for evaluation. All physical nodes we used
are Dell PowerEdge R430 (d430) servers with 32 CPU cores
and 64 GB of memory in the Emulab testbed. The controller
and nodes S1 - S4 have Ubuntu 16.04 with the kernel version
4.4 as the operating system. The two hosts H5 and H6, which
act as the sender and receiver of data packets, are installed
with Ubuntu 18.04 with the kernel version 4.15, which sup-
ports establishing GTP endpoints in the kernel, essential for
receiving and sending packets through the GTP SRv6 slice.

b) Overhead: Table 1 shows the maximum data rates of
all five slices running separately with no packet loss when
there is no live slice migration in our experiment setting.
Exceeding these maximum data rates for each slice will cause
BMv2 softswitches to overwhelm and drop packets. When
we run all five slices simultaneously with each slice at the
same data rate, the maximum value for each slice is 16
Mbps. If running all five slices simultaneously with periodic
live slice migration, the maximum data rate with no packet
loss for each slice is 15 Mbps. So the overhead of FestNet
live slice mobility compared with the baseline performance is
(16− 15)/16 = 6.25%.

The baseline performance is not high because BMv2 is a
research prototype that aims to provide data plane programma-
bility, not high performance. We expect a hardware-based
FestNet implementation to perform significantly better.

TABLE I: Baseline performance
Slice name Max data rate (Mbps) CPU usage (%)
IPv4 router 61 49 - 51
E2E SRv6 56 53 - 55
GTP SRv6 52 54 - 56

Stateful firewall 59 49.5 - 51
Stateful IPv4 59 48.5 - 50.5

c) Functional Evaluation: iperf UDP mode was used
to verify that there is no packet loss and no state loss after
live slice migration and to identify the impact of live slice
migration on throughput. We did the following experiments:
First, we created all five slices (Stateful firewall was compiled
to hold 100 flows of states) on S1, S2, and S4, with each
slice allocated with five dedicated CPU cores (although BMv2

cannot use multiple CPU cores, we assigned the resources
anyway to illustrate FestNet’s function) and 10 GB of memory.
Then we ran five processes of iperf in UDP mode on H5
and H6 at data rates ranging from 10 Mbps to 20 Mbps with
a step of 2.5 Mbps for each slice. The sum of these data
rates is 75, which is the same as that of the maximum data
rates from our baseline/overhead evaluation. We chose these
specific data rates in the experiments to make the results more
visible on figures. Then we performed live slice migration for
each slice at 10-second intervals in the following two patterns
to illustrate the flexibility of FestNet: Same-direction loop:
Move each slice from S2 to S3. After all the slices are on S3,
move each slice from S3 to S3′. After all the slices are on
S3′, move each slice from S3′ to S2. I.e., each slice has been
moved following the path S2-S3-S3′-S2. Different-direction
loop: Move each slice one by one, as in the pattern described
above. But move IPv4 router and GTP SRv6 by the path S2-
S3-S3′-S2, and move the other three slices by the path S2-S3′-
S3-S2. The second migration pattern corresponds to the use
case when we need to spread slices to multiple physical nodes
during the day and converge them back to a small subset of
the network at night.

In these experiments, iperf outputs on H5 and H6 for
each slice explicitly showed that there was no packet loss after
each live slice migration. To verify that there was also no
state loss, we read the counter array and register array
in the Stateful IPv4 slice and compared them with iperf
outputs after each migration. The results showed that the states
were consistent after the slice had been moved. The same
verification applies to Stateful firewall.

Figure 6 shows the impact on throughput for each slice with
periodic live slice migrations in both patterns. The left part
shows the throughput of each slice. For stateless slices, there
is no impact on throughput. As can be expected, for stateful
slices, we will experience fluctuations. I.e., during stateful slice
migration, the buffer stops the traffic and then releases a burst
of packets after the migration has been completed resulting
in throughput changes. The right part of Figure 6 shows the
throughput measured at the physical links of S2-S4, S3-S4,
and S3′-S4. The results show that in FestNet, slices can be
moved to adjacent and non-adjacent physical nodes with no
packet and state loss.

d) Scaling of States: How will throughput be impacted
when the number of states increases in stateful slices? To
answer this question, we compiled Stateful firewall with 100,
200, 300, 400, and 500 flows of states. Then we ran each
variation at the data rates of 10, 15, and 20 Mbps for 40
seconds, with live slice migration occurring every 10 seconds.
The results of all five variations were concatenated and shown
in Figure 7.

Let us take the green line (variations running at 20 Mbps) as
an example to see what happened during the experiments. For
the first 40-second interval, during which time the variation
with 100 flows of states was running, there was no packet
loss, but fluctuations appeared. Starting from the second 40-
second interval, we can see pits in the figure when live slice



Fig. 6: Impact on throughput in two migration patterns

Fig. 7: Impact on throughput when states scale

migration occurred. These pits indicate packet loss during the
migration processes since the throughput went down and did
not go back up in the next second. Going further along the
x-axis, when running variations with 400 and 500 flows of
states, we experienced packet loss combined with fluctuations.
The value of the throughput decrease is larger than that of
the throughput increase in the next second. Looking at the
green line alone, we can see that the more states the slice had,
the more packets were dropped (the deeper the pits were).
Compared with other data rates, the orange line experienced
packet loss starting from the variation with 300 flows of states,
and the blue line did not suffer from packet loss until the
variation with 500 flows of states. Thus, as can be expected,
the trend is that the higher the data rate is, the fewer flows
of states the slice can carry to ensure non-disruptive live slice
migration. These results suggest that for stateful NFs, there
is a “feasibility region” where stateful live slice migration in
FestNet operates without packet loss. In our BMv2 prototype,
this region is relatively small. With a performant P4 hardware
implementation, we expect the feasibility region to be much
larger.

Fig. 8: Slice operation performance

e) Performance of Slice Operations: We used the
timeit package in Python to measure the time cost by dif-
ferent slice operations. The measurements start from the very
beginning of executions to the point when they are completely
finished. We measured the following operations: create slice,
delete slice, move stateless slice, and move stateful slice.
For the move stateful slice operation, we included results of
Stateful firewall with 100 and 400 flows of states. Figure 8
shows the time cost by each type of slice operation. Live slice
migration operations take longer because they need to create
a slice on the target node and then delete the old one on the
source after traffic redirection. Moving stateful slices takes
the longest since it also involves copying states from the old
slice to the new one. From Figure 8, we can see that creating
slices in FestNet takes only about 400 ms, much faster than
the provisioning times of network slicing implementations in
[33]–[35], which all cost hundreds of seconds. The gap is
because their work targets end-to-end network slicing and is
implemented using VM and containers, which causes slow
operations but could provide better slice isolation.

VI. CONCLUSION AND FUTURE WORK
The transport network will play an even more important

role with the advent of network slicing. In this paper, we have
shown that live slice mobility without disruption of current
services will be a crucial feature to better support network
slicing in the transport network. We have proposed FestNet,
which is a flexible and efficient sliced transport network
model, and presented its design and prototype implementation.
Our evaluation shows that slices in FestNet can be moved to
adjacent and non-adjacent physical nodes with no packet loss
and no state loss for stateful NFs and that slice operations in
FestNet are many times faster than implementations in related
work.

In our current FestNet implementation, performing slice
operations involves human interaction, either via typing com-
mands or loading them from scripts on the controller. In order
to allow autonomous slice operations, a machine-learning-
based algorithm can be designed and implemented in the
controller so that in certain scenarios, slices can be automati-
cally created, migrated, or deleted according to pre-configured



requirements. The controller also needs to constantly monitor
each physical node’s traffic status and provide this information
to the algorithm to make slice operation decisions.
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