NexRAN: Closed-loop RAN slicing in POWDER -
A top-to-bottom open-source open-RAN use case

David Johnson
johnsond@cs.utah.edu
University of Utah
Salt Lake City, Utah, USA

ABSTRACT

Much like earlier “network softwarization” efforts, the Open RAN
concept is poised to have a transformative impact on the manner in
which radio access networks (RANs) are realized and operated. The
inherent complexity of the RAN ecosystem and the fact that it is
rapidly evolving makes Open RAN a rich area of research into use
cases, system realization, security, and more. This same complexity,
however, hampers research efforts. Specifically, there is a lack of
end-to-end open source software and fully-developed use cases
associated with the Open RAN ecosystem. Further, to truly advance
the state of the art will require use cases to be explored in realistic
wireless environments. This paper describes our efforts to address
these shortcomings by realizing NexRAN, a top-to-bottom, open-
source Open RAN use case in the POWDER mobile and wireless
research platform. Specifically, NexRAN allows closed-loop control
of a RAN slicing realization in an O-RAN ecosystem. RAN slicing
is implemented in the srsRAN open source mobility stack and is ex-
posed through a custom service model to the NexRAN xApp, which
executes on a RAN intelligent controller (RIC) from the O-RAN Al-
liance. The NexRAN xApp realizes policy driven closed-loop control
of RAN slices by reading the current state of RAN elements (using
the O-RAN key performance measurements (KPM) service model)
and controlling slice behavior via the custom slicing service model.
We demonstrate and evaluate NexRAN in the POWDER platform and
have open sourced all aspects of our realization to enable research
into this domain.

CCS CONCEPTS

« Networks — Mobile networks; Network architectures; Net-
work experimentation.

KEYWORDS
open RAN, RAN slicing, closed-loop RAN control, wireless testbed

ACM Reference Format:

David Johnson, Dustin Maas, and Jacobus Van Der Merwe. 2022. NexRAN:
Closed-loop RAN slicing in POWDER - A top-to-bottom open-source open-
RAN use case. In The 15th ACM Workshop on Wireless Network Testbeds,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WINTECH °21, January 31-February 4, 2022, New Orleans, LA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8703-3/22/01...$15.00
https://doi.org/10.1145/3477086.3480842

Dustin Maas
dmaas@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Jacobus Van Der Merwe
kobus@cs.utah.edu
University of Utah

Salt Lake City, Utah, USA

Experimental evaluation & CHaracterization (WiNTECH °21), January 31—
February 4, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3477086.3480842

1 INTRODUCTION

The “softwarization” of network functionality—software-defined
networking, network function virtualization, network programma-
bility, network virtualization—that has fundamentally changed net-
working over the last decade is now also being applied to mobile
networks in general and the radio access network (RAN) in partic-
ular. Specifically, the “Open RAN” concept has evolved from early
research prototypes [15] to consortia with broad industry partici-
pation [22] and has also attracted interest from regulators [3]. The
inherent complexity of the RAN ecosystem, coupled with the fact
that RAN functionality by itself is rapidly evolving, suggests Open
RAN as a broad emerging research area, with open issues in applica-
ble use cases, spectrum management, systems realization, security,
and more.

This same inherent complexity, however, hampers research ef-
forts in this area. First, there is a lack of open source frameworks to
bootstrap research efforts in this space. It is true that, for example,
the O-RAN Alliance provides open source software via the O-RAN
Software Community [22]. These code bases provide the O-RAN
“control stack” but do not themselves provide the necessary O-RAN
support for existing RAN implementations (e.g., an O-RAN-enabled
eNodeB/gNodeB). Second, and related, the example use cases that
are currently available within these open source frameworks are
still under development (e.g., traffic steering, admission control, etc),
or are limited in functionality (e.g., RAN metrics collection). As a
result, it is difficult for practitioners to develop an understanding of
the full end-to-end functionality enabled by an open RAN approach.
Third, while there is general agreement about the potential of an
open RAN approach, developing use cases that could truly advance
the state of the art requires exploration and testing in realistic wire-
less environments to explore and validate the feasibility of the open
RAN architecture and the applications it enables.

This paper describes our efforts to address these shortcomings
by realizing NexRAN, a top-to-bottom open-source Open RAN use
case in the POWDER mobile and wireless research platform [12].
Specifically, NexRAN allows closed-loop control of a RAN slicing
realization in an O-RAN ecosystem. RAN slicing is implemented
in the srsRAN open source mobility stack and is exposed through
a custom service model to the NexRAN xApp, which executes on
a RAN intelligent controller (RIC) from the O-RAN Alliance. Our
RAN slicing implementation realizes a form of slicing where dif-
ferent slices share the same frequency band, UEs can be explicitly

https://doi.org/10.1145/3477086.3480842
https://doi.org/10.1145/3477086.3480842

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

associated with slices, and a slice-aware scheduler in the base sta-
tion implements the RAN resources associated with each slice. The
NexRAN xApp realizes policy driven closed-loop control of RAN
slices by reading the current state of RAN elements (using the stan-
dard O-RAN key performance measurements (KPM) service model)
and controlling slice behavior via the custom slicing service model.
We demonstrate and evaluate NexRAN in the POWDER platform and
have open sourced all aspects of our realization to enable research
into this domain. To our knowledge our work on NexRAN represents
the first top-to-bottom open source realization of an O-RAN xApp.
We make the following specific contributions:

e Weimplement an O-RAN E2 agent in the open source srsSRAN
code base to allow srsRAN to be used as the underlying mo-
bile functionality in an O-RAN environment.

e We develop RAN slicing in srsRAN and expose that to the
O-RAN environment through a (custom) service model.

e We develop a RAN slicing xApp that performs closed-loop
RAN slicing control to serve as a top-to-bottom example of
controlling RAN functionality in an open RAN ecosystem.

e We evaluate our implementation on the POWDER platform,
illustrating the platform’s utility in performing open RAN
related research.

e We open source all our efforts, including a POWDER profile
that enables our experiments to be repeated, to serve as a
building block for open RAN related research.

2 BACKGROUND: O-RAN

The O-RAN architecture describes a model for RAN resource con-
trol, managed at the upper level by orchestration and automation
components (e.g., policy, configuration, and the non-realtime RAN
Intelligent Controller (RIC)). These components control and com-
municate with the near-realtime RIC via the A1 interface. The near-
realtime RIC provides management of and connectivity to RAN
nodes (e.g., eNodeB/gNodeB, RU/DU, etc). Its core set of services
is extensible by custom third-party xApps, which are instantiated
as cloud services and have low-latency connectivity to RAN nodes.
xApps communicate with the RIC and its managed RAN nodes via
the E2 interface.

The E2 Application Protocol (E2AP) [24] defines several messag-
ing procedures for RAN nodes and xApps. xApps can subscribe to
events occurring at RAN nodes by specifying per-subscription trig-
gers (conditions that match events). Subscription requests contain a
list of service actions to be run when triggered, and when triggered,
those actions may report data or provide notice of the start of a RAN
procedure (e.g., X2 handover) as an indication message. xApps may
also send asynchronous control request messages to RAN nodes,
providing configuration or requesting services. Control messages
may also resume or modify a RAN procedure that had been halted
when an indication was sent.

General E2AP message procedures are extensible via the service
model abstraction: service models (often abbreviated E2SM) [25]
expose RAN semantics and controls to xApps. For instance, the Key
Performance Measurements (KPM) service model [26] supports
subscriptions that provide periodic metrics reports. Most E2AP
message procedures contain an opaque field that carries service
model-specific content. xApps and RAN nodes that support the

David Johnson, Dustin Maas, and Jacobus Van Der Merwe

RAN Slicing
Manager
NexRAN xApp

| RAN Intelligent Controller
ORAN gent

))> \ \

E2AP Protocol

@ E2 Agent @ Evolved Packet Core
H SRSRAN 3 SRSRAN (EPC)
Slice aware

1 eNodeB

)y

scheduler

(((“RU + DU + CU”

Figure 1: NexRAN Open RAN open source RAN slicing

same service model can then exchange notifications and control
messages.

3 NEXRAN DESIGN AND IMPLEMENTATION

Figure 1 provides an overview of the NexRAN Open RAN frame-
work we have realized by combining software from the O-RAN
Software Community and srsRAN. Specifically, we added a slice-
aware scheduler and an O-RAN E2 agent to srsRAN, and a custom
xApp to control slicing. As shown in Figure 1, E2 is a north-bound
interface that connects the RIC with underlying radio equipment,
such as eNodeBs and gNodeBs. The E2 agent implements the core
E2 Application Protocol (E2AP), has access to the internal RAN
components in the eNodeB’s stack to monitor and modify RAN
parameters, and supports E2 service models to export RAN met-
rics and controls to xApps. NexRAN exposes this functionality, via
a RESTful API, to a RAN slicing manager. The slice manager can
create slices, bind/unbind them to multiple eNodeBs, bind/unbind
UEs to those slices, and dynamically modify slice resource alloca-
tions. We describe our design and implementation in the following
sections using a top-down approach.

3.1 xApp and Northbound API

We developed a custom NexRAN xApp in c++, using some of the
xApp and RIC message router (RMR) framework libraries provided
by the O-RAN Software Community. The xApp implements the
NexRAN RAN slicing service model, and consumes an extended KPM
service model to obtain metrics for use in auto-adaptive RAN slicing
(further described in Section 3.5).

The NexRAN xApp provides a northbound, RESTful interface for
administrative control and monitoring. It defines several primary
objects: NodeB, Slice, UE, each of which may be created, updated, and
deleted. When a NodeB is created in the xApp, the xApp attempts
to subscribe to the NodeB’s events via the E2 protocol. A Slice
contains a scheduling policy definition. Administrators may bind
Slices to NodeBs; this tells the NodeB’s scheduler that the slice
and its associated UEs should be scheduled according to the slice’s
policy. Finally, administrators create UE objects to inform NexRAN of
particular, known IMSIs that may connect to a NodeB. UEs may be
bound to a single Slice at a time; this binding tells the scheduler that
the UE should be scheduled in accordance with its parent Slice’s

NexRAN: Closed-loop RAN slicing in POWDER

PVOZ?SO” Subframe Allocation

30 X B B A A X A B B A
2:1 X B A A B X A A B A
1:1 X B A B A X B A B A

Figure 2: NexRAN subframe allocation examples for two slices
(A, B) and three different proportional shares. X represents
special subframes that prioritize unidentified UEs.

policy. UEs may be unbound from Slices, and Slices unbound from
NodeBs, at any time.

3.2 RAN slicing service model

The NexRAN service model maps the northbound API onto com-
mon E2 abstractions and messages—the xApp sends E2 messages
to NodeBs in response to northbound API invocations. Most north-
bound API create or update operations map to E2 Control messages.
For instance, Slice create, update, and delete map to SliceConfig and
SliceDelete control messages, and binding or unbinding a UE to and
from a Slice map to SliceUeBindRequest and SliceUeUnbindRequest
messages. Per-slice proportional allocations can be modified via
the SliceConfig message. The service model also provides periodic
E2 Indication messages in response to subscriptions from xApps;
the indication contains a list of bound slices and UEs active at that
NodeB.

3.3 E2Agent

We extended srsRAN with an E2 agent that implements the core
E2AP protocol and provides abstractions for further extension to
new E2 service models. The E2 agent implements two service mod-
els: the NexRAN RAN slicing service model, and an extension of
the KPM service model. Our KPM extensions are additive in na-
ture, to index metrics by slice in addition to UEs, and are therefore
backwards-compatible.

When the srsRAN eNodeB initializes, the E2 agent connects to
the O-RAN RIC and runs the E2 Setup procedure to advertise its list
of supported service models to the RIC and its xApps. srsRAN is
multithreaded, and it and the E2 agent dedicate threads to specific
tasks. Service models may also spawn their own threads as needed
to implement asynchronous notifications, e.g., those that periodi-
cally report metrics or events in response to xApp subscriptions.

Our E2 agent provides an implementation of the standard O-
RAN key performance measurements (KPM) service model [26] to
provide metrics. As shown in Figure 1, we have also implemented a
custom 3GPP-like service model to expose our RAN slicing imple-
mentation as a set of abstractions and controls to xApps executing
on the RIC.

3.4 Slice scheduler

The slice scheduler at the eNodeB implements a subframe-based
proportional slicing method for data on the physical downlink
shared channel (PDSCH) using the slice definitions described by

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

the NexRAN service model, and provided by the slice manager via the
xApp. With the exception of a periodic special subframe included to
guarantee that UEs which have yet to be identified and associated
with a slice are able to attach to the network, each subframe gives
priority to a single slice. By default, if the slice with priority in a
given subframe doesn’t consume all of the available resources, UEs
from other slices may be scheduled after those from the priority
slice.

Slices are scheduled in a round-robin fashion, each receiving
one or more consecutive subframes per round according to their
allocation share. Figure 2 shows allocations for a two-slice scenario
using a few example shares, which can be described as the ratio
A:B of subframes allocated to each slice per round. The columns
marked X represent the periodic special subframes. A scheduling
round is complete when the proportional allocation defined by the
slice manager has been satisfied.

In general, NodeBs do not keep track of the international mobile
subscriber identities (IMSIs) used to identify subscribers to the core
network. In addition, IMSIs are transmitted over the air as rarely as
possible in order to protect subscriber identities; temporary mobile
subscriber identities (TMSIs) are used instead. At the same time,
the NexRAN xApp identifies the UEs that belong to each slice using
IMSIs, and is completely unaware of the TMSIs and radio network
temporary identifiers (RNTIs) that might be assigned by the core
network and eNodeB, respectively. As such, it keeps the eNodeB
informed about the slices and associated IMSIs, and it is left to the
eNodeB to determine the identity (IMSI and TMSI) of each UE, map
that identity to its RNTI, and then update the TMSIs and RNTIs
if they change over time. In order to accomplish this, we (1) use a
fresh instance of the srsRAN EPC, so that UEs are forced to send
their IMSIs the first time they attach; and (2) modify the srsRAN
eNodeB to decode several non-access stratum (NAS) messages in
transit between the UEs and the EPC in order to capture the IMSIs
transmitted in the initial attach procedure, and then capture and
update their corresponding TMSIs over time.

We add a single class that is responsible for (1) reacting to mes-
sages from the E2 agent and updating the slicing configuration; (2)
generating the subframe allocation for the current slicing configu-
ration; (3) reacting to interfaces from lower layers in the stack and
tracking which temporary UE identities belong to each slice; and
(4) providing a list of the RNTIs that should be prioritized in each
subframe to the scheduler.

The scheduler is work-conserving by default, meaning that UEs
belonging to the priority slice are scheduled first, followed by UEs
belonging to other slices, and finally by UEs not associated with
any slice, as long as there are remaining resource blocks. In special
subframes, unidentified UEs are scheduled first, followed by the UEs
belonging slices, followed by UEs not associated with any slice. UEs
in each category are scheduled round-robin within the subframe.

We note that RAN slicing at the granularity of subframes is not a
novel idea; the authors of [30] use a similar approach at the eNodeB
to evaluate their slice optimization strategy in a simulated network.
Our contribution in this regard is an open source subframe-based
slice scheduler that enables the top-to-bottom RAN slicing use case.

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

3.5 Policy-driven dynamic slice scheduling

The NexRAN xApp allows administrators to configure the propor-
tional allocation scheduler on a per-slice basis, and provides alloca-
tion policy extensions through which the xApp can dynamically
modify slice resource allocations. We have implemented two such
extensions: balanced slice throughput and slice throttling. These
extensions monitor per-UE and per-slice throughput and other met-
rics, via our extended KPM service model, and modify per-slice
proportional allocations according to policy and load.

The balanced slice throughput extension attempts to drive slices
to the same overall throughput, as measured by the KPM service
model at the PDCP layer. This mechanism sums the total band-
width used by all auto-equalized slices in each new KPM report,
checks if any slices have diverged from an equal distribution, and
if so, computes new share values (proportions) for each slice. This
mechanism is only invoked if at least 30% of the reporting NodeB’s
available PRBs were used, so that low-throughput slices are not
unfairly starved.

The slice throttling extension attempts to prevent slices from
consuming too much bandwidth in a given time period. It ac-
cepts several parameters: throttle_period, throttle_threshold, and
throttled_share. When throttle_threshold throughput is exceeded
within any throttle_period window, the slice’s share is set to throt-
tled_share for a duration of throttle_period, and when the period
ends, throttling is removed. The policy maintains its threshold coun-
ters during throttling, and per-period throughput is not reset at the
end of a throttle_period.

4 EVALUATION

We evaluated NexRAN on the POWDER platform. Our evaluation
specifically focuses on illustrating the top-to-bottom closed-loop
nature of our implementation. As described earlier, the NexRAN
xApp “reads” the RAN related measurements using the extended
KPM service model and “writes” (controls) the RAN slices via the
NexRAN RAN slicing service model. Specifically, the NexRAN xApp re-
alizes the two specific RAN control policies described in Section 3.5,
i.e., a policy that balances the per-slice throughput between slices
and a policy to throttle the throughput of a slice if its aggregate
throughput over a specific time period exceeds a certain threshold.

4.1 Experimental setup

We performed an evaluation of NexRAN using the POWDER indoor
over-the-air (OTA) lab and the POWDER controlled RF environ-
ment. Figure 3 shows the two setups and the equipment involved
in each configuration. Each UE was realized using a small-form-
factor compute node (Intel NUC 8559 or 5300), an NI B210 SDR, and
srsRAN (release 20.10.1). The eNodeBs were realized by combin-
ing a compute node (Dell R740 or NUC 5300), an NI X310 or B210
SDR, and a modified version of srsRAN 20.10.1 that includes our
RAN slicing implementation. The compute node also executed the
evolved packet core (EPC) network. This “mobile infrastructure”
is controlled by the RIC and NexRAN xApp executing on another
compute node (Dell R740). (For our evaluation the mobile infras-
tructure and the RAN control setup are realized as two separate
experiments that are interconnected via a shared network (VLAN)

David Johnson, Dustin Maas, and Jacobus Van Der Merwe

RAN Control

Compute node
UE (d740)

NexRAN xApp
Compute node @ SDR
(Nuc8559) ..o | (B210) Indoor OTA Lab

e _T—l

<

f 1
I [}]
Compute node @ SDR v Compute node
(nuc8559) ... | (B210) soR (d740)
L] ||
(X310) @
UE SRSRAN
T v | ‘
Compute node @ SDR eNodeB + EPC
(hucsss9) [| (B210)
L]
UE
T v |
Compute node @ SDR RAN Control
(s Mo 29 | Compute node
(d740)
__NexHAN xApp

Controlled RF Environment

ORAN Rric
UE T

Compute node (=, SDR [[]

(nuc5300) zsaan| | (B210)

.) Compute node
RF (nuc5300)
SDR
UE Attenuator ——— goqg |
‘ 1 Matrix (5210} (A
SRSRAN

Compute node SDR |
(nuc5300) (B210)

eNodeB + EPC

Figure 3: Experimental setup

" slice1-throughput'
24 | — 4 %0
slice1-share
slice2-share 1 8o
22
1 832
2] 768
18 < 704
16 J640
WL 45 &
2 B R e e e e el S oy S
59 Y/ LA T s 5
12 Jas §
10 J38a <
8 1 4 320
R - 256
‘ 1 192
4
|] 128
2 1 64
0 0

0 100 200 300 400 500 600 700 800 900
Time (s)

Figure 4: NexRAN balanced slice throughput policy - Indoor
OTA Lab

connection. This POWDER capability to interconnect two sepa-
rate experiments is convenient when the experiment profiles are
complex (as is the case here), and/or can be used independently
or combined with other profiles.) As shown in Figure 3 the indoor
OTA lab configuration involves one eNodeB and four UEs, while
the controlled RF environment setup has two UEs and one eNodeB.

4.2 Evaluation Results

Figure 4 shows a time series of NexRAN in an indoor OTA lab setup
and realizing the balanced slice throughput policy. The y-axis on
the left shows the aggregate per-slice throughput. The y-axis on
the right shows the per-slice allocation of resources. (Our imple-
mentation represents slice allocations as an integer from the range

NexRAN: Closed-loop RAN slicing in POWDER

1024

T T T
slice1throughput
| —

slice1-share
slice2-share -+ 896

IS

0
|

Mbps

a
N
Allocation Share

i
0 100 200 300 400 500 600 700 800 900
Time (s)

Figure 5: NexRAN slice throttling policy - Indoor OTA Lab

0 to 1024. The ratio of these per-slice allocations determines the
share of radio resources allocated to a slice. E.g., if two slices get
the same allocation, e.g., 512:512, or 768:768, then the slices will
each receive half of the available resources. If one slice gets double
the allocation of another slice, e.g., 512:256, then that slice would
receive double the amount of resources.) For this experiment two
UEs are associated with each of two slices. The experiment starts
out without the balanced slice throughput policy in place. As shown
in Figure 4, each slices starts off with an equal share of the avail-
able RAN resources. At approximately 120 seconds into the run
the balanced throughput policy is activated. At this point NexRAN
adjusts the resource allocations to satisfy the balanced throughput
objective. The results show that the balanced throughput objective
is maintained throughout the experiment.

Figure 5 shows a time series of NexRAN in an indoor OTA lab
setup and realizing the slice throttling policy. The y-axis on the left
again shows the aggregate per-slice throughput, while the y-axis on
the right shows the per-slice allocation of resources. In this example
slice 1 is subject to a slice throttling policy, while slice 2 is not.
During the initial part of the experiment, i.e., up to approximately
200 seconds, both slices get half of the available resources, and
the xApp start collecting usage data associated with slice 1. At
200 seconds slice 1 exceeds its threshold and the throttling policy
reduces its resource allocation dramatically. During this period,
i.e., from 200 seconds to 500 seconds, while its resource allocation
remains unchanged, slice 2 achieves much higher throughput
since the competing slice (slice 1) is throttled. The throttling
period ends at 500 seconds, and both slices return to an equal
share of the resources, with slice 1 again achieving a higher
throughput than slice 2. The throughput of slice 1 continues
to be monitored throughout and the same throttled/unthrottled
pattern repeats in the rest of the run.

Figure 6 shows a time series of NexRAN in the controlled RF
environment and realizing the balanced slice throughput policy.
The y-axis on the left again shows the aggregate per-slice through-
put, while the y-axis on the right shows the per-slice allocation
of resources. In the POWDER controlled RF environment the at-
tenuation between radios can be programmatically controlled. For

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

1024

T r T
slice1-throughput
| —

4 960
2 slice1-share
2 slice2-share 1 8o
1 832
2] 768
1 i 4 704
Il
v | | =
16 P’r ! /“M; M\ b i ! s 640
Al S : :
l y ‘. I .,X T | 576
14 LI

Mbps

L
a
©
Allocation Share

0 100 200 300 400 500 600 700 800 900
Time (s)

Figure 6: NexRAN balanced slice throughput policy - Con-
trolled RF Environment

this experimental run the attenuation of the path between the UE
associated with slice 2 and the eNodeB is modified in a sequence
of 0 dB, 20 dB, 0 dB, 20 dB etc. When the attenuation is increased
to 20 dB, the NexRAN balanced throughput policy increases the re-
source allocation for slice 2 (to balance its throughput with that of
slice 1). When the attenuation is reset to 0 dB the resource alloca-
tion of both slices are adjusted to approximate parity. For example,
in Figure 6 the experiments start with 0 dB attenuation for all RF
paths and the slices have a balanced throughput of approximately
17 Mbps. At approximately 280 seconds the attenuation is increased
and after a period of adjustment, at approximately 380 seconds,
the throughput between the slices are roughly balanced again at a
(reduced) rate of approximately 15 Mbps. At approximately 530 sec-
onds the attenuation is reset to 0 dB and after some adjustment the
throughput for both slices returns to approximately 17 Mbps, etc.

5 EXPERIENCES AND DESIGN CHOICES

In this section, we describe some of our O-RAN design choices and
experiences.

Mapping an API to E2AP procedures. As described in Section 2,
the E2AP protocol provides several procedure styles relevant to
xApps: subscriptions (which when triggered, fire REPORT, INSERT,
or POLICY service actions); asynchronous control requests from
xApp to RAN node; control requests that resume or modify an
ongoing RAN procedure; and notifications (indication messages).

The core E2AP is not intended to be the point of extension for
xApp designers (that is the role of the service model abstraction), so
we had two choices when mapping the NexRAN RESTful JSON north-
bound API to the E2 interface. First, we could model the NodeB/Slice
and Slice/UE binding configuration as subscription requests with
POLICY actions—and with service-model-defined, opaque policy
descriptions containing the binding information, and use this policy
as the configuration input to the slicing scheduler. Second (which
we chose), we could model each binding configuration change as

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

a new control request sent to the NodeB. Either choice has equiv-
alent error-handling mechanisms and service model-opaque de-
scriptor fields to describe the configuration. However, our design
for NexRAN’s auto-adapative slicing mechanism was intended to
support frequent sub-second scheduling parameter changes. To
model this configuration as a subscription with a POLICY service
action would have required both a SubscriptionDeleteRequest and a
SubscriptionRequest procedure for each policy change, despite the
fact that only a small parameter subset may have changed. Mapping
the RESTful API to asynchronous control request messages to the
RAN nodes is a better match for the NexRAN service.

Defining a service model. Although the E2AP protocol is defined
in a 3GPP-ish, asn.1 style, and the service models defined by the
O-RAN Alliance are similarly defined, service model definitions
are opaque to E2AP. Therefore, if integrating a pre-existing system
that has a RESTful JSON-based AP], it is valid to define the service
model in JSON. In the NexRAN system, we found it most natural
and convenient to expose a RESTful JSON northbound API—but
we opted to map this API to an asn.1 service model definition.
Currently, xApps must implement asn.1-based E2AP subscription
and control messages directly, and other useful service models (e.g.
KPM and others currently under development) are asn.1-based, so
conformity is sensible, although perhaps a bit more painful than
other options. Additionally, the E2AP INSERT subscription service
action is designed to interrupt an existing LTE/5G procedure flow,
transmit the relevant initiating message to the subscribed xApp,
and halt the procedure while waiting for the xApp to possibly
modify the procedural flow or response; all of these procedures are
asn.1-based.

Rapidly-evolving landscape. The O-RAN RIC specifications and
reference software are still under active development. For instance,
the E2AP Setup procedure initiator changed from the RIC to the
RAN prior to the 01.00 release. The KPM service model specification,
while already useful, can (and surely will) support a wider variety
of useful metrics, and additional indexings of them (e.g., KPM 01.00
indexed per-UE byte counters by QCI, and xApp authors may wish
to write policies over otherwise-indexed metrics—NexRAN being one
example). The O-RAN Alliance is actively developing additional
service model specifications, and some of those may have been
reusable in place of some of the custom NexRAN service model
components.

The reference RIC system provided by the O-RAN Software Com-
munity is an excellent proving ground, but we ran into some rough
edges in the implementation. For instance, internally, the reference
RIC uses the RIC message router (RMR) [27] to pass E2AP messages
between endpoints (e.g. RIC microservices and xApps), and there
is at least some conflation between RMR and E2AP messages. If an
xApp wants to fire multiple subscriptions in parallel, and match
subscription response messages with the corresponding request; it
must set the RMR transaction id (xid) header field; and the subscrip-
tion response then carries this transaction id; so the match can be
made (as of the cherry release [28]). Otherwise, there is no way to
match; the reference RIC changes the requestor_id and instance_id
bits in the original subscription request before passing it to the
RAN node, so that it can aggregate subscriptions; but then does not
“demultiplex” the replies back to the xApp. Based on our reading

David Johnson, Dustin Maas, and Jacobus Van Der Merwe

of the E2AP specification, such matching should be possible solely
based on the identifiers in the subscription request.

6 NEXRAN OPEN SOURCE AVAILABILITY

Towards our goal of enabling open RAN related research through
our efforts, all software associated with NexRAN are publicly avail-
able:

(i) O-RAN RAN slicing POWDER profile [5], a POWDER spec-
ification that specifies the hardware and software resources
needed to automatically instantiate the setup described in this
paper,

(ii) srsRAN with O-RAN E2 and slice aware scheduler [8], i.e., a
fork of the srsRAN code base with our enhancements,
(iii) NexRAN xApp [4], the xApp that interacts with both the KPM
and RAN slicing service models,
(iv) POWDER fork of e2 core repo with minor bugfixes [6],
(v) POWDER fork of kpimon xApp with bugfixes [7].

7 RELATED WORK

The primary contributions of our work involve using RAN slicing
to realize a closed-loop, open RAN use case implemented as a top-
to-bottom open-source artifact and evaluating it in a realistic RAN
environment. As such our work is related to previous RAN slicing
efforts, to other open RAN environments and use cases, research
platforms that enable realistic RAN evaluations (and of course the
open source stacks from srsRAN [31] and the O-RAN Alliance [22]
that enabled our work).

RAN slicing is a fairly well studied topic, including relatively
recent efforts exploring plausible slicing implementation options
for 5G RAN [13], the Orion LTE based RAN slicing implementation
focused on per-slice performance guarantees [14], analytical treat-
ment of RAN slicing resources [33], as well as earlier efforts that
realized RAN slicing without modifying basestation schedulers [17]
and in RAN slicing in a WiMAX environment [11]. Beyond these
research efforts RAN slicing is also included in the 5G new radio ef-
forts being undertaken by 3GPP [1]. Of these efforts, NexRAN slicing
is most related to the Orion effort which also focused on a systems
implementation of RAN slicing using an open source mobility stack.

In terms of open RAN environments our work specifically utilizes
the open source ecosystem provided by the O-RAN Alliance [22].
The O-RAN Alliance is a world-wide community that draws its
large and growing members basefrom mobile operators, vendors
as well as research and academic institutions. O-RAN was also in-
fluenced by efforts associated with the xRAN Forum, Cisco’s Open
vRAN and the Telecom Infra Project (TIP) OpenRAN [19]. Earlier,
mostly academic, efforts to create open and programmable RAN en-
vironments include a programmable RAN slicing architecture [18]
and the FlexRAN work [15] that was one of the earliest efforts to
explore clean software-defined RAN abstractions. FlexRAN was
also adopted into the Mosaic-5G effort[2], which has recently been
transfered to fit into the OpenAirInterface Software Alliance.

In terms of academic research, the FlexRAN implementation [2,
15] is a popular platform to enable use case development [20]. The
O-RAN Alliance has also published a white paper describing a
variety of use cases [23]. Some of these anticipated use cases are
quite sophisticated, e.g., Al-enabled optimization of massive MIMO

NexRAN: Closed-loop RAN slicing in POWDER

quality-of-service (QoS) and quality-of-experience (QoE) and radio
resource allocation based on the flight path of unmanned areal
vehicles (UAVs). The most developed use case release by the O-RAN
Alliance to date involves traffic steering which, like NexRAN makes
use of monitoring via the KPM service model, but the details of RAN
control (e.g. handover to steer traffic) are still under development.
Further, as we have stated earlier, the O-RAN software typically
does not include realizations of the underlying RAN functionality,
limiting the usefulness of the use case realizations for practitioners.

Finally, in terms of realistic RAN environments for evaluating
open RAN related research, we have made use of the controlled
RF environment and indoor over-the-air lab available in the POW-
DER platform [32] and have made NexRAN available as a POWDER
profile [5]. Many wireless testbeds exist, some that make use of
commercial (black box) equipment [9, 10] and othere that, similar to
POWDER, provides SDR equipment [16, 21, 29]. To our knowledge,
however, POWDER is unique in providing both the hardware and
the software building blocks to enable open RAN related research.

8 CONCLUSION

In this paper we presented our work on NexRAN, a closed-loop RAN
slicing use case developed using the srsSRAN and O-RAN Alliance
source code bases. To our knowledge, NexRAN is the first open-
source top-to-bottom O-RAN use case. We evaluated NexRAN on
the POWDER mobile and wireless platform. Our primary goal is
to enable open RAN related research; to that end, we released all
NexRAN software, including a profile to replicate the work described
in this paper on the POWDER platform, as open source.

ACKNOWLEDGMENTS

We thank the anonymous WIiNTECH ’21 reviewers for their com-
ments on this paper. We performed our experiments on machines
provided by the POWDER testbed [12]. This material is based upon
work supported by the National Science Foundation under Grant
Number 1827940.

REFERENCES

[1] 5G; Study on new radio access technology (3GPP TR 38.912 version 14.1.0 Release
14). 3GPP Technical Report.
[2] FlexRAN in Mosaic5G. http://mosaic-5g.io/flexran/.
[3] FCC Seeks Comment on Open Radio Access Networks. https://www.fcc.gov/
document/fcc-seeks-comment-open-radio-access-networks-0, March 2021.
[4] NexRAN xApp. https://gitlab.flux.utah.edu/powderrenewpublic/nexran/, 2021.
] O-RAN RAN slicing. https://www.powderwireless.net/p/PowderProfiles/O-RAN,

2021.

[6] POWDER fork of e2 core repo with minor bugfixes. https://gitlab.flux.utah.edu/
powderrenewpublic/e2, 2021.

[7] POWDER fork of kpimon xApp with bugfixes. https://gitlab.flux.utah.edu/
powderrenewpublic/ric-scp-kpimon, 2021.

[8] srsRAN with O-RAN E2. https://gitlab.flux.utah.edu/powderrenewpublic/srslte-
ric/, 2021.

[9] 5G-VINNI Consortium. 5G-VINNI: 5G verticals innovation infrastructure, 2020.

[10] 5GENESIS. 5GENESIS: 5th generation end-to-end network, experimentation,
system integration, and showcasing, 2020.

[11] G.Bhanage, R. Daya, L Seskar, and D. Raychaudhuri. VNTS: a virtual network
traffic shaper for air time fairness in 802:16e slices. In IEEE ICC - Wireless and
Mobile Networking Symposium, 2010.

[12] J. Breen, E. Eide, E. Lewis, D. Reading, A. Buffmire, M. Hibler, D. Maas, R. Ricci,
J. Duerig, D. Johnson, A. Orange, D. Schurig, K. Dutt, S. K. Kasera, N. Patwari,
L. B. Stoller, J. Van der Merwe, K. Webb, and G. Wong. Powder: Platform for Open
Wireless Data-driven Experimental Research. In ACM WiNTECH proceedings,
September 2020.

(13]

[14]

[15

[16]
[17

(18]

(19]

[20]

[30]

[31

[32

(33]

WINTECH ’21, January 31-February 4, 2022, New Orleans, LA, USA

S. E. Elayoubi, S. B. Jemaa, Z. Altman, and A. Galindo-Serrano. 5g ran slicing for
verticals: Enablers and challenges. IEEE Communications Magazine, 57(1):28-34,
2019.

X. Foukas, M. K. Marina, and K. Kontovasilis. Orion: Ran slicing for a flexible and
cost-effective multi-service mobile network architecture. In Proceedings of the
23rd Annual International Conference on Mobile Computing and Networking, Mo-
biCom 17, page 127-140, New York, NY, USA, 2017. Association for Computing
Machinery.

X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Kontovasilis. Flexran:
A flexible and programmable platform for software-defined radio access networks.
In Proceedings of the 12th International on Conference on Emerging Networking
EXperiments and Technologies, CONEXT ’16, pages 427-441, New York, NY, USA,
2016. ACM.

IRIS. IRIS - the software defined radio (SDR) testbed, 2020.

R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan. Cellslice: Cellular wireless
resource slicing for active ran sharing. In 2013 Fifth International Conference on
Communication Systems and Networks (COMSNETS), pages 1-10, 2013.

A. Ksentini and N. Nikaein. Toward enforcing network slicing on ran: Flexibility
and resources abstraction. IEEE Communications Magazine, 55(6):102-108, 2017.
S. Marek. xRAN, Open VvRAN, and OpenRAN: What’s the Differ-
ence? https://www.sdxcentral.com/articles/news/xran-open-vran-and-openran-
whats- the- difference/2018/04/, April 2018.

N. Nikaein, C.-Y. Chang, and K. Alexandris. Mosaic5g: Agile and flexible ser-
vice platforms for 5g research. SIGCOMM Comput. Commun. Rev., 48(3):29-34,
September 2018.

NITlab. NITOS facility, 2020.

O-RAN Alliance. O-RAN software community, 2020.

O-RAN Alliance. O-RAN Use Cases and Deployment Scenarios - Towards Open
and Smart RAN. https://www.o-ran.org/resources, February 2020.

O-RAN Alliance. O-RAN Working Group 3: Near-Real-time RAN Intelligent
Controller - E2 Application Protocol (E2AP). ORAN-WG3.E2AP-KPM-v01.00,
2020.

O-RAN Alliance. O-RAN Working Group 3: Near-Real-time RAN Intelligent
Controller - E2 Service Model (E2SM). ORAN-WG3.E2SM-v01.00, 2020.

O-RAN Alliance. O-RAN Working Group 3: Near-Real-time RAN Intelligent
Controller - E2 Service Model (E2SM). ORAN-WG3.E2SM-KPM-v01.00, 2020.
O-RAN Project. Ric message router — rmr. https://docs.o-ran-sc.org/projects/o-
ran-sc-ric-plt-lib-rmr/en/latest/, 2019.

O-RAN Software Community. Cherry release (dec 2020). https://wiki.o-ran-
sc.org/pages/viewpage.action?pageld=20876303, December 2020.

D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Mahesh-
wari, P. Skrimponis, and C. Gutterman. Challenge: COSMOS: A city-scale pro-
grammable testbed for experimentation with advanced wireless. In Proceedings
of the 26th Annual International Conference on Mobile Computing and Networking
(MobiCom), September 2020.

P. H. A. Rezende and E. R. M. Madeira. An adaptive network slicing for lte radio
access networks. In 2018 Wireless Days (WD), pages 68-73, 2018.

Software Radio Systems. srsRAN is a 4G/5G software radio suite developed by
SRS. https://github.com/srsran/srsran.

The POWDER Team. Powder (the Platform for Open Wireless Data-driven
Experimental Research). https://www.powderwireless.net, 2018.

P.L. Vo, M. N. H. Nguyen, T. A. Le, and N. H. Tran. Slicing the edge: Resource
allocation for ran network slicing. IEEE Wireless Communications Letters, 7(6):970—
973, 2018.

http://mosaic-5g.io/flexran/
https://www.fcc.gov/document/fcc-seeks-comment-open-radio-access-networks-0
https://www.fcc.gov/document/fcc-seeks-comment-open-radio-access-networks-0
https://gitlab.flux.utah.edu/powderrenewpublic/nexran/
https://www.powderwireless.net/p/ PowderProfiles/O-RAN
https://gitlab.flux.utah.edu/ powderrenewpublic/e2
https://gitlab.flux.utah.edu/ powderrenewpublic/e2
https://gitlab.flux.utah.edu/ powderrenewpublic/ric-scp-kpimon
https://gitlab.flux.utah.edu/ powderrenewpublic/ric-scp-kpimon
https://gitlab.flux.utah.edu/powderrenewpublic/srslte-ric/
https://gitlab.flux.utah.edu/powderrenewpublic/srslte-ric/
https://www.sdxcentral.com/articles/news/xran-open-vran-and-openran-whats-the-difference/2018/04/
https://www.sdxcentral.com/articles/news/xran-open-vran-and-openran-whats-the-difference/2018/04/
https://www.o-ran.org/resources
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/
https://docs.o-ran-sc.org/projects/o-ran-sc-ric-plt-lib-rmr/en/latest/
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=20876303
https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=20876303
https://github.com/srsran/srsran
https://www.powderwireless.net

	Abstract
	1 Introduction
	2 Background: O-RAN
	3 NexRAN Design and Implementation
	3.1 xApp and Northbound API
	3.2 RAN slicing service model
	3.3 E2 Agent
	3.4 Slice scheduler
	3.5 Policy-driven dynamic slice scheduling

	4 Evaluation
	4.1 Experimental setup
	4.2 Evaluation Results

	5 Experiences and Design Choices
	6 NexRAN Open source availability
	7 Related work
	8 Conclusion
	Acknowledgments
	References

