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ABSTRACT 

 

 The tremendous growth of wireless services has created an ever-increasing demand for 

the radio frequency spectrum. However, most of the spectrum, especially in the sub-6 GHz 

frequency ranges have been allocated. Given the observation that a large part of the allocated 

spectrum remains unused in various locations and at different times, dynamic spectrum access 

technologies that allow for opportunistic use of the allocated bands when they are idle, are being 

developed. In this thesis, we study the spectrum usage in the frequency range of 700 MHz to 2.8 

GHz at Salt Lake City, Utah. Our study indicates that several portions of these frequencies are 

under-utilized, with an average of only 19% usage. Furthermore, we observe that certain 

frequency bands demonstrate clear usage patterns, e.g., show higher utilization during the 

daytime compared to night-time; that can be exploited for opportunistic secondary usage of the 

spectrum. 

               We propose a spectrum prediction system using Long Short-Term Memory (LSTM) 

neural networks to predict the occupancy of a channel in future time slots. We further introduce 

an LSTM based Window Selector to find the optimal window of future forecasts that increase 

the utilization of the network while minimizing the interference caused by the opportunistic user. 

Our experiments show that the Multivariate LSTM model can be reliably used to guide the 

choice of the channel for the opportunistic user. The multi-step LSTM models can be used to 

forecast spectrum usage with approximately 96% accuracy on the frequency bands exhibiting 

discernible usage patterns.
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CHAPTER 1 

 

INTRODUCTION 

 

The tremendous growth of wireless services has created an ever-increasing demand 

for the radio frequency spectrum. However, most of the spectrum, especially in the sub-6 

GHz frequency ranges have been allocated. Given the observation that a large part of the 

allocated spectrum remains unused in various locations and at different times, dynamic 

spectrum access technologies that allow for opportunistic use of the allocated bands when 

they are idle, are being developed. In this thesis, we study the spectrum usage in the 

frequency range of 700 MHz to 2.8 GHz at Salt Lake City, Utah. Our study indicates that 

several portions of these frequencies are under-utilized, with an average of only 19% 

usage. Furthermore, we observe that certain frequency bands demonstrate clear usage 

patterns, e.g., show higher utilization during the daytime compared to night-time; that can 

be exploited for opportunistic secondary usage of the spectrum. 

An opportunistic secondary usage of such frequencies involves frequently scanning 

the bands and determining their occupancy (spectrum sensing). An opportunistic user 

cannot transmit in a channel before sensing and determining its occupancy, as that may 

cause interference. This possesses a significant challenge, as these operations need to be 

performed in each time slot, causing substantial delays before the user gains access 

leading to reduced utilization. A system that can predict the state of the channel for future 
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time slots can reduce the delay and the energy consumed in spectrum sensing and the 

decision making phase if the sensed channels are free and finalize the best channel for the 

opportunistic use (spectrum decision). 

 We propose a spectrum prediction system using Long Short-Term Memory (LSTM) 

neural networks to predict the occupancy of a channel in future time slots. We further 

introduce an LSTM based Window Selector to find the optimal window of future 

forecasts that increase the utilization of the network while minimizing the interference 

caused by the opportunistic user. Our experiments show that the Multivariate LSTM 

model can be reliably used to guide the choice of the channel for the opportunistic user. 

The multi-step LSTM models can be used to forecast spectrum usage with approximately 

96% accuracy on the frequency bands exhibiting discernible usage patterns. Our 

contributions in this thesis are listed below: 

• We build spectrum monitoring tools in the POWDER testbed and study the 

spectrum usage pattern for several frequency bands in Salt Lake City, Utah. 

• We develop LSTM based models to forecast spectrum power values using real-

world power spectral density (PSD) data that we collect. 

• We also develop LSTM based architectures to forecast multiple timestep spectrum 

usages at once using real-world PSD data that we collect.  

• We use the data collected to evaluate the performance of various deep learning 

models (Stacked LSTM, Encoder-Decoder LSTM, Multivariate LSTM) and 

compare them with the performance of two baseline approaches (Exponential 

Weighted Moving Average (EWMA) and Zero Rule Algorithm). 
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• We introduce a novel LSTM based Window Selector to select the best window to 

minimize interference and maximize throughput.  
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CHAPTER 2 

 

RELATED WORK 

 

The US Government is taking initiatives for allowing sharing of the under-utilized 

frequency bands by supporting dynamic spectrum access technologies and facilitating 

further research on how to effectively access the spectrum holes [1]. However, without a 

proper understanding of the current and future spectrum usage, these initiatives would not 

be able to achieve their goals. Spectrum survey is an essential tool to determine the 

current spectrum usage and guide the policy makers to make the most informed decision. 

Spectrum surveys have been conducted in San Francisco [2], Denver [3], San Diego [4]. 

These surveys show the maximum, minimum, and average received power levels of 

various bands. Spectrum survey in Singapore [5] showed that except for the bands 

allocated for broadcasting (analog TV, digital TV, HDTV, and DAB) services and 

cellular networks, most are heavily underutilized, with only 4.54% average usage in the 

entire frequency bands ranging from 80 MHz to 5850 MHz. In this work, we conduct a 

survey in Salt Lake City, Utah, to identify the frequency bands which are heavily under-

utilized and the bands that exhibit predictable usage patterns.  

 Spectrum surveys have indicated that the frequencies are being under-utilized 

because of static allocation schemes [6]. This shows that several bands can be excellent 

candidates for spectrum sharing. Cognitive Radio Network (CRN) has been introduced to 
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enable unlicensed opportunistic users to communicate in idle time slots with no harmful 

interference to the licensed user [7]. To accomplish this, spectrum sensing must be 

performed. Spectrum sensing determines the current spectrum state, and to avoid any 

harmful interference, the opportunistic user needs to perform spectrum sensing in every 

time slot. Spectrum prediction can alleviate the opportunistic user from conducting 

spectrum sensing in every timeslot by predicting the future spectrum states. This can save 

a lot of time and energy, thus improving the throughput of the network [8]. 

A survey [9] on spectrum prediction shows that most of the existing studies are based 

on classical statistical techniques or shallow architecture models. While deep learning has 

shown promising results in many applications of image recognition, machine translation, 

natural language processing, target detection, etc., its use in spectrum prediction is still in 

its budding state [10]. Hochreiter et al. [11] introduced the Long Short Term Memory 

(LSTM) network to learn long-term dependencies. Predicting the state of the channel is a 

time-series problem that can leverage long-term dependencies learning. 

The study in [12] applies deep learning to predict spectrum availability in cognitive 

aerospace communications; however, real-world data is converted into binary channel 

states like other prediction algorithms. [10] applies LSTM for spectrum prediction in the 

frequency hopping communication where frequency hopping sequence is also a binary 

time series artificially generated data. Spectrum prediction of one timestep on the power 

spectral density (PSD) values using LSTM is studied in [14], but one-time step prediction 

is not very useful for the opportunistic user. As one-time step prediction does not provide 

any information on the future time slots, opportunistic users need to repeatedly perform 

spectrum sensing in every alternate time slots. We evaluate different complex networks 
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with many LSTM layers to forecast power and binary occupancy states of multiple 

timesteps using real-world PSD values. We present extensive experimental results with 

real-world spectrum PSD data evaluated on Stacked LSTM network, Encoder-Decoder 

LSTM, and Multivariate LSTM networks. Our work differs from the existing work in the 

following significant ways: 

1. We perform a spectrum usage study using the POWDER platform in Salt Lake 

City, Utah, and analyze spectrum usage patterns. 

2. We develop models for multiple timestep spectrum usage forecasts using real-

world power spectral density (PSD) data that we collect. 

3. We evaluate the performance of various deep learning models (Stacked LSTM, 

Encoder-Decoder LSTM, Multivariate LSTM) and compare that with the 

performance of two baseline approaches (Exponential Weighted Moving Average 

(EWMA) and Zero Rule Algorithm). 

4. We study the effects of the forecast window size and introduce a novel LSTM 

based Window Selector to select the best window to minimize interference and 

maximize throughput. 
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CHAPTER 3 

 

SPECTRUM USAGE ANALYSIS 

 

As a part of this thesis, we study the spectrum occupancy in Salt Lake City, Utah, 

using the resources provided by the POWDER platform. POWDER [15] is a city-scale 

laboratory with radio equipment, fiber infrastructure, edge-compute, and datacenter/cloud 

resources for research on future wireless networks. 

Table 3.1 shows the frequency bands and the duration over which we collect our data. 

In the following sections, we discuss all aspects of our data collection in detail. 

 

3.1 Experiment Setup 

Our data is obtained using the Receive-only Fixed Endpoint installation of the 

POWDER Platform located at the University of Utah’s main campus. The Fixed 

Endpoint experiment setup consists of an ensemble of Software Defined Radio (SDR) 

equipment from National Instruments (NI), and a compute node. 

The Fixed-Endpoint equipment used for this study is NI USRP B210 SDR with its 

ports connected to dedicated Taoglas GSA.8841 wideband I-bar antenna. This antenna 

has a frequency range of 698-6000 MHz and has an approximately -2 dBi average gain 

across the range. The USRP is also connected to an Intel NUC, a small form factor PC, 

via USB 3.0. Specifications of the Intel NUC are shown in Table 3.2. 
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3.2 Spectrum Power Measurement 

The USRP SDR device is accessed using the Python APIs provided by the USRP 

Hardware Driver (UHD).  These APIs are used to set receive gain and to acquire I/Q 

samples from a specific channel at the requested sample rate.  

The frequency range is divided into bands, each having a frequency width of 30MHz. 

Each 30MHz band is further divided into 200 points, i.e., the distance between two 

consecutive frequency points is 150KHz. These frequency points are represented by the 

center frequency of the 150KHz wide channel. The raw data collected for each frequency 

point is the signal power computed at the USRP.  

Figure 3.2 illustrates an example of how frequency division is performed for the 

spectrum measurement. The example frequency range 2300-2390 MHz is divided into 

three sections, each of which spans 30 MHz. This 30 MHz band is further sub-divided 

into 200, 150 KHz channels, and the respective center frequencies are used to represent 

them. The upper boundary of each 150 KHz channel is shown in the top blocks of Figure 

3.2. 

 

3.3 Scanning Algorithm 

The scanning algorithm carries out the measurement of frequencies, F1, F2, …, Fn in 

a round-robin fashion. Each Fi, where  𝑖 ∈  {1, 2, … , N}  is of width 30MHz. This process 

is repeated for a specified amount of time-interval, I. The scanning process is illustrated 

in Figure 3.3. 

The details of the algorithm are shown in Figure 3.4. The frequency_list corresponds 

to the list of frequencies, F1, F2, …, Fn. The upper and lower frequency bound is input 
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into the function, which in turn is divided into 30MHz frequency bands. The function, 

scanning_frequencies () is executed in a while loop until the configured timer expires. 

The scanning_frequencies () function is responsible for acquiring raw I/Q samples at a 

sample rate of 30MHz through the UHD library and then processes the samples to 

compute log power for 150KHz bins. The time when the measurement is taken, the center 

frequency of 150KHz bin and log power is saved into a serialized pickle file. 

A sample data collected from scanning_frequencies ([2300, 2330, …, 2360]) MHz for 

time_interval = 5 seconds is shown in Figure 3.5. 

 

3.4 Spectrum Sensing 

An opportunistic user needs to be aware of and sensitive to the changes in its 

environment. Spectrum sensing is a process of periodically monitoring frequencies 

aiming to identify the presence of signals and, in turn, find unused frequency bands called 

spectrum holes. Spectrum sensing enables opportunistic users to adapt to their 

surroundings by detecting spectrum holes for transmission and backing-off without 

causing interference when the primary user is detected. 

The spectrum sensing technique which we use is based on the detection of the signal 

from a transmitter through local observations. As we do not have any prior knowledge 

about the incoming signal, we use Energy Detector based Sensing for identifying the 

presence of signal transmission [16]. 
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3.5 Energy Detector Based Sensing 

 Energy Detector based approach does not need any prior knowledge of the signal. 

The signal is detected by comparing the output of the energy detector to a predefined 

threshold, T [19]. The decision metric of the energy detector can be written as follows: 

                   S = ∑ |𝑦(𝑛)|2𝑁

𝑛=1
       (1) 

where N is the observation interval. 

The decision on the occupancy of the band is made as follows: 

                                          D =  {
0       𝑆 <  𝑇
 1       𝑆 ≥  𝑇

                                        (2)              

The threshold, T, is determined as a function of the Johnson-Nyquist thermal noise power 

(NP) [17,18], and the noise figure (NF). 

                 T = f (NP, NF)         (3) 

where, 

 NP = 10𝑙𝑜𝑔10(kτΔf x 1000) 

This is commonly approximated by the following equation (4) for room temperature (τ = 

300 K). 

             NP = -174 + 10𝑙𝑜𝑔10(Δf)     (4) 

where k is the Boltzmann constant, τ is the temperature, and Δf is the noise bandwidth 

given in Hz. 

The Noise Factor (nf) of the system is defined as: 

 nf = 
𝑆𝑁𝑅𝑖

𝑆𝑁𝑅𝑜
       (5) 
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𝑆𝑁𝑅𝑖 and 𝑆𝑁𝑅𝑜 are the input and output signal-to-noise ratios (SNR), respectively. 

The noise figure (NF) is defined as the nf in decibels (dB) scale. Therefore, it is defined 

as follows: 

 NF =  10𝑙𝑜𝑔10(nf) 

       = 10𝑙𝑜𝑔10(
𝑆𝑁𝑅𝑖

𝑆𝑁𝑅𝑜
) 

       = 10𝑙𝑜𝑔10(𝑆𝑁𝑅𝑖) - 10𝑙𝑜𝑔10(𝑆𝑁𝑅𝑜) 

       = 𝑆𝑁𝑅𝑖,𝑑𝐵 - 𝑆𝑁𝑅𝑜,𝑑𝐵                        (6) 

 

Here, 𝑆𝑁𝑅𝑖,𝑑𝐵 and 𝑆𝑁𝑅𝑜,𝑑𝐵 are the SNR values in the dB scale. 

The noise figures (NF) are obtained through calibrated measurements of the RF 

Hardware [13]. 

The noise power (NP) is the electronic noise generated by the thermal agitation of the 

electrons inside an electrical conductor at equilibrium. This noise is present in every 

electrical circuit. The noise figure represents the degradation in the signal to noise ratio as 

the signal passes through a device in the dB scale. Hence, these two quantities help 

determine the minimum power needed for a signal to be detected. 

 

3.6 Analysis of the collected data 

We collected spectrum data for five days from March 8th, 2020, 11:00 PM to March 

13th, 2020, 11:00 PM. The spectrogram of the frequency ranges of 700-850 MHz, 1700-

1850 MHz, and 2250-2400 MHz are shown in the Figures 3.6-3.8. The x-axis represents 



12 
 

the time, and the y-axis represents the frequency in the spectrum occupancy plots. For 

better clarity of the usage pattern, we have presented the data as 300 frequencies per 

figure. (Example: 700 MHz to 1000 MHz, 1000 MHz to 1300 MHz, etc.). In Figures 3.9 

to 3.15, the red dot indicates that the channel is occupied. 

The spectrum usage in the frequency range of 700 MHz to 2800 MHz is shown in 

Figures 3.9 to 3.15. These figures contain the usage data for a period of 5 days along with 

the spectrum allocation categories by the US Department of Commerce. From these 

figures, it becomes evident that a vast range of frequencies is either under-utilized or not 

used at all. This behaviour is further illustrated in Figure 3.16, where we show the 

allocation categories, the frequency range, and their usage percentage.   

In addition to the above observation, Figures 3.9 to 3.15 show that the usage is 

significantly low at night times in various frequencies. This phenomenon is illustrated in 

Figure 3.17. From Figure 3.17, it can be observed that there are 12 frequency ranges that 

show significant usage difference between day and night times. We consider 11:00 PM to 

7:00 AM as our night hours.  

Our major observations from the spectrum usage analysis are listed below: 

1. Low or no occupancy is observed in bands allocated to Radio Navigation, 

Aeronautical Radio Navigation, Earth Exploration, Space Research, Amateur, and 

Fixed Satellite Services. 

2. The average usage of the whole spectrum [700-2800 MHz] is only 19.08%. 

3. The majority (71.4%) of the bands have 0-20% usage, while only 5.7% of the 

bands have 80-100% usage, as shown in Figure 3.18. 
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4. Relatively high occupancy has been observed in bands allocated for broadcasting 

services. 

5. Among the bands that have significantly lower night-time usage, Fixed and 

Mobile are the common services. 

 

3.7 Broader Impact of our Spectrum Usage Study 

Spectrum usage analysis serves as a key technique in understanding the usage of the 

spectrum at a location and also serves as an important step towards research on dynamic 

spectrum access and cognitive radio technologies. This process involves interacting with 

the UHD library to collect raw IQ, computing power from the IQ samples, and finding an 

appropriate threshold to determine the occupancy for first-time users. 

For ease of future POWDER platform users, we will make the code for spectrum 

analysis, an open-source project in GitHub. This software can either serve as a tool for 

researchers to gain an overall idea of current spectrum usage or as a building block for 

projects that require spectrum data collection. The primary contributions of our tool are 

as follows: 

1. Support to interact with USRP using UHD libraries 

2. Support to select multiple frequency ranges for scanning 

3. Allows users to selectively apply threshold value on collected data 

4. Support to schedule data collection for different durations ranging from minutes 

to weeks 

5. PyPlot based advanced spectrogram analysis for data exploration without 

threshold 



14 
 

6. Robust PyPlot based visual analysis of spectrum usage 

7. Supports grouping frequencies and providing comprehensive usage report 
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Figure 3.1 Experiment Setup 

Figure 3.2 Illustration of frequency division in data collection 

 

Figure 3.3 Scanning of frequencies 

2300 MHz 2330 MHz

2300 + 100*2*0.150

2329.925

2300-2330 MHz 2330-2360 MHz 2360-2390 MHz

…......

2300.2252300.075

2300+0.150 2300 + 2*0.150

F1 F2 F3 ….... Fn
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Figure 3.4 Scanning Algorithm 

 

Figure 3.5 Sample data collected from scanning frequencies 

scanning_frequencies (frequency_list): 

{ 

     For freq in the frequency_list: 

         Samples = Acquire I/Q samples using UHD library  

         Samples = FFT (Samples) 

         Number_of_bins = 30MHz/150KHz 

         For idx in Number_of_bins: 

              bin_center = center frequency of the 150KHz bin 

               Power = compute power of the samples of width 150KHz 

               Convert power to log power. 

               Save time, bin_center, log-power using pickling 

} 

Signal_measurement_invoker (time_interval, frequency_list): 

 { 

     start_time = current_time 

     While (current_time – start_time <= time_interval): 

          Execute Scanning_frequencies (frequency_list) 

} 
 

[[datetime.datetime(2020, 4, 29, 0, 46, 52)  2300.075  -93.19098757583771] 

[datetime.datetime(2020, 4, 29, 0, 46, 52)  2300.375  -92.74573399088824] 

……. 

[datetime.datetime(2020, 4, 29, 0, 46, 57)  2359.925  -93.19892537199718]] 
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Figure 3.6 Spectrogram of 700-850 MHz 
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Figure 3.7 Spectrogram of 1700-1850 MHz 
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Figure 3.8 Spectrogram of 2250-2400 MHz 
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Figure 3.9 700 MHz to 1000 MHz Spectrum Allocation and Usage 

Figure 3.10 1000 MHz to 1300 MHz Spectrum Allocation and Usage  
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Figure 3.11 1300 MHz to 1600 MHz Spectrum Allocation and Usage 

 

Figure 3.12 1600 MHz to 1900 MHz Spectrum Allocation and Usage 
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Figure 3.13 1900 MHz to 2200 MHz Spectrum Allocation and Usage  

Figure 3.14 2200 MHz to 2500 MHz Spectrum Allocation and Usage 
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Figure 3.15 2500 MHz to 2800 MHz Spectrum Allocation and Usage 
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Figure 3.16 Spectrum allocation category and usage percentage 
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 Figure 3.17 Spectrum usage difference between day and night 
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Figure 3.18 Usage percentage vs Percentage of Bands 
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Table 3.1 Range and duration of collected data 

 

Table 3.2 NUC Specifications 

Processor Intel Core i7-8559U 

Memory 32 GB 

Storage 250 GB NVMe  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Range 700 MHz to 2.8 GHz 

Collection Period March 8th, 2020 11:00 PM to March 

13th, 2020 
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CHAPTER 4 

 

SPECTRUM PREDICTION 

 

Spectrum prediction allows predicting the power of a channel and, in turn, the 

occupancy state of the channel for future time slots. It provides three key advantages as 

stated below: 

• Conserves time and energy spent on spectrum sensing 

• Gives an insight into the best frequency to be used 

• Shows the state of the frequency bands for a large number of future slots 

Without spectrum prediction, an opportunistic user (OU) needs to perform spectrum 

sensing for a large set of frequencies and determine the presence of a signal in each of 

them before actually using the frequency to transmit. Spectrum prediction also allows OU 

to select the best channel that has the highest potential to be available when predicted by 

different mechanisms. 

We consider a wireless communication system where transmissions are performed in 

well-defined time slots as in a time-division multiplexed system. The OU needs to 

perform spectrum sensing and spectrum decision in each time slot before the 

transmission. Our motivation for spectrum prediction is based on the presence of 

temporal variations in the spectrum usage, as shown in Section 3.  
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As a part of this work, we develop a spectrum prediction framework with different 

Long Short-Term Memory (LSTM) architectures in deep learning and present extensive 

experiment results with real-world spectrum data that we collect.  

Deep learning has proven to be a very valuable tool in various fields, including image 

processing and natural language processing. Applying deep learning methods for 

spectrum prediction remains an active research area with the potential for significant 

improvements [10]. Complex LSTM models in deep learning with multi-layered 

networks have the ability to perform well on time-series prediction [21, 22].  

LSTM is an artificial recurrent neural network architecture that can learn long-term 

dependencies. An LSTM unit is composed of a cell, an input gate, an output gate, and a 

forget gate. The cell remembers values over arbitrary time intervals, and the three gates 

regulate the flow of information into and out of the cell [11].  

We explore and validate the following Long Short-Term Memory (LSTM) 

architectures for spectrum time-series prediction.  

1. Multi-step Univariate stacked LSTM 

2. Single-step Multivariate stacked LSTM 

3. Multi-step Encoder-Decoder LSTM 

4. Multi-step Multivariate stacked LSTM 

 

4.1 Multi-step Univariate stacked LSTM (MSUL) 

LSTM networks can learn to forecast long sequences in one shot. We leverage this to 

predict multi-step spectrum power values of a selected frequency, i.e., given the historical 
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power observations at the time, (t-1, t-2, ..., t-k), the model predicts power values for 

time, (t, t+1, …, t+m) using only the power values as the input feature.  

 

4.1.1 Supervised Data Creation 

Our dataset is structured as shown in Figure 4.1. In our example dataset creation, five 

data points for predictions are shown with both input and forecast window size selected 

as 5. The values in the slots, (t1, t2, …, t5) of the first spectrum prediction point represent 

the power values in the shown timeslot. The corresponding label of the data point is 

represented by the values in the slots (t6, t7, …, t10). The power values are received over 

time, so the dataset is created by sliding a window with a fixed length, L. The power 

values are normalized to values between 0 and 1. This normalization makes the training 

and convergence faster and also helps in learning the problem effectively. The results we 

present in this document are obtained using the input window size of 30 and the forecast 

window size set to 100. 

 

4.1.2 Univariate Stacked LSTM Network 

As illustrated in Figure 4.2, our first model is based on a univariate unidirectional 

stacked LSTM architecture consisting of two hidden layers and one dense layer with 100 

hidden states in every layer. We use the learning rate of 0.001, RELU activation function, 

and mean squared error as the loss function. 

For our experiments, we create the dataset by moving the window one step at a time. 

In this example, as shown in Fig. 4.2, the input contains power value for a frequency for 

9-timesteps (t0 to t8). As we have set the input step size or input window size as 3, the 
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raw input data is reshaped into four samples. We use 50% of the collected data for 

training, 20% for validation, and the remaining 30% for testing. 

Each reshaped sample contains the input data for 3-time steps. In the training phase, 

we feed the next 3-time steps’ data as the label. Our LSTM model requires input in a 

three-dimensional format. In this example, our values for three dimensions are given in 

Table 4.1. 

 

4.2 Single-step Multivariate stacked LSTM Network (SSML) 

Neural Networks, like LSTM networks, can model problems with multiple input 

features. This is a great benefit in time-series forecasting over classical linear forecasting 

methods as it is very difficult to adapt to multivariate input forecasting problems in 

classical methods. We predict a single future power value for each of the input 

frequencies. This prediction can help the opportunistic user gain insight on which 

frequencies can be reliably predicted by the multi-step forecast models. 

 

4.2.1 Supervised Data Creation 

The dataset is constructed through a sliding window, as shown in Figure 4.3. Suppose 

the length of the sliding window is 3; the label for the training is the power value of all 

the channels of time slot t4, and the model outputs the predictive power values of 

corresponding channels for the same time slot t4. The window is forwarded one timestep 

ahead to form the next datapoint. We create the whole dataset for the network using this 

sliding window approach. 
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4.2.2 Stacked LSTM Network 

The structure of the LSTM network constructed in this case has five hidden layers, all 

of which are comprised of LSTM layers. The first layer has 300; the second layer 200 

hidden; the third layer 100, the fourth layer 70, and the fifth layer, has 50 hidden units. 

Each layer has RELU as the activation function, and the output of one layer is fed as the 

input to the next layer. The output of the last hidden layer goes into a Dense layer. We 

use Mean Square Error as the loss function, and the Adam optimizer is used for updating 

network weights. With input frequencies from f1, f2, …, fN, N input features are used, 

and the model predicts one power value corresponding to each of the N input frequencies. 

 

4.3 Multi-step Encoder-Decoder LSTM 

The Encoder-Decoder LSTM is a special type of Recurrent Neural Network designed 

to solve sequence-to-sequence (seq2seq) problems. Given the multiple time steps as the 

input and multiple time steps as the output, this type of problem is referred to as many-to-

many sequence prediction problem. The Encoder-Decoder LSTM is proven to be very 

effective in seq2seq prediction problems. 

 

4.3.1 Supervised Data Creation 

The dataset here is also constructed using a method similar to the one described in 

Section 4.1.1. Given the historical power observations at the time (t-1, t-2, ..., t-k) for a 

particular frequency, the model predicts power values for time (t, t+1, …, t+m) using 

only the power values as the input feature. However, the label, in this case, has three 
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dimensions - samples, timesteps, and features, unlike the previous case that had only two 

dimensions. The sliding window mechanism is used to create the entire dataset.  

 

4.3.2 Encoder-Decoder LSTM Network 

This architecture comprises of two models – the encoder model and the decoder 

model. The encoder model is used for reading the input sequence and encode it into a 

fixed-length vector and this fixed-length vector is then fed into the decoder model that 

outputs the predicted sequence. Let t1, t2, …, t4 be the input sequence that is fed into the 

encoder LSTMs and t5, t6, …, t7 be the predicted sequence from the decoder LSTM. The 

decoder model here makes a one-step prediction for each element in the output sequence. 

This is a subtle difference from the previously seen stacked LSTM architecture in Section 

4.1, as in practice, both approaches predict an output sequence of power values. 

 

4.4 Multi-step Multivariate Stacked LSTM (MSML) 

So far, we have seen Multi-step spectrum prediction with only a single input power 

variable or feature. Real-world spectrum prediction becomes more challenging when we 

need to include more than one feature and yet be able to predict power/occupancy across 

multiple time steps. This specific architecture of multi-step multivariate stacked LSTM 

has the ability to handle multiple input variables and be able to predict power values for 

more than one timestep. 
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4.4.1 Supervised Data Creation 

We use the features of power and time to evaluate this architecture. Time, however, is 

cyclical in nature, i.e., hour 23 and hour 0 are close to each other than hour 0 and hour 3. 

So, we transform the time data in such a way that this cyclical property is preserved. This 

time feature is transformed into two new features, x, and y where (x,y) represents a 

coordinate of a unit circle.  We compute the x and y components using the sine and 

cosine trigonometric functions. Figure 4.5 shows an example unit circle for the hours 

variable where x is the cosine component, and y is the sine component. Midnight (0) is on 

the right, and the hour increases counterclockwise. In this way, the hour 23 is very close 

to hour 0. The transformations (x,y) in our experiments are performed using equations 7 

and 8. 

𝑥  =  𝑐𝑜𝑠 (2𝜋(𝛥𝑠
𝑆⁄ ))                                                                                                 (8) 

𝑦 =  𝑠𝑖𝑛 (2𝜋(𝛥𝑠
𝑆⁄ ))                                                                                                   (7)    

where, 𝛥𝑠 represents the seconds since midnight, and S represents the total number of 

seconds in a day. 

We follow the sliding window approach to create the entire dataset. Every data point 

has three features power, cosine transformed, and sine transformed components. The 

sliding window approach is shown in Figure 4.6. In Figure 4.6, 3 timesteps are used to 

predict the next two time steps. t4 and t5 are predicted in the first data point represented 

by the red dotted box. Similarly, t5, t6, and t6, t7 are predicted in the second and third 

data points. 
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4.4.2 Multivariate Stacked LSTM Network 

The structure of the LSTM network constructed in this case has three hidden layers, 

which are all comprised of LSTM layers. Each layer has 100 hidden units and RELU as 

the activation function, and the output of one layer is fed as the input to the next layer. 

The output of the last hidden layer goes into a Dense layer. We use Mean Absolute Error 

as the loss function, and the Adam optimizer is used for updating network weights. The 

model is trained for a particular frequency to predict power values of 100 timesteps with 

three input features. 

 

 

Figure 4.1 Dataset Figure 
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Figure 4.2 Univariate Stacked LSTM Architecture 
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Figure 4.3 Dataset for Single-step Multivariate LSTM 

Figure 4.4 Encoder-Decoder LSTM 

 

Figure 4.5 Time unit circle 
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Figure 4.6 Data creation for multi-step multivariate LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t1 t2 t3 t4 t5 t5 t6 t6 t7

Power

Sine Transform

Cosine Transform



39 
 

Table 4.1 LSTM Input Dimensions 

Dimensions Example Experiment 

Number of Features 1 1 

Input Time Steps 3 10 

Batch Size 4 10 
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CHAPTER 5 

 

EVALUATION 

 

We evaluate the performance of all the models based on a walk-forward validation. 

The test data is provided to the model by progressing one timestep each time. Thus, the 

model is always fed with the latest k lag observations, where k is the input window size.  

 

5.1 Evaluation Metrics 

We use the metric 1 below to evaluate the real-valued output of the models. The 

remaining metrics are used to evaluate the performance of the binary occupancy output: 

1. Root Mean Square Error (RMSE) 

2. Accuracy 

3. F-score 

4. False Positives, False Negatives 

5. True Positives, True Negatives 

The RMSE (Root Mean Square Error) is used to validate the real number outputs 

from the model, as it imposes a severe penalty on large errors in prediction. In our 

evaluation, we have calculated RMSE as follows for each forecast window: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖)2𝑛

𝑖=1

𝑛
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We also convert the predicted power values to binary occupancy states by 

applying an appropriate threshold. The binary values are then validated using 

precision, recall, and F-Score, as described in Figure 5.1. 

 

5.2 Baselines 

We also establish the baseline performance of the spectrum prediction problem. 

This baseline performance provides a point of comparison when evaluating the more 

sophisticated LSTM models. We use two types of baseline algorithms, one type for 

the regression part of the problem and the other for the classification part. The two 

baseline algorithms used are as follows: 

1. Exponential Weighted Moving Average for Regression 

2. Zero Rule Algorithm for Classification 

 

5.2.1 Exponential Weighted Moving Average (EWMA) 

The EWMA is used to predict the label of the spectrum power data corresponding 

to a frequency. EWMA for a spectrum power series, 𝑉𝑡  is calculated recursively as 

follows: 

𝑉0 =  0                                                                                                                  (9) 

𝑉𝑡  =  𝛽𝑉𝑡−1   +  (1 − 𝛽)𝜃𝑡                                                                                (10) 



42 
 

Here, 𝛽 represents the degree of the decrease in the weight of older datum, a constant 

smoothing factor between 0 and 1. 𝜃𝑡 is the current power value and 𝑉𝑡  is the value of the 

EWMA at the time, t. 

Equation 10 shows that a single prediction can be made as the value of the prediction 

is dependent on the current true value. Also, the prediction is dependent on a single 

feature of power, so multiple variables cannot be incorporated to predict future power 

values. Therefore, to get a baseline for multi-step models, we use the same prediction 

value for all the predicted time steps. 

 

5.2.2 Zero Rule Algorithm 

In the Zero Rule Algorithm, we predict the most common class label in the 

training set. This means that if the majority of the label in the training set is label “1”, 

this algorithm uses a single rule of predicting only label “1” for the testing set.  

 

5.3 Evaluation of Frequency Bands using SSML 

An opportunistic user needs to make the spectrum decision by selecting the best 

frequency channel for its application. The Single-Step Multivariate stacked LSTM 

(SSML) model can give insight about the best frequency band of width 150 KHz by 

associating an RMSE score with each frequency band. The OU can choose the best 

frequencies for its application by selecting frequency bands which are lower than a 

required RMSE score. The selected frequency channel can be evaluated for multi-step 

prediction by OU. Any choice of bandwidth can be used to evaluate the SSML models. 

We evaluate four different frequency bands with bandwidths of 5, 10, and 12 MHz. There 



43 
 

are, for example, 67 150KHz frequency bins in a 10MHz band. Figures 5.2 to 5.5 show 

the SSML model’s performance for the four different bands. In all of these figures, the y-

axis represents RMSE, and the x-axis represents the frequency values. These plots show 

how the future multivariate LSTM models are likely to perform for various frequencies, 

and this can guide OU to make the best choice in its spectrum decision phase. The red dot 

in the plots represents an example frequency, and it’s the corresponding RMSE given by 

the model. We have highlighted one frequency from each of the range and its 

corresponding RMSE. We use these representative frequencies to further study other 

models. 

 

5.4 Frequency Selection for Evaluation of Multi-step models 

Our goal is to select frequencies that exhibit different usage patterns so that we can 

study the robustness of the multi-step spectrum prediction models. The selection of the 

representative frequencies is guided by the visual inspection of the spectrum occupancy 

plots and the result of the SSML models. Our selected frequencies and their behavior are 

shown in Table 5.1. 

The four selected frequencies only serve as a subset of applicable frequencies. The 

spectrum prediction is applicable and can be extended to any frequency. To be applied on 

a new frequency, the multi-step models need to be trained on the desired frequency’s 

usage data. The usage pattern of selected frequencies is illustrated in Figures 5.6 to 5.9. 

Each data point is collected every 6 seconds approximately. The red dot in Figures 5.6 to 

5.9 indicates the observed power value. 
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5.5 Evaluation of Multi-Step Models 

In this section, we present our regression experiment results of the three Multi-step 

LSTM models and the EWMA base model. All the multi-step models are based on 30 lag 

windows and a prediction length of 100 windows. Figure 5.10 illustrates the RMSE 

performance of 3 LSTM based models and the EWMA model across four representative 

frequencies. We compare the performance of all the LSTM models with that of EWMA 

in Figure 5.11. We see an improvement of almost 2% to 15%.  

From Figure 5.10, we can observe that the 2357.925 MHz frequency band has the 

best forecast performance. It can be attributed to the fact that this band has regular high 

daytime usage and significantly low night-time usage, as shown in Figure 5.6. However, 

given that frequency 959.625 MHz does not have any particular usage pattern, the LSTM 

models perform significantly poorly when compared to other frequencies. Interestingly 

the LSTM models perform much better than EWMA. We also see in Figure 5.12 that the 

difference between the MSML and MSUL models is minor, with only about 2.3%. 

 

5.6  Adaptive Threshold Mechanism 

To estimate the occupancy state of the spectrum, we convert the predicted power 

values to binary occupancy state using a power threshold. For our dataset, we observe 

that the LSTM’s predicted power values are very smooth. The predictions do not scale to 

the highs and lows present in the data, but the cycles and seasonality present in the data 

are forecasted correctly. The scaling issue poses a problem when we convert the power 

values to binary occupancy state using the original threshold. An example prediction of 

Frequency 704.125 MHz by stacked LSTM is shown in Figure 5.13. 
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We observe that with the correct threshold, the occupancy state can be determined 

effectively. We introduce an adaptive threshold mechanism that selects the best threshold 

by applying various thresholds in a predetermined range and selecting the one that 

provides the combined best F-Score and Accuracy across the forecast window.  

The adaptive threshold selection shown in Figure 5.14 explores the space ranging 

from -90 to -73 for selecting the appropriate threshold. It then identifies the threshold 

value that maximizes both accuracies and F-scores across the entire forecast window. The 

original and selected adaptive thresholds are shown in Figure 5.15.  

Figure 5.15 provides a comprehensive plot of both training and test data. The blue 

marker indicates the true data; an initial 50% of the data is used for training; the orange 

marker indicates the model’s prediction on the training data. The next 20% data is used 

for validation, and the green marker indicates the LSTM’s forecast on the validation data, 

and the red marker indicates the prediction on testing data. 

We study in detail the impact of the adaptive threshold selection and determine that 

the adaptive threshold yields a better F-Score for both classes for different frequencies. 

For example, when applied to frequency 704.125 MHz, the Class 0 F-Score improves by 

221.5%, and the Class 1 F-Score improves by 12%. 

Figure 5.17 gives an insight into the accuracy of the models after the adaptive 

selected threshold is applied to the LSTM models. It also compares the accuracy of the 

LSTM models with that of the baseline majority model. We find that the LSTM models 

perform significantly better than the baseline majority model. Approximately, 96% 

accuracy is observed in the frequencies of 2357.925 for all the LSTM models. All the 

LSTM models are almost identical in performance except at 959.625 MHz. 
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As seen in the RMSE evaluation, prediction accuracy is also poor for 959.625 MHz, 

as no particular usage pattern is exhibited by this frequency. However, high prediction 

accuracy is seen in the bands that exhibit clear usage patterns. 

 

Figure 5.1 Confusion Matrix Elements 

 

Figure 5.2 RMSE for the Frequency Band of 700 – 710 MHz 

0

5

10

15

20

25

698 700 702 704 706 708 710 712

R
M

SE

Frequency

(704.125 MHz, 4.22) 



47 
 

 

Figure 5.3 RMSE for the Frequency Band of 956 – 961 MHz 

 

 

 

   Figure 5.4 RMSE for the Frequency Band of 1788 – 1800 MHz 
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              Figure 5.5 RMSE for the Frequency Band of 2355 – 2360 MHz 

 

 

 

Figure 5.6 Usage pattern of 2357.925 MHz over four days 
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Figure 5.7 Usage pattern of 1790.775 MHz over seven days 

 

 

Figure 5.8 Usage pattern of 704.125 MHz over five days 
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Figure 5.9 Usage pattern of 959.625 MHz over two days 
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Figure 5.10 Average RMSE for 3 LSTM models and EWMA model 

 

 

 

 

 

 

 

 

 



52 
 

Figure 5.11 % increase in RMSE in EWMA compared to LSTM models 

 

Figure 5.12 % increase in RMSE in MSML compared to MSUL 
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Figure 5.13 True power vs predicted power for Frequency 704.125 MHz 

 

Figure 5.14 Adaptive Threshold Search 
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Figure 5.15 Adaptive Threshold Illustration 
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Figure 5.16 Comparison of F-Score with and without adaptive threshold 
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Figure 5.17 Accuracy of the models 
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Table 5.1 Selected frequencies and their usage pattern 

Frequency Usage Pattern 

2357.925 MHz Very high usage in the day and significantly low usage at night 

1790.775 MHz 

704.125   MHz 

High usage in the day and relatively low usage at night 

959.625   MHz Exhibits no clear usage patterns 
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CHAPTER 6 

 

FORECAST WINDOW LENGTH 

 

6.1 Forecast Window Length Selection 

While spectrum prediction has various advantages listed in the previous sections, the 

forecast window size remains a critical parameter for its applicability in real scenarios.  

As stated in Table 6.1, a large forecast window increases the throughput by allowing 

an OU to access the channel continuously without having to pause transmission for 

determining the occupancy of the licensed user [20]. A large forecast window also 

reduces the overall energy spent by OU to sense and determine the occupancy state. 

However, when forecasting for larger windows using LSTM models, the error in the 

prediction increases with time. This phenomenon is displayed for Frequency 2357.925 

MHz in Figure 6.1. This is also evident from the increasing rates False-Positives and 

False-Negative rates and a decreasing trend in Accuracy and F-scores when considering 

binary spectrum occupancy states. 

Though the initial parts of the forecast window have the lowest RMSE, a small 

forecast window is not ideal as that involves sensing often. From our spectrum analysis, 

we observe that channels can have different usage patterns. Thus, each frequency may 

have a different forecast window that yields the best performance for that frequency.  
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6.2 LSTM based Window Selector 

To solve the best window length for the OU, we introduce a new LSTM-based 

Window Selector, which predicts the best window length given a sequence of past power 

values. This selector takes the real-world power value of a frequency and the predicted 

values from an already trained MSUL model and then outputs a window-length. The 

components of the selector are illustrated in Figure 6.4. 

30% of the spectrum data, which is the test data of the MSUL model, is used in the 

training and evaluation of this window selector system. The sliding window approach, 

described in Section 4.1.1, is used to create data points from the test data. The Window 

Selector (WS) Data Creation Module takes this created dataset as input, along with the 

predicted value from the MSUL model on the same dataset. It then labels each of the data 

points with a real number, which indicates the window length the MSUL model is able to 

predict correctly from the first prediction consecutively. This newly created dataset is 

then fed into the LSTM based WS model to train it. 

 

6.2.1 LSTM based Window Selector Model 

A 3-layer stacked LSTM architecture is used for this model with RELU as the 

activation function of each layer. The Adam optimizer for updating network weights and 

Mean Square Error as the loss functions are used for the training of the model. Early 

Stopper is used on the validation set to train the model for the optimal number of epochs. 

The training data consists of 50% of the total data, the next 20% data is kept for the 

validation set and the last 30% for testing the model. A new model needs to be trained 

and created for each individual frequency. 
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6.2.2 Window Selector Model Evaluation  

We evaluate this model by choosing the window length of the past values to be 20. 

We choose the prediction window length to be 20 as well. This model can be extended to 

other past and prediction window lengths. The models’ performance is summarized in 

Table 6.2, where RMSE is shown corresponding to each evaluated frequency. 

 

Figure 6.1 Increasing Trend in RMSE 
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Figure 6.2 False Positive and False Negative over windows 
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Figure 6.3 Accuracy and F-score over windows 

 

Figure 6.4 LSTM Based Window Selector 
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Table 6.1 Forecast window size pros and cons 

Forecast Window Possible Pros Possible Cons 

Large  Can increase throughput 

 

Can reduce energy spent on 

spectrum measurement 

Can increase chances of False 

Negative thus leading to 

higher interference 

 

Can increase chances of False 

Positive thus leading to 

missed transmission 

opportunities 

Small It can reduce the chances of 

interference. 

 

It can reduce missed chances of 

transmission, i.e., identify 

available channels in a more 

timely fashion. 

Can reduce throughput 

 

Can increase energy spent on 

spectrum measurement 

 

Table 6.2 LSTM based Window Selector RMSE 

Frequency RMSE 

704.125 6.8 

959.625 1.97 

1790.775 6.32 

2357.925 4.55 
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CHAPTER 7 

 

DISCUSSION 

 

7.1 Spectrum Usage 

We study spectrum usage of Salt Lake City, Utah, and find that the average spectrum 

usage of the frequencies in the range of 700-2800 MHz is only about 19%, and 70% of 

the frequency bands have usage of less than 20%. This study shows that there are bands 

that have the potential to be used for alternative services or systems. However, before 

using a band, especially the ones identified as less utilized for a new service, detailed 

contemporary studies need to be performed to understand the current status of the band. 

For the cases where the signals are not detected because of low power transmission, 

different threshold calculation mechanisms can be evaluated. In order to assess the 

variations of the spectrum usage, parallel measurements and surveys should be conducted 

on locations with different population densities, different geographic characteristics, and 

different user profiles. To assist such studies in the future with POWDER platform, we 

have developed plug-n-play tools which can be catered as per the need of the user. These 

tools can be customized to make measurements in the chosen frequency for a selected 

amount of time for any location. Our tools also have the capability to visualize spectrum 

usage at different granularities.  
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7.2 Spectrum Prediction  

We use various LSTM based techniques, EWMA, and Majority prediction techniques 

for spectrum prediction. Single-step Multivariate stacked LSTM (SSML) can predict the 

spectrum power value of multiple frequencies in a single go, whereas EWMA based 

model can be used only for a single frequency at a time. For example, if one SSML 

model can predict future values for 100 frequencies at a time, 100 different EWMA 

models are needed to achieve the same purpose. EWMA model also can predict only one 

step in the future, unlike robust multi-step LSTM models, which can predict multiple 

steps in a one-shot. For our comparison, we assumed the same prediction for the entire 

forecast window in the case of EWMA. Furthermore, the EWMA model is dependent on 

all the past observations to predict future value. Hence these EWMA models cannot be 

deployed for opportunistic use as there would not be any available observation when the 

user is busy transmitting in the channel.  

Our work gives an insight into how an opportunistic user can use the SSML model to 

evaluate various bands to narrow down the choices of the frequencies to be used for its 

transmission and then use multi-step LSTM models to forecast the availability of the 

channels corresponding to the selected frequency over multiple timeslots. LSTM based 

Window Selector model would then guide the user to use the best length of the forecast 

window. All these models can be trained and used for any choice of bands and 

bandwidth. Multi-step LSTM models can be trained and used to predict for any length of 

the forecast window. The hyperparameters of the models are optimized for the 

frequencies evaluated in this work. Multi-step models can work better on a different set 

of hyperparameters instead of the ones used in this work when applied to a different 
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frequency band. For data from a different location, training needs to be performed again 

before the models can be used. To avoid using the models which are trained on stale data, 

the models need to be retrained with newly collected data. This will help capture the 

deviations or changes from the original training data over time. 
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CHAPTER 8 

 

CONCLUSION 

 

We collected and analyzed spectrum usage data on the POWDER platform in Salt 

Lake City, Utah. We found that various segments of the spectrum remain underutilized. 

We also highlighted the segments of the spectrum where the usage pattern differs 

significantly between day and night.  

Motivated by our spectrum usage findings, we explored LSTM models to perform 

spectrum prediction on four bands, each exhibiting a different usage pattern over time. 

We have explained in detail our choice of LSTM architectures and explained their 

performance in the selected frequencies. To overcome the challenges faced when 

converting the LSTM model’s prediction to binary occupancy state, we introduced a new 

adaptive threshold parameter that significantly boosts the occupancy prediction 

performance. To minimize the chances of interference and maximize the throughput, we 

introduced a novel LSTM based Window Selector system. This system automatically 

outputs the best window length with the given power input data. 

In the future, the performance for both single-step and multi-step predictions can be 

evaluated for other frequency bands to obtain a broader understanding of the correlation 

between the usage pattern of the spectrum and LSTM’s performance. Window Selector 

model can be evaluated with multi-step models other than the MSUL model. Other types 

of deep learning techniques, such as Multilayer Perceptron (MLP) and Convolutional 
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Neural Networks (CNN), can be applied in the Window Selector model to find the best 

window. 
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