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Abstract
Programs such as simulators and fuzz testers often use ran-
domness to walk through a large state space in search of
interesting paths or outcomes. These explorations can be
made more efficient by employing heuristics that “zero-in”
on paths through the state space that are more likely to lead
to interesting solutions. Given one path that exhibits a de-
sired property, it may be beneficial to generate and explore
similar paths to determine if they produce similarly interest-
ing results. When the random decisions made during this
path exploration can be manipulated in such a way that they
correspond to discrete structural changes in the result, we
call it parametric randomness.

Many programming languages, including Racket, provide
only simple randomness primitives, making the implemen-
tation of parametric randomness somewhat difficult. To ad-
dress this deficiency, we present Clotho: a Racket library for
parametric randomness, designed to be both easy to use and
flexible. Clotho supports multiple strategies for using para-
metric randomness in Racket applications without hassle.

1 Introduction
There are many applications in which a developer may want
to use pseudo-random number generators (prngs) to explore
a given search space while using the results of previous
explorations to inform choices in subsequent navigation of
the space. Examples include:

• Generating many random programs that share a com-
mon attribute.

• Producing sentences from a grammar with a common
prefix.

• Walking a large graph, such as that of a social network,
without changing an initial portion of the walk.

• Implementing a genetic algorithm.
• Modeling multiple, similar paths in a simulation.
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Many mainstream programming languages only provide
very simple randomness primitives and leave the more com-
plex uses of these functions up to developers to implement
on a per-case basis. This can be tedious and is prone to error.

While working on a random program generator (§2.1), we
found ourselves in need of a system for manipulating the
outcomes of randomness functions in a predictable manner.
We wanted to “record” a sequence of randomly generated
values, modify that sequence in some way, and then feed
the modified recording back to our system to get a new—but
similar—sequence of randomly generated values. Crucially,
unchanged portions of the recording must produce the same
results in subsequent executions as they did in the original
generation. We call this process parametric randomness.
We define parametric randomness as a kind of random

value generation that is amenable to predictable external ma-
nipulation. For example, consider a random value sequence
generated without any manipulation: [4, 8, 15, 16, 23,
42]. After generating this initial sequence, one could employ
parametric randomness to produce new sequences that are
similar to the original:

• [4, 8, 15, 16, 17]
• [4, 8, 15, 16, 23, 43]
• [4, 8, 15, 16, 23, 19, 68]
• [4, 8, 12, 16, 23, 42]
• [4, 3, 15, 16, 37, 42]

Imagine that in each of these sequences, the values cor-
respond to the choices made by a program that randomly
explores a decision tree. This collection of sequences there-
fore represents multiple explorations of the decision tree.
The paths exhibit some similar properties, but may lead to
fundamentally different outcomes by the search program.

We have developed a Racket library, Clotho, that enables
developers to easily engage in this style of search-space
exploration with parametric randomness.1 Our library im-
plements the following functionality:

1. All the existing randomness functionality of racket/
base and racket/random, which define the Racket
standard library’s randomness functions.

2. Convenience functions for generating common values
using parametric random generation functions (e.g.,

1The library can be installed from the official Racket package catalog via
raco pkg install clotho. Alternatively, the source code can be down-
loaded at https://gitlab.flux.utah.edu/xsmith/clotho.

https://gitlab.flux.utah.edu/xsmith/clotho
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Booleans, integers, Unicode characters, and Unicode
strings).

3. Support for parametric randomness by specifying a
seed sequence.

4. Amacro for wrapping functions that use Racket’s built-
in randomness functions, to ensure the use of paramet-
ric randomness outside of the functions specified in
our library.

5. A macro for supporting randomness abstraction (§5.2).
In this paper we explain the motivation, design, and im-

plementation of Clotho with examples along the way. We
present:

• Motivation for parametric randomness, and background
on why Racket’s existing randomness functionality is
insufficient for our purposes. (§2)

• A high-level overview of the functionality provided
by Clotho. (§3)

• Explanation of the under-the-hood implementation
that powers Clotho’s parametric generation function-
ality. (§4)

• Detailed examples that illustrate the capabilities of
Clotho. (§5)

• Discussion on the limitations of, and potential future
work for, Clotho. (§6)

2 Background
2.1 Motivation
We developed Clotho as part of an implementation of a ran-
dom program generation tool [Hatch et al. 2020]. Random
program generation is the process of automatically creating
whole programs without human input. This technique has
proven especially useful in the domain of testing program-
ming language compilers and interpreters, where human-
written tests canmiss edge cases or are otherwise insufficient
to trigger bugs in the implementation [Padhye et al. 2019;
Yang et al. 2011].

When we use our tool, we sometimes want to generate
programs that are similar to those that the tool has gener-
ated previously. One way to achieve this is with a parametric
generator [Padhye et al. 2019]: a generator that inputs a se-
quence that encodes the “random” choices that the generator
will make. The generator processes the input sequence and
outputs a new test case. The crucial characteristic of a para-
metric generator is that simple (e.g., bit-level) modifications
to the input sequence result in structural changes to the gen-
erated output in a relatively predictable manner. Essentially,
each primitive element of the input sequence is a parameter
that can be adjusted to modify the output.

If we consider that a random program generator is a func-
tion that randomly walks a path in the decision tree of pos-
sible output programs, then a parametric generator is one
that exposes its decisions as parameters that can be tuned.
Coupled with an external metric for recognizing “interesting”

1 (require racket/random)

2

3 (random -seed 0)

4 (random) ;; => 0.8571568490678037

5 (random) ;; => 0.6594215608573717

6 (random) ;; => 0.205654820840853

7 (random -seed 0)

8 (random) ;; => 0.8571568490678037

9 (random) ;; => 0.6594215608573717

10 (parameterize

11 ([current -pseudo -random -generator

12 (make -pseudo -random -generator )])

13 (random -seed 0)

14 (random) ;; => 0.8571568490678037

15 (random )) ;; => 0.6594215608573717

16 (random) ;; => 0.205654820840853

Figure 1. Randomness in Racket using random-seed, where
comments show the result of each random call. The prng
created in the body of the parameterize expression has no
impact on the prng that exists externally.

generator outputs—e.g., test cases that extend code cover-
age of the compiler or interpreter under test—a parametric
random program generator can be driven to generate more
interesting programs over time.

Clotho arose from our implementation of random program
generation in Racket, but we have made Clotho a standalone
package because it can be used in other domains as well.

2.2 What Racket Offers
Racket provides a number of functions for generating ran-
dom values in its standard library, as well as some methods
for directly manipulating the current source of randomness
(a pseudo-random number generator, or prng) to make the
outputs of randomness functions manipulable. However, we
found Racket’s built-in functionality to be lacking in expres-
sive capability on its own.

The most fundamental of Racket’s randomness functions
is random. The random function, when called without any
arguments, produces an inexact number in the interval [0, 1)
with uniform probability.

Behind the scenes, Racket uses a system-wide prng to gen-
erate random values on demand. This prng is a parameter2

in Racket, which means that its value can be dynamically
re-bound in a local context with a parameterize expres-
sion. The parameter’s name is current-pseudo-random-
generator, which we will call cprg for short, and it con-
forms to the type predicate pseudo-random-generator?.
The cprg is instantiated automatically at run time without

2The term “parameter” is unfortunately overloaded in this paper by neces-
sity. When referring to “Racket parameters” or the parameterize form, we
mean the Racket-specific concept of a parameter as explained here:
https://docs.racket-lang.org/reference/parameters.html.

https://docs.racket-lang.org/reference/parameters.html
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any configuration, and it is used implicitly in all of the stan-
dard library randomness functions, so the average user never
needs to interact with it directly.
For our purposes, though, direct interaction is necessary.

Fortunately, Racket provides some mechanisms to manip-
ulate the cprg, which we could potentially use to induce
parametric behavior.
The first mechanism lies in the random-seed function.

This is a side-effecting function that takes as argument an
integer in the interval

[
0, 231

)
, and then uses that value to

seed the cprg. The values returned by subsequent calls to
any of the randomness functions, such as random, are deter-
mined by whatever seed was passed to random-seed. This
effectively means that the randomness can be manipulated
indirectly by choosing seed values.

The second mechanism is to create an entirely new prng
by calling either make-pseudo-random-generator (which
takes no arguments and automatically creates a new prng
seeded by the current system time) or vector->pseudo-
random-generator (which takes a specially formatted vec-
tor as argument and produces a new prng object from an
algorithm performed on those values). This new prng, which
also conforms to pseudo-random-generator?, can then be
used as the Racket-wide cprg by using a parameterize ex-
pression. Within the body of this expression, all randomness
is handled by the newly created prng.
One can see an example of some of these mechanisms in

action in Figure 1. Unfortunately, there are some problems
with these approaches:

1. They are unwieldy to use for manipulating random-
ness repeatedly.

2. Only the seeds are manipulable. It is quite difficult to
implement a system using the provided mechanisms
where we want to be able to manipulate some of the
randomly generated values output by a prng.

3. Subsequently, there is no way to parameterize the ran-
dom generation in the manner needed by a parametric
generator.

Because we want to use parametric randomness to explore
state spaces, it is points 2 and 3 that are the main concerns for
us (though 1 is relevant in terms of library design). We want
to be able to “replay” a sequence of random generations up
to a point, and then deviate. Racket’s provided functionality
does not make this easy.
One might consider the possibility of simply replacing

the cprg with a custom value that conforms to the pseudo-
random-generator? predicate. However, pseudo-random-
generator? is not open to external implementation: the
only values that conform are those produced by either make-
pseudo-random-generator or vector->pseudo-random-
generator. This severely limits the ability of developers to
implement custom random-generation mechanisms.

At this point, we have a choice: do we develop an entirely
new prng system separate from Racket’s existing function-
ality, or do we attempt to wrap what Racket provides?
Although it may be tempting to implement everything

fresh, we chose to wrap Racket’s existing randomness func-
tions. Many existing libraries depend on these functions
(such as the math/distributions module in the standard
library), and a completely custom prng solution would jeop-
ardize support for these librarieswithin our randomprogram-
generation tool. Supporting these libraries is important to us
(because we want to use them without implementing their
functionality ourselves), so our decision is made for us: we
wrap Racket’s existing randomness functionality to support
the parametricity we desire.

3 Design
Clotho’s client-facing interface has three parts:

1. A current-pseudo-random-generator-like param-
eter that controls random generation and provides an
interface for users to manipulate random generation
as needed.

2. Two macros for enabling advanced functionality.
3. Various convenience functions to make random gen-

eration simpler, e.g., random-int and random-bool.
This section focuses on items 1 and 2, as the convenience

functions of 3 are not interesting on their own. Where con-
venience functions are used in examples in this paper, they
will be summarized appropriately on a case-by-base basis.

3.1 The Parameter and Its Maker
The underlying functionality of Clotho is managed by the
current-random-source parameter, which we abbreviate
crs hereafter. All Clotho randomness functions must be
called within a context in which the crs has been parame-
terized:

(parameterize

([ current-random-source ...])

...)

A new crs is created by using the make-random-source
function. This function can accept arguments in a few forms.

When called with zero arguments, make-random-source
functions very similarly to Racket’s built-in make-pseudo-
random-generator function for creating prngs. Essentially,
it will generate a new randomly seeded random-source?
that is suitable for parameterization.
Alternatively, make-random-source can be called with

an integer argument. In this case, that integer is treated as
a random seed value. This initializes the generated random-
source? deterministically (i.e., using the same seed value
repeatedly will produce identical results each time).
Lastly, a byte string argument can be supplied. Clotho

views this byte string as a sequence of four-byte integers.
The first such integer is used internally and will be explained
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Table 1. Clotho’s external API, leaving out most convenience functions.

Function/Value Name Brief Explanation
current-random-source Parameter responsible for generating random values.

random-source?
Type predicate that tests whether the argument is a valid

current-random-source parameter.
make-random-source Generates a new random-source?.
current-random-source-initialized? Tests if current-random-source is initialized.
assert-current-random-source-initialized! Raise an error if current-random-source is not initialized.
get-current-random-source-byte-string Returns the byte string from current-random-source.
wrap-external-randomness Wraps randomness functions defined outside Clotho.
with-new-random-source Wraps a region with a new current-random-source.
random Like Racket’s random, but using current-random-source.

later (§4). All subsequent integers are used to deterministi-
cally generate random values. (When a byte string is supplied
that is not divisible into four-byte segments, it is padded with
0-value bytes at the end.)

3.2 The Macros
Clotho provides two macros to help with some of the more
common advanced usage scenarios.

The wrap-external-randomness form enables the use of
externally defined randomness functions within the paramet-
ric framework of Clotho. These “external” functions consult
Racket’s cprg directly (§3.5). This macro allows Clotho to
be compatible with any such existing functions or libraries
with very little effort on the part of the Clotho user.

The with-new-random-source form is a shorter way of
parameterizing the current-random-source. Specifically,
it uses the current-random-source to generate a new seed
value, then creates a new random-source? and installs it as
the current-random-source parameter. This enables ran-
domness abstraction, which is elaborated upon in §5.

3.3 The #langs
In addition to the forms described above, Clotho provides a
few #langs. They are:

• #lang clotho/racket/base: Provides all of the bind-
ings of racket/base, but without any randomness
functionality.

• #lang clotho: Provides all of the bindings of Clotho,
as well as all the bindings of clotho/racket/base.
This is likely to be the most useful for most people.

• #lang clotho/stateful: In addition to providing the
bindings of #lang clotho, this #lang also initializes a
global current-random-source so that random gen-
eration can be performed imperatively, similar to how
#lang racket/base works.

Of course, these can also be used as simple require forms.
We find that interactions in the Racket REPL are greatly
improved by starting the session with (require clotho/

stateful), because this enables easy execution of random-
ness functions without parameterizing the crs each time.
There are additional bindings provided in the module to
interact with the random source, which are described in
Clotho’s documentation.

3.4 API Summary
Table 1 summarizes Clotho’s exposed interface. The table
omits Clotho’s convenience functions for obtaining random
data of various types, but they are straightforward: e.g.,
random-bool returns a random Boolean value, random-int
produces a random signed integer value, and so on. Clotho
also provides random-ref, which works identically to the
Racket-provided function of the same name: i.e., when given
a list, it returns an element of that list selected at random
with a uniform distribution.

The get-current-random-source-byte-string func-
tion returns a byte string that encodes the history of values
that have been returned by the crs. This byte string can
be used as-is to initialize a new random-source? that will
replay the recorded values, assuming that the same sequence
of calls is made to draw random values from the new source.
Alternatively, one can use amutation of the byte string to cre-
ate a random-source? that will produce amodified sequence
of values.

3.5 An Example
Figure 2 shows the core functionality in action. In the left-
hand column, the example defines a card struct and some
lists describing the suits and values that a card can have. The
random-card function randomly selects a suit and a value
by using the random-ref function. Note that the current-
random-source parameter has not been seen yet; that will
come later. The make-deck function builds an ordered deck
of cards, and the random-deck function returns a randomly
shuffled deck. We will discuss its use of the wrap-external-
randomness macro at the end of this section.
Now look the right-hand column of Figure 2. The first

segment of code shows the crs being parameterized with a
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1 #lang clotho

2 (require racket/list)

3

4 (struct card (suit value) #: transparent)

5 (define card-suits

6 '(♠ ♥ ♣ ♦))

7 (define card-values

8 '(A 2 3 4 5 6 7 8 9 10 J Q K))

9

10 (define (random-card)

11 (card (random-ref card-suits)

12 (random-ref card-values )))

13

14 (define (make-deck)

15 (for*/list ([suit card-suits]

16 [value card-values ])

17 (card suit value )))

18

19 (define (random-deck)

20 (wrap-external-randomness

21 (shuffle (make-deck ))))

22

23 (define gcrsbs ;; alias to simplify later code

24 get-current-random-source-byte-string)

25

26 ;; code continues in the next column ->

27 (define-values

28 (cv bl) ;; "Card Value" and "Byte List"

29 (parameterize ([ current-random-source

30 (make-random-source )])

31 (values

32 (random-card)

33 (bytes- >list (gcrsbs )))))

34 (print cv) ;; -> (card '♠ 10)

35 (print bl) ;; -> '(196 156 203 55

36 ;; 232 115 4 248

37 ;; 19 113 78 202)

38

39 (define inbs ;; "INput Byte String"

40 (list- >bytes

41 (list-update bl 7 add1 )))

42

43 (define-values

44 (ncv nbl) ;; "New CV" and "New BL"

45 (parameterize ([ current-random-source

46 (make-random-source inbs )])

47 (values

48 (random-card)

49 (bytes- >list (gcrsbs )))))

50 (print ncv) ;; -> (card '♣ 10)

51 (print nbl) ;; -> '(196 156 203 55

52 ;; 232 115 4 249

53 ;; 19 113 78 202)

Figure 2. A Clotho example. Modifying the byte string obtained from a random source leads to a different random-card result.

fresh random source. From within this parameterized region,
a new random card and the crs’s byte string are returned.
Let us imagine that we want to repeat our invocation of

random-card, but we want to modify the suit that comes
out. We can do this by modifying the byte string that we
obtained after our initial invocation. As shown, we can use
the modified byte string to create a new random source in
the second parameterize call. The result of our second call
is as we had hoped: a new random card is returned, and its
suit is changed while its value is unchanged.

Selecting the byte to modify to effect this change is (rela-
tively) straightforward in this example. Clotho uses the first
four bytes of the byte string for internal initialization (§4).
After that, each call to random-ref is associated with four
bytes of the byte string. The call to random-ref that deter-
mines the suit is the first invocation of a randomness function
within the parameterization of the crs, so the bytes that af-
fect its outcome are at indices 4–7 of the byte string. The code
in Figure 2 creates a new input byte string by incrementing
the seventh byte of the original byte string by 1.

Finally, we return to random-deck, which uses the wrap-
external-randomness macro (§3.2). When this macro is
invoked, it consumes four bytes from the crs’s byte string
to seed and parameterize a Racket-wide cprg. This is nec-
essary for interfacing with Racket functions, e.g., shuffle,

that do not use Clotho but instead use Racket’s standard ran-
domness functions. By having Clotho instantiate a new cprg
before calling those “external” randomness functions, Clotho
ensures that the values returned by those functions are de-
termined by the seed that Clotho supplies—and thus, the
outcomes of those functions can be reproduced. In summary,
within the body of wrap-external-randomness, the out-
comes of all external randomness functions are determined
by a single seed supplied by Clotho. When it is possible to do
so, we recommend wrapping calls to external randomness
functions individually, so that each call will correspond to a
unique portion of Clotho’s byte string.

4 Implementation
At its core, Clotho’s functionality is provided through a struct
type that is never directly exposed to the user. This struct
is the type of the value managed by the current-random-
source parameter mentioned in previous sections. The defi-
nition of the struct is quite simple:

(struct random-source-struct

([bts #: mutable]

[idx #: mutable]

[prg]

[add #: mutable ]))
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1 #lang clotho

2 ;; minesweeper.rkt

3

4 (require racket/list)

5 (provide (all-defined-out ))

6

7 (define (play-game n mines)

8 (define (play-moves covered exposed moves)

9 (if (empty? covered)

10 `(win ,(reverse moves))

11 (let* ([move (random n)]

12 [moves (cons move moves )])

13 (cond

14 [(memq move mines)

15 `(lose ,(reverse moves ))]

16 [(memq move exposed)

17 `(illegal ,(reverse moves ))]

18 [else

19 (play-moves (remq move covered)

20 (cons move exposed)

21 moves )]))))

22 (play-moves

23 (remq* mines (range n)) empty empty))

24

25 (define gcrsbs

26 get-current-random-source-byte-string)

27

28 ;; code continues in the next column ->

29 (define (mutate-bytes input-bytes move-num)

30 (define target-index (* 4 move-num ))

31 (define original-int

32 (integer-bytes- >integer

33 input-bytes #f (system-big-endian?)

34 target-index (+ 4 target-index )))

35 (define mutated-int (+ 1 original-int ))

36 (integer- >integer-bytes

37 mutated-int 4 #f (system-big-endian?)

38 input-bytes target-index ))

39

40 (define (solve-game n mines [src-bts (bytes)]

41 [outcomes (list )])

42 (define-values (outcome outcome-bytes)

43 (parameterize

44 ([ current-random-source

45 (make-random-source src-bts )])

46 (values (play-game n mines)

47 (gcrsbs ))))

48 (let ([ outcomes (cons outcome outcomes )])

49 (if (eq? (first outcome) 'win)

50 (values (reverse outcomes)

51 outcome-bytes)

52 (solve-game n mines

53 (mutate-bytes

54 outcome-bytes

55 (length (second outcome )))

56 outcomes ))))

Figure 3. A simple, one-dimensional Minesweeper game and a naive mutational solver.

The types of these fields are as follows:

• bts: bytes?
• idx: integer?
• prg: pseudo-random-generator?
• add: list of integer?

A new random-source-struct is created using a byte
string. If no byte string is supplied, a new byte string con-
sisting of four 0-value bytes is created. This byte string is
stored in bts. An index value, idx, is kept to point to the
next four-byte segment of the byte string to use for random
generation. The first four bytes of the byte string are used
to seed a new, Racket-standard prng that is stored in the
prg field—which is why the byte string must always have at
least four bytes. A list of temporarily stored integers is kept
in add, explained in more detail below.

The struct’s design enables two forms of value generation:
one using the byte string to “replay” values, and the other
producing new values using the prng stored in prg. They
work together seamlessly. When a value needs to be gener-
ated, the next four bytes from the bts byte string are taken
and used; if there are no bytes remaining to be used, a new
value is generated from the prng.

When a segment of bytes is used for generating a value,
they are not returned directly as the result of a randomness
function. Consider the following code segment:

(if (random-bool)

(random-int)

(random-bool ))

Assume that we run this code and observe the values #t
and 42 being produced. We obtain the byte string that caused
these results, manipulate it, create a new crs and rerun the
code. If the result of the first call to random-bool in the
new run is #f, Clotho must reinterpret the bytes that previ-
ously determined the result from random-int: now those
bytes must determine the result of the second invocation of
random-bool. To avoid implementing its own conversions
from bytes to return values, Clotho interprets four-byte seg-
ments of the bts byte string as (integer) seed values for
prngs, which it creates on demand. When a random value is
needed, it consumes the next four bytes from the bts byte
string to produce an integer, seeds a new cprg with that
integer, and invokes the appropriate randomness function,
which calls random from the Racket standard library. The
cprg determines the value returned by random.
If the bts byte string is exhausted when a value is re-

quested, the prng stored in prg is used to generate a new
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value. The value generated by the prng is then used to seed
a cprg and call the appropriate randomness function, as just
described. However, the seed for the cprg is stored in the
add list until a client calls get-current-random-source-
byte-string to obtain the byte string. When this happens,
the add’s values are reversed and appended to the bts byte
string, and then that (now extended) byte string is returned.
The add-list reduces the time complexity of intermediate
random generations, because the bytes-append function
can be very costly. By storing unserialized generated values
in a list, we avoid incurring significant overhead.

The index, idx, is used to keep place while drawing values
from the bts byte string. When the byte string is exhausted,
the idx is set to #f.

The random-source-struct, alongwith its automatically
provided functions, is kept private from even the rest of
Clotho. An API is provided to the rest of the library that
ensures certain conditions are maintained:

1. The bts byte string must contain at least four bytes,
to be used for seeding the source’s prg prng.

2. The idx index value corresponds to the head of the
next four-byte sequence to be read from the bts byte
string.

3. If all of the bytes have been read from the bts byte
string, the idx index value is set to #f.

4. Whenever the call is made to extract the bts byte
string from the struct, the add add-list must be re-
versed, converted to bytes, and appended to the byte
string. (The add list must then be cleared.)

5. When a new value is requested and the idx index is
#f, the prg prng is used to generate a new value.

These conditions ensure that random generation works
as explained in §3.

5 Using Clotho
We have explained the design and implementation of Clotho
and provided some small examples to show its use, but how
can it be used to accomplish parametric generation? In this
section, we give a brief example client in the form of a sim-
plified Minesweeper game and show how to write a naive
mutational fuzzer to force a win.
(Note: The non-figure code in this section is meant to be

read additively. The output of print is shown in a comment
to the right of the call. We convert byte strings to lists of
byte-as-integers using bytes->list so the values are easier
to read.)

5.1 Playing a Game of Minesweeper
Figure 3 contains the implementation of the game and its
fuzzer. The play-game function contains the core game logic,
which we will mostly gloss over here except to point out
the use of the random function used to make a guess on the
board.

An example call to play-game might look like this:
(require "minesweeper.rkt")

(define-values

(r bs) ;; "Result" and "Byte String"

(parameterize

([ current-random-source

(make-random-source )])

(values

(play-game 5 '(2 3))

(bytes- >list (gcrsbs )))))

(print r) ;; -> '(illegal (4 0 4))

(print bs) ;; -> '(125 35 151 62

;; 0 0 0 0

;; 1 236 216 117

;; 33 15 40 66)

This plays a game of Minesweeper consisting of 5 cells,
with mines hidden in cells 2 and 3. The result of the game
and the resulting byte string from the generated current-
random-source are returned. In this game, the player made
an illegal move by attempting to expose the 4 cell twice.
However, the first two moves (guessing 4 and then 0) were
legal, so our player was on the right track! Let’s use Clotho
to modify this game so the player wins.

There are 16 bytes in the returned byte string bs. The first
four bytes of bs are devoted to creating a prng (§4), and
each call to random after that adds an additional four bytes
to the byte string. This means that (16 − 4) ÷ 4 = 3 moves
were made—which lines up correctly with the output list of
moves we saw: ’(4 0 4). Since the last move in the sequence
is the one that caused a failure, we want to try mutating
bytes 12–15 in the byte string (remembering that the string
is zero-indexed).
A simple mutation to try (which is used by the mutate-

bytes function in Figure 3) is to increment those four bytes
by 1. We can use the mutated byte string to build a new
current-random-source and see what the outcome is:

(define inbs ;; "INput Byte String"

(mutate-bytes (list- >bytes bs) 3))

(define-values

(nr nbs)

(parameterize

([ current-random-source

(make-random-source inbs )])

(values

(play-game 5 '(2 3))

(bytes- >list (gcrsbs )))))

(print nr) ;; -> '(win (4 0 1))

(print nbs) ;; -> '(125 35 151 62

;; 0 0 0 0

;; 1 236 216 117

;; 33 15 40 67)

Hooray! With that change, the player made the correct
final guess and won the game.
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1 (define (play-games game-count n mines)

2 (for/list ([_ (range game-count )])

3 (with-new-random-source

4 (play-game n mines ))))

5

6 (define (solve-games game-count n mines

7 [src-bts (bytes)]

8 [results (list )])

9 (define-values (outcomes outcome-bytes)

10 (parameterize

11 ([ current-random-source

12 (make-random-source src-bts )])

13 (values (play-games game-count n mines)

14 (gcrsbs ))))

15

16 (define lost-game-index

17 (index-where

18 outcomes

19 (lambda (outcome)

20 (not (eq? 'win (first outcome ))))))

21

22 (let ([ results (cons outcomes results )])

23 (if lost-game-index

24 (solve-games

25 game-count n mines

26 (mutate-bytes outcome-bytes

27 (add1 lost-game-index ))

28 results)

29 (values (reverse results)

30 outcome-bytes ))))

Figure 4. An abstracted solver for multiple Minesweeper
games played in a series.

The solve-game function (Figure 3) packages up this itera-
tive refinement process. Here, the current-random-source
is parameterized (using an empty byte string by default) and
a game is played. If the game is won, the outcome is returned
along with the byte string. Otherwise, the byte string is mu-
tated and solve-game calls itself recursively with the new
byte string and the list of outcomes accumulated so far.

5.2 Playing Multiple Minesweeper Games
Nobody wants to play just one game of Minesweeper. Let’s
expand our example to play multiple consecutive games and
solve them all!

A simple approach is to write a play-games function that
uses for/list to call play-game multiple times and accu-
mulate the results. However, this raises a question: at what
level do we parameterize the current-random-source? We
could parameterize it outside of the for/list, using a single
random source for all the games. Alternatively, we could
do the parameterization inside the for/list, using a new
random source for each game.

Let’s try them both out and see what works best!

We begin by implementing the first method where all of
the games are parameterized together:

(define (play-games game-count n mines)

(parameterize

([ current-random-source

(make-random-source )])

(values

(for/list ([_ (in-range game-count )])

(play-game n mines))

(gcrsbs ))))

The return values are a list of the game results and the
byte string obtained after the last game is played.
While straightforward to implement, this can cause un-

predictable effects during later mutation (such as that im-
plemented by our solve-game function). Each game in this
example can consume 1–3 random values, depending on how
many moves the player makes. If mutating a move in one of
the earlier games of the sequence causes that game to com-
plete in a different number of moves than it did previously,
subsequent games will play differently than they did before.
Often, this is undesirable.
Let us instead try moving the parameterization of the

current-random-source to a per-game level:
(define (play-games game-count n mines)

(for/list ([_ (in-range game-count )])

(parameterize

([ current-random-source

(make-random-source )])

(cons

(play-game n mines)

(gcrsbs )))))

In this version of play-games, the return value is a list of
pairs of game results with each game’s corresponding byte
string. This means each game’s randomness is independent
from the rest, but the cost is a more complicated output—one
that does not naturally play well with tools that operate on
a single byte string!
There is actually a third option: use both, but make the

inner parameterization depend on a value in the parent pa-
rameterization. Or, to put it in code:

(define (play-games game-count n mines)

(parameterize

([ current-random-source

(make-random-source )])

(values

(for/list ([_ (in-range game-count )])

(parameterize

([ current-random-source

(make-random-source

(random-seed-value ))])

(play-game n mines )))

(gcrsbs ))))

(Note that this code uses the random-seed-value func-
tion, which is a convenience function that generates a value
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suitable for use as a random seed in either the crs or the
Racket cprg.)
This play-games returns two values: a list of the results

of the games, and a single top-level byte string. However,
this byte string is different from the ones we’ve seen so far.
Previously, the 4-byte segments of the byte strings (after
the initial 4-byte segment reserved for internal use) corre-
sponded to individual moves made during the game. But in
this latest byte string, each 4-byte segment corresponds to
an entire game. Essentially, we have abstracted the random-
ness: instead of fine-grained control over each randomness
function, we now have coarse-grained control over the meta-
randomness function play-game.
To make it easier to use randomness abstraction, Clotho

provides the with-new-random-seed macro (§3.2). Called
without any arguments, it functions identically to the in-
ner parameterize function in the previous code segment,
creating a new current-random-source using a seed value
generated from the parent random source.

Figure 4 shows an example of implementing the code in
this way. The play-games function plays multiple games of
Minesweeper with identical inputs, each executed within
its own with-new-random-source body. This function is
called from within solve-games, which mutates bytes ac-
cording to which games have resulted in a loss. The solve-
games function has its own parameterization of the crs
(which functions as the top-level parameterization in this
code), and play-games uses the macro to abstract the ran-
domness within each call to play-game.

Below, we show the output of one execution of this func-
tion as seen in the Racket REPL, with the illegal symbol
abbreviated to ill and columns vertically aligned for read-
ability. The output can be rather long becausemultiple games
are played many times, so we show only an excerpt of the
output that illustrates the point.

> (define-values

(results outcome-bytes)

(solve-games 3 5 '(2 3) #f))

... ;; <output lines removed >

((lose (4 1 3)) (ill (0 1 0)) (lose (0 3)))

((lose (2)) (ill (0 1 0)) (lose (0 3)))

((win (1 0 4)) (ill (0 1 0)) (lose (0 3)))

((win (1 0 4)) (ill (4 1 4)) (lose (0 3)))

((win (1 0 4)) (ill (4 4)) (lose (0 3)))

((win (1 0 4)) (lose (2)) (lose (0 3)))

((win (1 0 4)) (ill (4 0 0)) (lose (0 3)))

((win (1 0 4)) (lose (3)) (lose (0 3)))

((win (1 0 4)) (ill (4 4)) (lose (0 3)))

((win (1 0 4)) (lose (4 2)) (lose (0 3)))

((win (1 0 4)) (win (4 0 1)) (lose (0 3)))

((win (1 0 4)) (win (4 0 1)) (lose (2)))

((win (1 0 4)) (win (4 0 1)) (lose (3)))

((win (1 0 4)) (win (4 0 1)) (ill (4 4)))

... ;; <output lines removed >

From this excerpt, one can observe how modifying a game
earlier in the series does not affect the outcomes of sub-
sequent games. If either of the second or third games had
initially resulted in a win, they would not be affected by the
modifications to the earlier games.

5.3 Xsmith
A major motivation in the creation of Clotho has been to
aid in feedback-directed fuzzing. We have performed some
preliminary work using Clotho for fuzzing by using it in con-
junction with Xsmith [Hatch et al. 2020] and AFL [Zalewski
2020] to fuzz an implementation of the Lua programming
language [Ierusalimschy et al. 1996]. In the future we in-
tend to do further work on feedback-directed fuzzing using
Clotho and Xsmith.

While Clotho was designed with guiding Xsmith program
generators in mind, it could be used for other structured data
generators, such as QuickCheck [Claessen and Hughes 2000]
or Racket’s data/enumerate package [New 2020].

6 Discussion
In building Clotho, we found some limitations and uncovered
potential future directions of investigation.

6.1 Limitations
Because Racket’s pseudo-random-generator? type is closed
(i.e., cannot be implemented by an external source), interfac-
ing with libraries that use Racket’s built-in randomness func-
tions can be awkward. We introduced the wrap-external-
randomness macro to address this, but it is not an ideal
solution: it requires the user to wrap every call to any func-
tion defined an external library that uses randomness. This
can be somewhat tedious. Clotho provides its own clotho/
math/distributions library that automatically finds all
top-level bindings in Racket’s math/distributions library
and wraps them in our macro, allowing them to be used in
code that uses Clotho. A significant (though perhaps not
wholly detrimental) caveat of this is that a Clotho client
is unable to exercise as fine-grained control over random
generation as it would be able to if it implemented the func-
tions for itself. When external functions are wrapped, the
granularity of Clotho’s control is at the level of calls to the
external library, rather than at the level of calls to individual
randomness functions (§3.5).
Another issue lies with the with-new-random-source

function, and can be seen in §5.2. This macro provides an ab-
straction layer for randomness, but abstraction comes with
a cost: one can no longer make fine-grained adjustments! In
the example shown, the use of with-new-random-source
precludes the solver from manipulating specific moves, in-
stead requiring it to iterate on the seed for the prng that is
used for entire games. This loss of granularity can cause a sig-
nificant decrease in solver efficiency, because the mutations
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may take the solver further away from the solution before
they bring it closer. However, despite this limitation, we feel
that there are situations that warrant the use of randomness
abstraction, and so we leave with-new-random-source in
the Clotho library.

6.2 Future Work
In working around the limitations of with-new-random-
source, we have started to speculate about the use of a dif-
ferent datatype for capturing random generation. Currently,
randomness is encoded into a single byte string. Instead,
one can imagine perhaps using a list of bytes, which itself
may contain sub-lists of bytes. Using this data structure,
with-new-random-source could represent the abstracted
current-random-source’s encoding as a sub-list in the par-
ent context’s current-random-source. This would allow
for parameterizing abstracted regions with fine granularity.
Clotho could also include a number of mutation functions
specifically intended to aid in the modification of these sub-
lists, which would further improve a developer’s ability to
manage randomness in an application.
Another improvement that could be made to Clotho’s

data representation would be to use data from the input byte
string directly as return values from Clotho’s randomness
functions, only turning to a prngwhen really necessary. This
would allow solvers to more directly manipulate the byte
string, which may improve efficiency in finding interesting
solutions. However, it is not straightforward, due to the
need for input bytes to potentially be consumed by any
randomness function (§4).

7 Related Work
We created Clotho becausewewant to use it in Xsmith [Hatch
et al. 2020], our tool for creating random program genera-
tors. We want the ability to control all of the choices that
Xsmith makes while generating a program—an idea that we
borrowed from the Zest fuzzing system [Padhye et al. 2019].
Zest explores the state space of a system under test (SUT)
by invoking a random test-case generator and using code-
coverage feedback from the SUT to tune subsequent genera-
tion. Zest requires the test-case generator to be built such
that its “random” choices are determined by a bit sequence
that is input to the generator. Zest provides bit sequences to
the generator in order to create test cases; when a test case
triggers new code coverage, Zest mutates the corresponding
bit sequence to create new inputs to the test-case generator.
The key insight of Zest is that bit-level manipulations to the
generator’s input produce structural changes in the result-
ing test cases: “Zest converts a random-input generator into
an equivalent deterministic parametric generator” [Padhye
et al. 2019, p. 332]. Clotho enables similar functionality in

Xsmith by providing an easy-to-use library for making ran-
dom generation parametric in the same way as Zest, while
also providing additional benefits.
Other systems have also manipulated the input of a test-

case generator toward increasing the code coverage of a SUT.
Crowbar [Dolan and Preston 2017], for example, is a testing
library for OCaml that leverages AFL [Zalewski 2020] to
(1) generate bit-level inputs that Crowbar turns into struc-
tured test cases and (2) measure coverage within the SUT.
The DeepState unit-testing library for C and C++ supports
coverage-directed fuzzing and can initialize the state of the
SUT using bits from a provided input sequence [Goodman
and Groce 2018].

Some prior work has manipulated the input to a test-case
generator not toward increasing the code coverage of a SUT,
but instead toward finding small test cases that trigger a
behavior of interest in the SUT, e.g., a program crash or other
bug. For example, Seq-Reduce [Regehr et al. 2012] relied on
the Csmith program generator and aimed to “automate most
or all of the work required to reduce bug-triggering test
cases for C compilers.” Seq-Reduce would first run Csmith
to generate a program in Csmith’s the normal way (using a
prng), but recording the random decisions that were made
during generation. Seq-Reduce would then repeatedly run
Csmith, each time trying to discover a new decision sequence
that would yield a new, smaller program that preserves the
“interesting behavior” of the original. Regehr et al. [2012]
concluded that Seq-Reduce was not very effective in general:
changes early in the decision sequence would greatly impact
the program generator, making it unlikely that the newly
generated test case would preserve the behavior of interest.
In Clotho, one can mitigate this issue by using the with-new-
random-source macro to organize test-case generation into
subparts, each of which draws from an independently seeded
source of values.
Hypothesis [MacIver and Donaldson 2020] is a more re-

cent test-case generator that implements “internal test-case
reduction,” i.e., the idea of manipulating the random deci-
sions made during test-case generation, toward coaxing the
generator into producing small test cases that preserve a
property of interest. Starting from an input “choice sequence”
that yields an interesting but large test case, Hypothesis ap-
plies heuristics that simplify the choice sequence and yield
smaller test cases. In contrast to the conclusion reached by
Regehr et al. for Seq-Reduce, MacIver and Donaldson found
that internal reduction with Hypothesis often produced good
results. For this reason, we speculate that Clotho may be use-
ful for adding internal test-case reduction to Hypothesis-like
tools written in Racket.

Wingate et al. [2011] present a method for providing para-
metric randomness in the implementations of probabilistic
programming languages. Their method creates a naming
scheme for each program trace that accesses a source of ran-
dom data, i.e., a random function or variable. While running,
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each access to random data triggers a database lookup, keyed
by the name of the current program trace. Values from the
database are returned as the results of random-data accesses,
and new random values are added to the database as neces-
sary for new trace names. The database may be preserved
and altered for future executions to provide parametric deter-
ministic randomness. Unlike Clotho, the technique described
by Wingate et al. requires a whole-program transformation
to track and name each program trace.

8 Conclusion
We have introduced Clotho, a Racket library that provides
parametric randomness where you need it. In addition to its
own functions, Clotho wraps and re-provides all of the ran-
domness functionality of the racket/base, racket/random,
and math/distributions modules in the Racket standard
library—making parametric randomness accessible without
conflict. Clotho provides mechanisms for supporting other
randomness functions on a case-by-case basis. Because Clotho
provides support for mixing parametric randomness with
traditional prng-based randomness, it is flexible for a wide
range of use cases.
We built Clotho as part of a random program generator

in Racket, but its potential use is far more general than that.
We hope that Clotho will prove useful to other developers
seeking to manipulate randomly generated values within
their programs.
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