
Switch Assisted Peer to
Peer Transfer

1

Cloudlab and Disk Image Loading

 Cloudlab allows to access nodes of different types and topologies

 It has ~1500 nodes and allocates bare-metal nodes

 Fresh disk images are installed each time a request is instantiated

 Disk images contain OS (Distribution image/With user data)

 Disk image loading is on the critical path to provisioning

2

Frisbee System

 Multicast based image distribution system

 Single server supports multiple clients

 Multicast allows server to send one copy for all clients running in parallel

 Allows clients to join when transfer is in progress

 Provides fast and scalable disk imaging distribution

Issues

 Server process sends more data than ideal

 Thus more load on Server’s CPU, Disk and Cloudlab Network

3

SWP2P Idea Introduction

 New transfer mechanism using programmable switches

 Prefers peers instead of server to serve the chunk requests

 Switch keeps track of the image availability among connected clients

 Request packets are redirected at the switch

Thesis Statement

In the Frisbee disk loading system, SWP2P can significantly lower load on the server
while maintaining high performance.

4

Related Work - Frisbee

 Splits image into Chunks and Blocks

 Works on Request-Reply mechanism

 Supports Request suppression and Request merging

M. Hibler, et al. Fast, Scalable Disk Imaging with Frisbee. In Proc. USENIX Annual
Technical Conference, San Antonio, TX, June 2003. 5

Related work - LMS

Light Weight Multicast Services

 Elects one link per switch as the replier link

 Requests are redirected to the replier blindly

 On absence of data, replier forwards the request back to the switch

 Only requests from the replier link are forwarded upstream

SWP2P

 Switch keeps track of availability

 Peers are selected in round-robin fashion at the switch

C. Papadopoulos, et. al. LMS: A Router Assisted Scheme for Reliable Multicast.
6

Related work –P2P

7

 P2P transfers doesn’t prefer closest peers

 Blocks needs to be transferred across topology, increases trunk link usage

 P2P system that support closest peer selection, suffers from overhead of maintaining
overlay network

 SWP2P achieves the same benefits due to switch’s position in the topology

M. Castro, et. All. Topology-aware routing in structured peer-to-peer overlay networks

SWP2P working principle

8

SWP2P working principle

9

SWP2P working principle

10

SWP2P working principle

11

SWP2P working principle

12

SWP2P working principle

13

SWP2P working principle

14

Analysis of existing system
Sample Server Log

15

Server has sent twice
the required number
of blocks

Very high concurrency
among clients

Concurrency Introduction

16

Components in Client Runtime

 Multicast systems considers clients as concurrent only if transfer time
overlaps. This is the root cause of the performance gap.

17

Client 1

Client 2

Concurrency among client
Data from past logs

Period : Jan 1st to Mar 22nd, 2019

Servers : 4178

Clients : 18998

 Out of the 18998 Clients we
analyzed, 12737(67%) Clients had
90 to 100% Concurrency.

18

Computing transfer efficiency

Below computations are for a group of clients that has concurrency > 90%

B = Number of blocks in image

T = Total blocks sent

Multicast Transfer Efficiency = B/T

19

Multicast transfer efficiency

 79.29% of the servers having max
efficiency had just 1 client.

 Average efficiency of servers with
>1 client is 0.53

 As 67% of clients had 90-100%
concurrency

 Most servers with more than one
client has significant concurrency

20

SWP2P Design

Changes in all three components
involved

 Switch

 Frisbee Client

 Frisbee Server

21

Switch Environment

Built on OPX (OpenSwitch NOS)

SWP2P python module on the switch

Interacts with CPS to install ACL rules

Lifted packets are delivered via Linux
Kernel’s Ethernet interface

22

Switch’s Responsibilities

 Receiving Frisbee control packets from the clients

 Build Chunk Availability Database using Report and Leave message

 Parsing and processing request message from clients.

 Redirecting the request to the appropriate peer/server.

23

Packet Processing at Switch

Message Type SWP2P Module Action Number of messages
N = Image Size (MB)

PKTSUBTYPE_JOIN Forwarded to the server O(1)

PKTSUBTYPE_REQUEST Redirected to another client/server based on

availability in the database

O(N)

PKTSUBTYPE_BLOCK This message is not lifted O(N)*1024

PKTSUBTYPE_SWP2P_REP

ORT

Used to update the chunk availability database for

the client

O(N)

PKTSUBTYPE_LEAVE Chunk availability database is updated as the client

is no longer available to serve chunks

O(1)

24The number of messages are for a single client
Total number of clients per switch is bounded to a maximum of 48

Chunk Availability Database

 Chunk Availability Database is
maintained using new report
message and leave message

 Clients are selected in round
robin method to serve the
requests

25

Changes in Client

P2P Essentials

 Transfer changed from Multicast to Unicast

 Receiving redirected request messages from the switch

 Sending requested chunks to the peers

 Updating the switch with report messages

Performance Optimizations

 Moved to deterministic order for requesting chunks

 Request batching

 Transport mechanism changed from UDP to TCP

26

Threads on Client

27

Modified Threads
• Client Recv Thread
• ChunkBuffer Thread

New Threads
• Request Recv Thread
• SWP2P Worker Thread
• Per Peer TCP Send Thread

Move from UDP to TCP

 Regardless of our attempts to do congestion control UDP still has loss on
receiving side

 Using TCP for the image blocks transfer solves this problem

 We still use UDP from Frisbee control packets as they are redirected at the
switch

28

Request Order and Batching
Goal:

Approximately ensure that first N chunks sent by the server makes a complete
copy of the image

Number of Chunks N = 1000

Number of Clients C = 4

Ci = Represents ith Client

29

Request Batching Cascade Effect

30

• Request Batching ensures first 1000 chunks sent by the server constitutes the whole image

• It also assigns approximate ownership for each range to a client.

• Round-robin selection at the switch avoids overloading a client

Range A 1‐250 Time Client 1 Client 2 Client 3 Client 4
Range B 251‐500 T1 (0 to 2 seconds) Range A Range B Range C Range D
Range C 501‐750 T2 (2 to 4 seconds) Range B Range C Range D Range A
Range D 751‐1000 T3 (4 to 6 seconds) Range C Range D Range A Range B

T4 (6 to 8 seconds) Range D Range A Range B Range C

Design and Implementation Summary
 Modifying existing Frisbee system to support Unicast transfer.

 Installation of ACL rules in Switch for lifting control packets.

 Maintenance of Chunk Availability Database.

 Redirecting request packets at the switch.

 Adding serving capability to clients.

 Efficient multi-threaded architecture on clients for low latency service.

 New sequential request mechanism coupled with request batching.

 Change of transfer protocol of blocks from UDP to TCP.
31

Evaluation

Key evaluation metrics

1. Server Load

Server load is defined as the number of chunks sent out by the server to address the
requests from the clients.

2. Network Receive Time in Clients

Measuring impact on the time taken by clients to receive the image

32

Experiment Setup

Dell Switch

Intel(R) Atom(TM) CPU @ 1.74GHz

4 GB Memory

33

Dell Switch

Server

Client 1 Client 2 Client 30. . . .

Other Nodes

Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz

64 GB Memory

Image 1 ‐ 730 MB Image 2 ‐ 1984 MB Image 3 ‐ 6827 MB
Decompress and Write Time 7.66 13.66 48.06

Network Recv Time 1.996075 5.195049 17.963275

0

10

20

30

40

50

60

70

Client Runtime Components

Network Recv Time Decompress and Write Time

Example of client runtime components

Client Runtime is affected by

1. Compression Ratio

2. Image Size

Network Recv time is always smaller
than Decompress and Disk Write time

34

Defining start delay

Start delay is used as a parameter to simulate various levels of concurrency

35

Effect of start delay on chunks sent by
server

36

Experiment using image of size 730 MB and 30 clients

Analysis for Start Delay Between 1 to 9 Sec

Typical Client Runtime Components for 730 MB Image

37

Component 1 Network Recv Time 2 to 3 Seconds

Component 2 Decompression and Disk write Time 8 to 9 Seconds

Start delay < 10 still has clients running in parallel

38

Analysis for 0 Sec Start Delay

920

1152

730

0 200 400 600 800 1000 1200 1400

SWP2P

MCAST

Ideal

Chunks Sent Out by Server

0 Sec Start Delay

SWP2P performs better than MCAST on MCAST ideal start delay.

P2P serving design effectively proves its efficiency

39

Analysis for Start Delay Greater than 12 Sec

When Start delay > 12, there are no clients to leverage

Increase in client runtime due to switch
processing

As more clients start in parallel their runtime goes higher 40

Using start delay to mitigate the switch
processing time

30 Clients when started with various start delays and their runtime

Starting with delay ensures no hiccup at switch, thus flat runtime
41

Server’s perspective SWP2P vs Multicast

42When all clients start in parallel, SWP2P consistently has lower load on server

Performance effect of request batching

Request Batching reduces the number of requests sent by clients

This lowers processing load on switch ensuring no queuing at switch 43

61

19

0

10

20

30

40

50

60

70

Random order Pre‐decided order with request bulking

Avg Runtime of 30 Clients starting at same time

Random order Pre‐decided order with request bulking

Evaluation Summary

 SWP2P outperforms Multicast in all scenarios we tested

 Switch’s low processing power caused hiccups

 Hiccups were overcome using start delay as a parameters

 Start delays that are less than client runtime is ideal

 Proves the efficiency of leveraging client concurrency

44

Conclusion

 High load on servers and trunk links were our motivation for SWP2P

 SWP2P performs better than multicast by leveraging client concurrency

 Longer decompression and disk write helps achieve our goal

 Challenges on working with the Switch and solutions were explored

 SWP2P reduces the server load from 21% to 96% depending on start delay.

 System can be extended to a multi-switch topology in future

Thesis Statement

In the Frisbee disk loading system, SWP2P can significantly lower load on the
server while maintaining high performance.

45

Q & A

46

Eliminating packet loss as the reason of
retransmit

47

Server’s clients Average % of blocks retransmitted that can be attributed to full
chunk miss

1 0.11
>1 91%

• High percentage of loss
comes from total chunk
loss.

• We considered network
loss, will in general not
result in total chunk loss.

Eliminating packet loss as the reason of
retransmit

48

• Servers in general have
clients block miss when
they miss the entire chunk.

• Rarely individual blocks are
missed by clients

