

SWITCH ASSISTED PEER TO PEER

by

Sriram Selvam

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

August 2020

Copyright © Sriram Selvam 2020

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of Sriram Selvam

has been approved by the following supervisory committee members:

Robert Preston Reikenberg Ricci , Chair 05/06/2020

 Date Approved

Jacobus Erasmus Van Der Merwe , Member 05/06/2020

 Date Approved

Sneha K Kasera , Member 05/06/2020

 Date Approved

and by Ross T Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

 Cloudlab provides a flexible testbed for research and education of future cloud

computing. On receiving a request for a research environment, Cloudlab identifies the

resources satisfying the constraints and assigns it to the user. Our thesis focuses on the

crucial step of loading the user's choice of disk image to the machine.

Frisbee is the system that facilitates the image loading task. A Frisbee server

process is spawned upon request for an image, Frisbee client running in target node

downloads the image and installs it. The Frisbee server process can serve multiple clients

simultaneously using multicast.

In this thesis, we study in detail the performance of the existing Frisbee system

and its shortcomings. We propose a new Switch Assisted Peer to Peer (SWP2P) transfer

system that addresses the shortcomings by significantly reducing the load on the Frisbee

server and the traffic on trunk links in Cloudlab. SWP2P builds an image availability

database on the switch to keep track of the availability among clients connected to it. The

system then uses the database to redirect requests to other clients instead of the Frisbee

server. We further evaluate the performance of the new and old system, where we show

that SWP2P transfer reduces the server and trunk load by a minimum of 21% to a

maximum of 96% depending on the level of concurrency among the clients.

Dedicated to my loving wife, Anneswa, for always motivating me to reach higher and to

my mother, who has worked all her life to get me where I am.

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES .. vii

ACKNOWLEDGMENTS ... viii

Chapters

1. INTRODUCTION .. 1

1.1 SWP2P Working Principle .. 2

2. RELATED WORK ... 4

3. ANALYSIS OF THE EXISTING FRISBEE SYSTEM ... 8

3.1 Concurrency Among Past Frisbee Clients ... 10
3.2 Retransmission Analysis .. 11

4. SYSTEM DESIGN AND IMPLEMENTATION ... 17

4.1 Switch .. 18
4.2 Frisbee Client ... 22
4.3 Frisbee Server .. 30
4.4 Design and Implementation Summary ... 30

5. EVALUATION... 39

5.1 Client Runtime Components .. 40
5.2 Start Delay ... 41
5.3 Experiment Setup ... 41
5.4 Effect of Start Delay on Server Load ... 41
5.5 Effect of Processing Time on the Switch ... 44
5.6 Using Start Delay to Mitigate Effects of Switch Processing Time 45
5.7 MCAST Versus SWP2P in Server's Perspective ... 46
5.8 Effectiveness of New Request Mechanism .. 47
5.9 Evaluation Summary .. 47

vi

6. CONCLUSION ..55

REFERENCES ..57

LIST OF TABLES

3.1 Analysis of block retransmission due to chunk miss .. 16

4.1 Types of message and their frequency .. 36

4.2 Message type versus action ... 37

4.3 Connection and their purpose ... 38

5.1 Node configuration ... 54

5.2 Client receive time .. 54

 viii

viii

ACKNOWLEDGMENTS

 I wish to express my most sincere gratitude to my advisor Dr. Robert Ricci who

paved the way for me to obtain the master's degree with his continuous support. If it were

not for his confidence in me and his brilliant guidance, this project's goals would not have

been realized.

CHAPTER 1

INTRODUCTION

In Cloudlab [2,3,4], when initializing experiments, they are loaded with disk

images of user's choice. Disk images generally contain the operating system and the

user's data in some cases. Each node is formatted and installed with a fresh copy of the

disk image before the user takes control of the experiment. As Cloudlab supports

experiments of large scale, the disk loading system should be capable of high speed and

scalability to guarantee low latency in provisioning experiments.

The Frisbee [1] system used by the Cloudlab for disk image distribution has a

server and client component. The clients can request a specific piece of an image. The

Frisbee system that facilitates the image transfer has the following features:

1. Multicast-based [7] server process to transfer the compressed image.

2. Decompressing the image on the client-side.

3. Writing the decompressed information to the disk.

When an experiment consists of multiple nodes, during the initial creation, all

nodes request for the same image. As there is a single server node that is responsible for

disk image distribution, the goal is to minimize the load on the server. The multicast-

based transfer was adopted to achieve this goal. However, due to the nature of the

multicast transfer, the clients that join the multicast group later do not receive the data

 2

sent earlier. This scenario causes the multicast Frisbee server to send out multiple copies

of the same chunk; the effects of the phenomenon mentioned above are studied in

Chapter 3. In this thesis, we introduce a new transfer mechanism for the Frisbee system

that overcomes the limitations of multicast and provides better performance.

The proposed Switch Assisted Peer to Peer (SWP2P) system leverages the

concurrency among clients to reduce the load on the server. From our observation, the

network transfer takes significantly less time than the disk image decompression and disk

write operations. Longer duration of image decompression and disk write provide us a

window of time, where each client has received the whole image and is waiting for the

decompression and disk write to finish. Thus, the client is available for a long time after

receiving the image to server the requests from peers.

In addition to the above, as the Frisbee client facilitates the installation of the

required disk image, the user's experiment cannot be started before its completion; thus,

all the system resources are available to the client. This allows the client to serve the

image to other peers without any negative impact on its operations. The switch maintains

an image availability database, to redirect the requests from clients to other peers having

the same piece of the image. This task is accomplished by using a user-programmable

switch that provides access to core switch functionalities through APIs and supports user

programs.

1.1 SWP2P Working Principle

The SWP2P system works by allowing each client to act as a peer in a P2P

fashion; the switch redirects the request messages towards clients that have the requested

 3

piece of the image. A switch module running on user-programmable switch supports

keeping track of the availability of image among different clients and redirecting the

requests appropriately.

The process of keeping track of the image availability in the switch eliminates the

need for building an overlay network that will be required by the traditional P2P systems.

The strategic position of the switch in the topology allows it to have the total visibility of

the image availability in all connected clients. The concept can also be extended to

support clients connected across multiple switches by making the switch share a

consolidated report for the availability among all clients connected to it.

 Thesis Statement: In the Frisbee disk loading system, Switch Assisted Peer-to-Peer

image transfer can significantly lower load on the server while maintaining high

performance.

We start by looking at related research work on Chapter 2 and then analyze the

existing Frisbee system and areas that have scope for improvement in Chapter 3. We

further discuss in detail the design and implementation of the proposed SWP2P system in

Chapter 4. Finally, we evaluate SWP2P against multicast-based Frisbee system in

Chapter 5 where we show that SWP2P significantly reduces the load on the server and

trunk links by 21% to 96%.

 4

CHAPTER 2

RELATED WORK

In this chapter, we discuss related works to SWP2P. We found various

enhancements on multicast, peer to peer transfer, and content-based addressing schemes

that were related to our work. We discuss in detail the ideas from other research articles

and how SWP2P differs from them.

Atkinson et al. [5] studied the process of loading disk images in a multitenant

datacenter and the need for optimizing their delivery. Their work describes in detail

various aspects of disk image loading in Cloudlab and the need to optimize the delivery

and reduce the load of the disk image server.

The Light-weight Multicast Services (LMS) [6] attempts to provide a scalable,

efficient, and reliable multicast transfer mechanism. In LMS, the routers tag and steer the

control packets to preselected endpoints and perform fine-grain multicast to guide

responses to a subset of the group without transport-level processing.

Each router selects a single replier for each source in a multicast group. When a

request comes from a nonreplier link, the router steers the request towards the replier

link. If the replier has the requested information, then it sends the data. If the replier does

not have the requested information, it sends a request to the switch. On receiving the

request from replier-link, the switch forwards the request upstream. Such a router is

 5

termed as a turning-point router, as it redirects the request packets from its links.

When forwarding the request upstream, the turning-point router adds its IP

address to the request message. In this way, the request travels upstream, until it reaches a

replier with the requested data or the multicast source. The node addressing the redirected

requests from the turning-point router creates a multicast reply packet and encapsulates it

in a unicast packet addressed to the turning-point router. This mechanism is termed as

directed multicast.

Both SWP2P and LMS are trying to leverage the switch's location for its

advantage. The difference is that LMS is still acting as an enhancement on top of the

existing multicast protocol, whereas SWP2P introduces the concept of peer-to-peer

serving and uses unicast transfer.

In the LMS method, only one link connected to the switch is selected as the

replier. Thus, all the further requests from clients connected to the switch are addressed to

the same replier. In SWP2P, the requests are redirected to all the clients having the

requested data in a round-robin fashion.

In addition to the above, the LMS method is not exploiting the concurrency

among clients in their overall runtime. LMS performs like multicast, in terms of

leveraging only the transfer time concurrency. In the evaluation chapter, we show how

SWP2P performs better by leveraging overall concurrency.

We further explored peer-to-peer systems that prefer closest peers to identify

solutions that attempt to solve similar problems. In [17], the researchers show how

choosing the neighboring peer can be done with a modest overhead in organizing and

maintaining the overlay network. In [12], Wei Li et al. show how network tomography

 6

can be used to understand and select closest peers in a P2P network. However, this

method requires extensively probing the network from a tracing node and building

network topology. It does not provide guarantees that if the data are available with a peer

connected to a local switch, then the peer will be selected. SWP2P provides an alternate

method to prefer the closest available peer by leveraging the switch's location in the

topology and maintaining the availability database at the switch.

BitTorrent-based P2P [13] system is built for an environment where not all peers

are necessarily cooperative. Thus, it uses tit-for-tat unchoking mechanisms to prefer

cooperative peers. However, in our environment, we can assume all peers are cooperative

as the peers are under our Cloudlab's control at the time of reloading. Thus, BitTorrent-

based P2P implementation causes unnecessary overhead to peer selection when deployed

in Cloudlab.

The Frisbee system follows Application-Level Framing [14] principles to achieve

its fast and scalable performance. Frisbee system divides the image into chunks, where

each chunk is useful by itself immediately after they are received. As each chunk can be

individually decompressed and written to disk, the system does not have to wait until all

the chunks in the image are received. This benefit will be lost when using BitTorrent-

based P2P system as they do not follow Application-Level Framing principles, and the

image will be split into pieces by the BitTorrent protocol. Our SWP2P design considers

chunk boundaries in transfer, thus allowing the application to reap benefits from the

existing Frisbee design.

In summary, SWP2P design can provide better performance than P2P transfer due

to the following factors:

 7

1. No requirement to maintain overlay networks like in P2P.

2. Ability to choose the nearest neighbor with minimal overhead by leveraging

switch's location in topology and avoiding probing.

3. Takes advantage of Application Level Framing used by the Frisbee system.

As our method of redirecting the requests is based on the availability of the

content (image data) among clients, we studied content-based addressing and routing [11]

and content-centric networking [15, 16].

Content-centric networks (CCN) provide a nearby cache for popular content by

using novel addressing schemes and that use name of the content known as ContentName

[16]. A user requiring some specific content sends out an interest packet [16] on all

available interfaces, including the ContentName. A router receiving the interest packets

checks if the content is available in its buffer memory, called ContentStore [16]. If found,

then the router delivers the information directly to the user. If not found, the router

checks the CCN Forwarding Information Base (FIB) to see if any neighboring nodes

have the requested content. If there is a hit on CCN FIB, then the request is forwarded to

the neighbor. On a miss, in CCN FIB, the request is discarded.

The SWP2P design locates the closest available cache of the requested data by

maintaining the availability among clients on the switch. This is possible as we know the

topology in Cloudlab, and we can leverage switch's location in the topology. By using

existing IP addressing, the SWP2P design eliminates the requirements for major changes

in the overall routing mechanism. In the evaluation chapter, we show how SWP2P

achieves significantly better results than multicast and P2P transfer while avoiding the

cost of maintaining an overlay network using the existing IP addressing scheme.

 8

CHAPTER 3

ANALYSIS OF THE EXISTING FRISBEE SYSTEM

To understand the bottlenecks in the existing Frisbee system, we analyzed the

logs collected from the Frisbee server instances. The logs were collected from 1st January

2019 to 10th April 2019. We begin our analysis by looking at the data from a single

server. Then we go through in detail about various terms present in the log and further

proceed to analyze aggregate statistics collected over the total time.

This server instance is serving the Ubuntu-16 x86 image to four Frisbee clients

whose client ID is mentioned in the Figure 3.1. The image UBUNTU16-64-X86.ndz:20

is of size 709 MB. Images are split to 1 MB chunks, and chunks are further divided

into1024 KB blocks. Thus, the image being transferred has 709 Chunks, thus 709*1024 =

726016 Blocks.

In the log presented in Figure 3.1, concurrency among the clients is measured in

the following manner. A client is considered as being concurrent if it has at least one

other client running along with it. The Figure 3.2 further shows how the concurrency is

measured.

In Figure 3.2, the example server has three clients, among which client 2 is 100%

concurrent, as it has some other client running along its total lifetime. On the data

presented in Figure 3.1, it is seen that there are four clients, and they are highly

 9

concurrent (>99%). Since the clients are concurrent, the server should have sent only a

single copy of each block in the image, though it can send a small number of duplicate

copies of the block as few clients are not 100% concurrent. In the server report, we can

see that the image has 726016 blocks, so the number of blocks sent on multicast should

be close to this number.

However, the server has sent 1483776 blocks, which is 2.04 times the original

number of blocks. Sending higher than the required number of blocks adds stress to both

the Frisbee server and the trunk links that connect between switches. To understand the

effect of this phenomenon, we introduce a new parameter called multicast transfer

efficiency defined below:

Multicast Transfer Efficiency (MTE) = Blocks in Image/Blocks sent by the server.

For the server in Figure 3.1, the multicast transfer efficiency is calculated below:

MTE = 726016/1483776 = 0.489.

The optimal MTE value is 1.0, indicating only one copy of the image is sent out

by the server. However, we can observe from our calculation that the multicast transfer

efficiency is not optimal though the clients were running in parallel. It can be concluded

that the multicast does not take complete advantage of concurrency among clients. To

further understand why the multicast-based system is not able to take advantage of

concurrency, let us begin by looking at things that contribute to client runtime. Client

runtime is composed of two parts, as shown in Figure 3.3.

Image transfer time is the sum of the following:

 Network transfer time

 Server file read time

 10

 Frisbee protocol overhead (Request-Reply mechanism)

 Multicast protocol overhead (Start delay)

The design of the multicast protocols restricts the Frisbee server to take advantage

of concurrency only in the image transfer phase of the client run time. As illustrated in

Figure 3.3 and Figure 3.4, the Frisbee server must completely resend the image if two

Frisbee clients arrive in the following manner.

Client 2 arrives after the image transfer of client 1 is complete, and when client 1

is writing the image to disk. Assuming both clients are connected to the same switch,

client 2 requests image from Frisbee server, though the same image is completely

available with client 1 on the same switch. This issue serves as the motivation to improve

the performance of the Frisbee system by taking advantage of the complete client

concurrency time.

3.1 Concurrency Among Past Frisbee Clients

In the above section, we have established the shortcomings present in the existing

Frisbee system. In this section, we analyze the past log data to establish the amount of

concurrency observed among Frisbee clients.

Figure 3.5 shows that out of the 18998 clients analyzed, 12737 clients have

exhibited 90 to 100 % concurrency. This serves as evidence that Frisbee clients are

highly concurrent. Considering the multicast's limitation to take advantage of only the

image transfer time concurrency, data from Figure 3.5 further cements the argument for

the need for a better transfer mechanism. The high number of nonconcurrent clients is

due to the single node clients that are often seen in Cloudlab.

 11

In Figure 3.6, we can see the multicast efficiency of clients from the past. Based

on our analysis, servers that have single clients are mostly contributors to complete

multicast efficiency. SWP2P will focus on reducing the number of servers having an

efficiency of less than 1.0.

3.2 Retransmission Analysis

In the above section, we have concluded that there is a high amount of

concurrency among Frisbee clients, despite that there is a high amount of retransmits, and

thus low transfer efficiency. In this section, we study the reason behind retransmission.

In the Frisbee system, an image is divided as 1MB Chunks, and each chunk is

further divided into 1KB Blocks. Full Chunk Requests are sent by client when it does

not have any blocks of this chunk. This message is sent only one time per chunk. Partial

Chunk Requests are sent by client when either some blocks of a chunk are missing, or

the whole chunk that was requested earlier has not arrived yet.

Current Frisbee logs have information about partial requests and full chunk re-

requests. So, complete chunk requests are sent only when the client did not see anyone

requesting the same chunk, and it has not requested the same chunk earlier. The traffic

loss on the client-side or network results in Partial Chunk Requests.

Figure 3.7 represents the split between servers with one client and more than one

client. Figure 3.8 represents the split between servers with clients that have not missed

any chunk fully and the ones that had clients that missed at least one chunk fully. The

split in the Figure 3.8 resembles closely to the Figure 3.7; this gives us the impression

that single client servers did not have any client that lost a whole chunk.

 12

We also analyzed the average percentage of blocks missed that was due to the

entire chunk being missed by the clients. Results are as follows.

From our analysis, it is also seen in Table 3.1 that 96% of the blocks that were

repeated were due to clients not receiving the whole chunk. The same is illustrated in

Figure 3.9. Since we have already established that the overall runtime concurrency is

significantly high, increasing full chunk miss when there are many clients supports the

assumption that the transfer time overlap among clients is minimal. This supports our

plan to design a system that makes use of the entire overlap in client execution and not

just the time taken to transfer the image via multicast.

Figure 3.1 Extracted information from Frisbee Logs for server 55626

Server Id : 55626
Serving Image : /usr/testbed/images/UBUNTU16‐64‐

 X86/UBUNTU16‐64‐X86.ndz:20
Total clients served : 4
File read time : 0.48
File size in MB : 709.0
File repeated reads : 775946240 Bytes
Total blocks on image : 726016
Total blocks on multicast : 1483776
Saving using multicast : 1420288
 Client ID : 1657444948
 Runtime : 93.72
 Concurrency : 100%
 Client ID : 2058447516
 Runtime : 93.705
 Concurrency : 100%
 Client ID : 1590336582
 Runtime : 58.478
 Concurrency : 99.18%
 Client ID : 374246217
 Runtime : 36.353
 Concurrency : 99.02%

 13

Figure 3.2 Concurrency measurement example

Figure 3.3 Split of client runtime

Figure 3.4 Concurrency example

 14

Figure 3.5 Histogram of concurrency

Figure 3.6 Multicast transfer efficiency histogram

 15

Figure 3.7 Ratio of 1 client versus multiclient experiments in Cloudlab

Figure 3.8 Ratio of servers with and without loss

Figure 3.9 Histogram analyzing the chunk loss

 16

Table 3.1 Analysis of block retransmission due to chunk miss

Server's clients Average % of blocks retransmitted that can be attributed to full

chunk miss

1 0.11

>1 91%

 17

CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

SWP2P transfer works by preferring peers that are connected to the same switch

to serving the request instead of the Frisbee server. The key operations in the SWP2P-

based Frisbee system are described below:

1. Clients send Join message to the server, indicating the image of interest.

2. The server sends a Join-Reply message providing image information such as the

number of chunks and blocks in an image.

3. Clients request chunks they do not have in random order using request message.

4. The request messages are redirected at the switch to appropriate peer or server.

5. On receiving the request, either the peer or server sends the requested chunk.

6. The client receives the requested chunk and sends a report message for every

eight complete chunks it receives. In the report message, the client indicates a list

of chunks it already has.

7. The switch uses the report message to build a chunk availability database.

8. Once the client finishes writing the image to the disk, it sends a leave message.

9. The leave messages are used by switch to update the chunk availability database.

Once the client receives the chunks, it stores them in memory until it sends the

Leave message. As the images are compressed, they typically are of only a few GBs in

 18

size; this makes holding them in memory feasible. Clients are available to serve chunks

even after they finish receiving as decompressing, and writing it to disk takes a longer

time, as mentioned in the previous chapter. The following example illustrates the working

of the SWP2P system.

In Figure 4.1, we can see that client 1 is requesting Image 1's chunk 101. Upon

receiving the request, the SWP2P module on switch checks for any entry in the chunk

availability database for chunk 101. Since there is no entry, the request is forwarded to

the server.

The scenario of two overlapping clients is shown in Figure 4.2. Client 2 requests

for chunk 101. On receiving the request, the SWP2P module checks its database for

available peers. As client one already received chunk 101, it has reported its availability,

so the SWP2P module redirects the request to client 1. On receiving the request, client 1

sends the requested chunk to client 2. In this example, if client 2 had requested for any

chunk other than 101, the request would have been forwarded to the server.

The existing Frisbee system uses the multicast protocol, in order to support the

peer-to-peer data transfer among clients, and the unicast transfer has been implemented

as part of this thesis. In addition to that, a new software module is also implemented in

the switch to build a database of chunk availability among clients connected to it. In the

following sections, we discuss in detail the changes in each component involved.

4.1 Switch

The user programmable switch DELL S4048-ON is utilized for the

implementation. By default, the Dell switch arrives with FTOS Network Operating

 19

System (NOS) installed in it. As the project depends on the programmability and access

to open APIs in the NOS, OpenSwitch NOS OPX was selected.

OPX was selected after evaluating it against Open Network Linux's ONL. As

OPX is supported by Dell Systems, it provided better compatibility on Dell S4048-ON

switch. During the evaluation phase, we identified that OPX supports all our primary

requirements listed below.

1. ONIE-based installation for easy operation.

2. ACL API support for installing custom filtering rules.

3. No rate limiting in lifting packets to control plane.

 Figure 4.3 explains the OPX architecture [9] and the new SWP2P switch

module's interactions.

The SWP2P module built on python3.5 interacts with the OPX using Control

Plane Services APIs. The core responsibilities of the SWP2P module are listed below:

 Receiving all the Frisbee control packets from the clients.

 Processing the report and leave messages from clients to build a chunk

availability database.

 Processing the request messages from clients and identifying the appropriate

peer/server for the request.

 Redirecting the request to the peer/server.

4.1.1 Receiving Frisbee Control Packets

The Frisbee system uses various messages between clients and server to

communicate. SWP2P module facilitates transferring these messages from the data-plane

 20

to the control-plane of the switch by installing ACL rules. We will go through the ACL

rules in detail shortly.

The messages that are supported by the Frisbee system are shown in Table 4.1 To

support the transfer of all the Frisbee Control messages from the data-plane to control-

plane, we create a dummy Ethernet interface with an IP address on the switch. All the

clients are configured to send their messages to the switch's dummy ethernet IP address.

The SWP2P module installs an ACL rule to uplift all the messages addressed to the

dummy interface IP address; this is accomplished using the TRAP_TO_CPU option in

the CPS ACL API.

ACL rule is needed as the packets, in general, are processed and forwarded by the

data plane in the switch, which is primarily an ASIC (Application Specific Integrated

Circuit). To make custom forwarding decisions of the request packet, we install ACL

rules to lift it to the control plane of the switch, where the SWP2P module resides. The

control plane, in general, consists of an x86 processor, Linux kernel, and support for user

applications.

SWP2P module opens a socket with all the ethernet interfaces that have clients

connected to it. By using the select system call, it then reads the messages coming from

various clients. SWP2P module is also configured with the Frisbee server's IP address so

that it can forward the messages when required. The Table 4.2 illustrates the response of

the SWP2P module for each type of message.

 21

4.1.2 Chunk Availability Database

The Chunk availability database is used to keep track of the availability of

different chunks among different clients. It is updated each time a Report message is

received about chunks available with a client. A Leave message is used to clear the

availability of a client to serve chunks.

Figure 4.4 illustrates the design of the chunk availability database implemented in

the SWP2P module residing in the switch. In this example, the database is created for the

Ubuntu-16.0 image. The database implemented using python's dictionary has information

about the availability of seven chunks. The database entry for the chunk one is expanded.

Each entry in the database points to the Chunk Class object. Contents of the Chunk Class

are explained in Figure 4.5.

If there has been no report from any client for the availability of the requested

chunk, the chunk database entry points to NULL. In such cases, the request is redirected

to the Frisbee server configured by the user. If the chunk class object is found in the

database, it signifies the availability of clients connected to the switch that can serve

these requests. The serving_peer_list contains the objects of client Class. Contents of the

client Class are explained in Figure 4.6. To avoid overloading a client, the SWP2P

module selects them in a round-robin manner from the serving_peer_list.

4.1.3 Maintaining the Chunk Availability Database

As explained in the previous section, the chunk availability database serves as the

most important resource for redirecting the requests. To maintain the correct information

in the database, the SWP2P module residing in switch depends on two types of messages

 22

from the clients connected to it. In this section, we will study in detail about the following

two messages and how they are processed at the switch.

1. PKTSUBTYPE_SWP2P_REPORT - referred as SWP2P Report message

2. PKTSUBTYPE_LEAVE - referred as Leave message

SWP2P Report message is a new message introduced for updating the chunk

availability in the switch. This message is sent by the client to update the switch about the

chunks that it can serve. SWP2P Report message contains the fields described in Figure

4.7.

The SWP2P Report message is filled with a bitmap where the respective bit is set

as one if the chunk is available in the client. By setting this bit as 1, the client indicates

that it is willing to serve this chunk to the peer clients. Upon receipt of this message, the

SWP2P module in the switch updates the availability in its database.

A part of maintaining the database is to remove the client's availability when they

leave. The client sends the Leave message as an indication that it has finished receiving

the image and writing it to the disk. On receiving this message, the SWP2P module on

switch removes the client from the serving_peer_list for all the chunks of the image.

4.2 Frisbee Client

The Frisbee client has been modified to accept the request from other peers and

serve them. As part of this modification, a lot of changes has been introduced to the

existing system, while still retaining the functionality of the existing Frisbee client

implementation. The following are the main changes to the Frisbee client, and we will be

discussing them in detail in the upcoming subsections.

 23

 Transfer changed from multicast to Unicast

 Transport mechanism changed from UDP to TCP

 Receiving redirected request messages from the switch

 Sending requested chunks to the peers

 Updating the switch with report messages

 Moved to deterministic order for requesting chunks

 Request batching

4.2.1 Choosing Unicast Transfer Over Multicast

As we began working on this thesis, we selected unicast transfer over multicast to

favor the simplicity of operation in the peer to peer transfer mechanism. We analyzed the

existing code and understood that there are various mechanisms in place to take

advantage of the multicast approach. Since they will not contribute anything to the

unicast-based client, it has been disabled in our implementation. The important changes

that were disabled are listed below.

 Request Suppression

 Dubious Chunk Support

Request suppression was achieved in the multicast system by allowing the client

to send their chunk request to the multicast group. Thus, all client receiving the request

will analyze and avoid rerequesting the same chunk again. In the multicast

implementation, this prevented the server from receiving too many request messages at

once. However, the request suppression is invalid in the unicast-based transfer system;

thus, it has been disabled in the new client implementation. In the new client

 24

implementation, the server's request processing load is reduced by the following three

mechanisms.

 Peer to Peer transfer among clients

 Deterministic order of requesting chunks

 Request batching

Each of these three mechanisms is explained in detail in the further pages of this thesis.

4.2.2 Changing Transfer Protocol to TCP

In the UDP-based implementation, the client was responsible for managing the

sending window. This was accomplished by encoding constants for burst management in

the client code. The burst size and burst interval, regardless of their selection, do not

promise lossless delivery. We observed significant packet losses with the default UDP

Socket read, write size settings in the Linux kernel, and the default burst configurations

on the client. These packet losses were observed in the receiving side, due to the socket

buffer size.

To overcome this issue, we switched to using TCP sockets for the image data

transmission. TCP provides an advantage through automatic buffer resizing and lossless

delivery on the transport layer. Though we decided to utilize the TCP sockets for the data

transfer, the UDP sockets are retained for the Frisbee protocol control packet

transmission.

Frisbee control packets include the request messages. Redirecting the request

packets at the switch is not possible if these are TCP messages as they are part of the

persistent session. Hence the UDP sockets are still retained. In practice, the control

 25

packets are lost rarely; when lost, the client recovers by rerequesting the same chunk after

the timeout. In the Figure 4.8, we represent in detail the various sockets used for

communication among different components in the SWP2P system. In the Table 4.3,

various connections and their purpose are shown.

Frisbee clients run a TCP server accepting incoming connections on TCP port

54321. This TCP socket is used to sending and receiving the data packets/Frisbee

BLOCK type packets from server and peer clients. When used for communication

between the client and server, the client waits for the server to initiate the

communication. The server initiates the communication upon receiving the JOIN

message from the client. When used for communication between the clients, the client

that intends to send the message initiates the connection with the TCP server present in

another client.

To segregate the peer-to-peer functionality from existing implementation, the

redirected control messages (request and partial request) are sent to a new UDP port

(54333) to the clients from the switch. This is accomplished by changing the UDP

destination port in the request messages when they are redirected at the switch. On the

client side, we run separate threads for processing messages from peers and the server.

This design allows measuring the time taken by various entities in a discrete manner.

4.2.3 Processing Request Messages From Peers

Peer to Peer functionality is implemented in the clients by adding new threads for

processing the requests from other clients. In this section, we will cover in detail the

request queuing mechanism implemented in the clients; the various threads are illustrated

 26

in Figure 4.9. The four threads are as follows:

1. Client Recv Thread (Modified).

2. Chunker Thread (Modified).

3. Request Recv Thread (New).

4. SWP2P Worker Thread (New).

5. Per Peer TCP Send Thread (New).

Client Recv Thread receives messages from the server and peers. It processes

the incoming data in BLOCK messages. This thread is also responsible for updating the

switch with the SWP2P_REPORT message. After completion of receiving each chunk of

the image, the chunk is released from this thread to the Chunker Thread.

Chunker Thread is responsible for retrieving the completed chunks from the

ChunkBuffer and writing them to the disk. Chunker Thread handles these data to the

decompression thread, and once decompression is complete, it then writes the chunk to

the disk. In the earlier Frisbee implementation, the chunks were discarded after they were

written to the disk. Now we retain the written chunks also in the ChunkBuffer to serve

requests from peers.

Request Recv Thread receives the requests from the peers and adds them to the

Peer Request Queue. This thread parses the incoming request messages and adds the

following information to the queue.

1. Requesting client's IP address

2. Type of request (Full/Partial)

3. Requested Chunk

4. Requested Block Bitmap

 27

SWP2P Worker Thread processes each request from the Peer Request Queue. It

retrieves the chunks from the Chunk Buffer and forms the Frisbee Response Packet.

These packets are then queued to the Per Peer Queue. Each peer has its own TCP send

queue in the client system; all the image blocks addressed to a client are added to its Per

Peer Queue. Since requests can come in only for the chunks that are already complete,

the Chunk Buffer is accessed without locks from the SWP2P worker thread to avoid

delays.

Per Peer TCP Send Thread deques the Per Peer Queue and sends the message to

the peer. The delays caused by the TCP send are faced only by this thread, thus isolating

all other threads from such delays.

4.2.4 Changes to Request Mechanism

The image chunks were requested by clients in a random fashion in the existing

implementation. In our analysis, we understood that requesting chunks in a dedicated

order improves the efficiency of the SWP2P transfer system. In this section, we will be

exploring that in detail.

Our idea is to allocate each client a dedicated range of chunks, which it should

receive first. Let N be the total number of chunks in an image, and C be the number of

clients in the experiment. We introduce another parameter Ci, the sequence number of the

client in the total experiment. Let us take the following example, where N=1000, C=4.

The first node in the experiment has Ci=1; the second node has Ci=2, and so on. Figure

4.10 shows the request order.

Requesting chunks in the order mentioned in Figure 4.10 creates a cascading

 28

effect when clients are running in parallel. If they are not running in parallel, then this

request mechanism does not cause any harm either.

Requesting chunks from clients in the specified order guarantees that the first N

(1000) chunks served by the server are unique, constituting a complete copy of the image.

In addition to that, it also establishes approximate ownership of who is

responsible for serving the chunk. The switch is still responsible for keeping track of

chunk availability, but the approximate ownership allows clients to report chunks in a

predefined order. This effectively acts as a hint mechanism to improve the efficiency of

peer-to-peer serving. In the example on Figure 4.11, client 4 receives the 751-1000

chunks initially, and thus when the client 3 requests for the same chunks, client 4 can

serve them. However, a key thing to observe is, because of the round robin-based peer

selection in the switch, when the client 2 requests for the same chunks, Client 3 is chosen

to serve instead of the client 4. The same algorithm for chunk request ordering is applied

regardless of the number of chunks in the image or the number of clients starting in

parallel.

The chunk request order is derived from the following simple algorithm.

 int N = Total Number of Chunks in Image

 int C = Total Number of clients in the Experiment

 int Ci = Node number in the experiment

 int window_size = N/C;

 int copy_start = (Ci ‐ 1) * window_size;

 int idx = 0;

 29

 for (i = copy_start; i < N; i++)

 {

 ChunkRequestList[idx] = i;

 idx ++;

 }

 for (i = 0; i < copy_start; i++)

 {

 ChunkRequestList[idx] = i;

 idx ++;

 }

To implement this algorithm, we added new command-line arguments to the

Frisbee client to obtain the total number of nodes in the experiment and the current node

number.

In addition to the above changes, we have also added a request batching feature to

the existing Frisbee system. In the existing implementation, for each chunk, an explicit

request was sent out. This mechanism was favorable earlier as the chunks were requested

in random order. As each request needs to be processed by the switch to redirect them

appropriately, the existing request mechanism added notable stress to the SWP2P module

running in the Dell switch.

Since we have changed the Frisbee to request chunks in a sequential manner, we

have added support in the Frisbee client, server, and SWP2P switch to support requesting

K chunks at a time. The value of K can be set by a compile-time variable in all three

components of the SWP2P system. In our experiments containing 32 nodes, the K value

 30

has been set as 5, meaning only one request is sent for five chunks. When request

batching is enabled, the number of request messages sent by the clients is lower; thus, the

requests that must be processed by the switch also is reduced, thus having lower

processing load on the switch.

4.3 Frisbee Server

Frisbee server has the least changes among the three components of the SWP2P

system. The server process has the following modifications:

1. Transfer method changed from multicast to Unicast.

2. Transfer protocol changed from UDP to TCP.

3. Batching the incoming requests.

To accommodate the unicast requests, the servers in the work queue, now support

remembering the clients that sent the request for the chunk. As all these changes have

been explained in Section 4.2, we are going through the details in the subtopic.

4.4 Design and Implementation Summary

SWP2P system is implemented by making changes at the Frisbee server, client,

and the switch module. Our primary design contributions are listed below:

 Modifying existing Frisbee system to support Unicast transfer.

 Installation of ACL rules in switch for lifting request packets.

 Maintenance of the chunk availability database at the switch.

 Redirecting request packets at the switch.

 Adding the serving capability to clients.

 31

 Efficient multithreaded architecture on clients for low latency service.

 New sequential request mechanism coupled with request batching.

 Change of transfer protocol of blocks from UDP to TCP.

Figure 4.1 Example SWP2P transfer for one client

Figure 4.2 Example SWP2P transfer when there are two clients running in parallel

 32

Figure 4.3 OPX Architecture and SWP2P module

Figure 4.4 Chunk availability database design

 33

Figure 4.5 Chunk class object

Figure 4.6 Client class object

Figure 4.7 SWP2P Report message

Figure 4.8 TCP and UDP Socket usage diagram

 34

Figure 4.9 Multiple threads in the Client process

Figure 4.10 Chunk request order

 35

Figure 4.11 Chunk request order cascading effect

 36

Table 4.1 Type of messages and their frequency

Message Type Description Frequency

per session

PKTSUBTYPE_JOIN Sent by clients to request image

information from the server

Once

PKTSUBTYPE_LEAVE Sent by clients when they have

finished decompressing and writing

the image to the disk

Once

PKTSUBTYPE_BLOCK Sent by server or peers with blocks of

image chunk

1024*Number

of Chunks

PKTSUBTYPE_REQUEST Sent by clients to request a whole

chunk

1 * Number of

Chunks

PKTSUBTYPE_PREQUEST Sent by clients to re-request partial

chunks

Based on loss

in the network

or receiving

side

PKTSUBTYPE_PROGRESS Sent by clients to server for

centralized logging

Based on

requests from

server

PKTSUBTYPE_SWP2P_RE

PORT

Sent by clients to switch for updating

chunks that are available with it

Once for every

8 chunks

 37

Table 4.2 Message type versus action

Message Type SWP2P Module Action Number of

messages

N = Image Size

PKTSUBTYPE_JOIN Forwarded to the server O(1)

PKTSUBTYPE_LEAVE Chunk availability database

is updated as the client is no

longer available to serve

chunks

O(1)

PKTSUBTYPE_BLOCK This message is not lifted O(N)

PKTSUBTYPE_REQUEST Redirected to another

client/server based on

availability in the database

O(N)

PKTSUBTYPE_PREQUEST Redirected to another

client/server based on

availability in the database

O(N)

PKTSUBTYPE_PROGRESS Forwarded to the server O(N)

PKTSUBTYPE_SWP2P_REPORT Used to update the chunk

availability database for the

client

O(N)

 38

Table 4.3 Connection and their purpose

Connection

Numbers

Connection Purpose

1,2,3,4 PKTSUBTYPE_BLOCK messages containing the image data

to clients

5,6,7 PKTSUBTYPE_JOIN to server

PKTSUBTYPE_REQUEST to switch

PKTSUBTYPE_PREQUEST to switch

PKTSUBTYPE_LEAVE to switch and server

PKTSUBTYPE_PROGRESS to server

PKTSUBTYPE_SWP2P_REPORT to switch

8,9 PKTSUBTYPE_JOIN Reply from server

PKTSUBTYPE_REQUEST Redirected at switch to peer client

PKTSUBTYPE_PREQUEST Redirected at switch to peer

client

PKTSUBTYPE_PROGRESS Request from server

 39

CHAPTER 5

EVALUATION

We evaluate the SWP2P transfer by comparing it with the existing multicast-

based Frisbee implementation. In addition to that, we also study in detail the effects of

various design choices that were made during our implementation of SWP2P. The

following are the core things that we will compare between multicast and SWP2P

implementations:

1. Server load.

2. Load on trunk links.

3. Network Receive time in clients.

The server load is defined as the number of chunks sent out by the server to

address the requests from the clients. As the server addresses more requests from the

clients, it tries to merge requests if it already has a pending request in the queue.

However, if there are no pending requests, then the server reads the file from disk to

retrieve the requested chunks. This operation costs disk reads, server's CPU cycles, and

network resources.

The trunk links are defined as the links that connect one switch to another in

Cloudlab. Trunk links are a resource to be preserved as they carry traffic for multiple

clients. By sending a smaller number of chunks from the server to the clients, we can

 40

avoid using trunk links for carrying the chunks. SWP2P transfer aims to achieve this by

preferring peers that are connected to the same switch, due to this the requests sent out

from the switch is reduced, thus leading to less traffic over trunk links.

In addition to the above parameters, we will also discuss in detail the effects of

processing packets in the switch's control plane. The data plane is made of ASIC that is

capable of handling and transferring packets at the line rate (10Gbps). However, the

control plane is in general of low processing capability. In our experiments, we used the

Dell S4048-ON switch, which uses Intel(R) Atom(TM) CPU @ 1.74GHz, and it supports

only two threads for parallel execution. Due to the low processing power, when a large

number of clients start concurrently, they suffer from delays in request rerouting. We

explore alternate ideas on how to overcome such delays in SWP2P implementation in the

following sections.

5.1 Client Runtime Components

Client runtime represents the total lifetime of the Frisbee clients process. Frisbee

clients are responsible for receiving, decompressing, and writing the image to the disk.

Figure 5.1 shows two components contributing to the client runtime:

1. Network Receive Time.

2. Decompress, and disk write time.

The data represented are based on the runtimes, when one client receives an

image from the server. Figure 5.1 also shows how these components change when the

image is of different sizes and has a different compression ratio. A common factor in

Figure 5.1 is that the network receive time is significantly shorter when compared to the

 41

time taken by the Frisbee client to decompress and write the image to the disk. In the

upcoming sections, we show how SWP2P implementations can take advantage of the

longer decompression and disk write operations.

5.2 Start Delay

The start delay is the time difference in the start of two clients. In this thesis, we

refer to the start delay as the time delay between the start of two consecutive clients.

Figure 5.2 shows how clients start when the start delay parameter is set as 1 second.

 In this thesis, we use start delay as a parameter to simulate various degrees of

concurrency among clients, and we then study the effect of such concurrency on various

other parameters like client runtime and chunks sent by server.

5.3 Experiment Setup

 Our experiment setup is based on the Cloudlab profile, which allocates 32 nodes

and one user-programmable switch. Switch details are already provided at the start of this

chapter. All 32 nodes are identical and have the configuration mentioned in Table 5.1. All

the nodes are connected directly to the switch. Among the 32 nodes, the first node is

selected as the Frisbee server, and this node hosts the Frisbee server process.

5.4 Effect of Start Delay on Server Load

 SWP2P is designed to take advantage of the concurrency in the overall client

runtime. Multicast lacks this advantage as, by design, it can only leverage the

concurrency in the network receive time of the client's total runtime.

 42

 The data in Figure 5.3 are collected by running 30 clients with varying degrees of

start delay among them. The image used for this experiment consists of 730 Chunks,

which accounts for 730 MB. In this experiment, each client receives a 730 MB image,

decompresses it, and writes it to the SSD disk.

 In order to achieve our goal of reduced load on server and trunk links, the chunks

sent out by the server have to be close to 730, as that indicates that the server had to send

out only one copy of the image. The average runtime of a client when only one client is

receiving the data from the server is around 10 to 11 Seconds. This time includes the

Frisbee protocol delay, time taken by the client to receive the image, time taken for

decompressing, and writing the image to the disk.

5.4.1 Analysis for Start Delay Between 1 to 9 Seconds

 From Figure 5.3, it can be inferred that the SWP2P performed as well as the ideal

scenario when the start delay is between 1 to 9 seconds. This can be explained by the

components contributing to the client runtime shown in Table 5.2.

 Even if the start delay is 9 seconds, the SWP2P implementation can take

advantage of the client that is running in parallel to it. This is illustrated in Figure 5.4.

 As the start delay increases, the client runtime overlaps, or the concurrency occurs

when client 1 is in component 2 of its runtime. In such a scenario, with SWP2P transfer,

client 1 can process requests from client 2, in turn avoiding sending the request to the

server.

 43

 It can also be inferred that the multicast transfer-based Frisbee system performs

incrementally worse as the start delay increases, this can also be attributed to the overlap

occurring in component 2 of its runtime.

5.4.2 Analysis for Zero Second Start Delay

 The start delay of zero seconds implies that the clients were started in parallel.

This is the ideal scenario for both SWP2P and multicast transfer. However, from Figure

5.5, we can observe that both the transfer did not meet the ideal limits.

The multicast transfer did not achieve the ideal limits due to subsecond delays in

multicast join mechanism and other Frisbee protocol overhead. SWP2P transfer did not

achieve the ideal limits due to minor time mismatches that occur between the reports and

the requests. These mismatches occur, when a client requests for a piece of the image,

before the client responsible for that piece reports its availability to the switch. In our

analysis, we found the time difference between such reports and requests in the

subsecond range.

5.4.3 Analysis for Start Delay Greater than 12 Seconds

When the start delay is greater than 12 seconds, both the SWP2P and multicast

transfer performs equally poor. This is because there is no overlap in the client runtime.

As there is no overlap, there is no client that can be leveraged for performance by

SWP2P. The same is illustrated in Figure 5.6.

 44

It should be noted that the maximum start delay until which SWP2P can leverage

concurrency, depends on the size of the image. Thus, for a larger image, the start delay

can be greater than 12 seconds, and SWP2P can still perform better than multicast.

5.5 Effect of Processing Time on the Switch

 As we mentioned at the start of the chapter, the switch has limited processing

ability. The following are the major time-consuming tasks in the switch:

1. Report messages – Updating the image chunk database by adding new client

availability.

2. Request messages – Redirecting the requests to the appropriate client or server.

3. Leave messages – Updating the image chunk database by removing the client

availability.

The processing time represented in Figure 5.7 is the sum of all the three

components listed above. The processing time increases linearly with the number of

clients actively running in the experiment. This posed a serious threat when the request

batching feature was not in place.

Without request batching, the clients needed to send one request for each chunk.

This resulted in the requests being queued at the switch, thus leading to delay in the

image delivery. All the results that are discussed in this section are collected with request

batching enabled in switch, client, and server.

 45

5.5.1 Effect of Parallel Clients on Runtime

In our experiment containing 30 clients and one server, we observed that as more

clients start at the same time, their runtime linearly increases. This is due to the increased

processing time at switch, and the request is queued.

In Figure 5.8, the runtime represented is the average runtime of the client. As the

multicast-based Frisbee system does not require the switch to make any forwarding

decision in the control plane, the average client run time remains consistent across the

increasing number of clients starting at the same time.

However, we can observe that the average client runtime increases linearly in the

SWP2P implementation. It should also be noted that the top of the rack switches are

naturally limited to 48 ports. We scale the experiments to 30 clients and address all the

concerns about the linear increase of processing time in client and switch. In the next

section, we show how this effect can be mitigated by using a small start delay among

clients.

5.6 Using Start Delay to Mitigate Effects of Switch Processing Time

When many clients start at the same time, they all send requests and report

messages at the same time. As the switch can only process the requests and report

messages in a sequential fashion, the requests received later are queued for processing at

the switch. This effectively introduces a delay in receiving the chunks, thus slowing

down the whole process. The delay introduced in the network receive component of the

client runtime causes no issues if it is less than the time taken by decompression and disk

write thread at client.

 46

 A non-zero start delay effectively avoids request queuing at the switch. As the

clients start with an offset in time, they do not send the request and report messages at the

same time. Thus, by using the start delay and the request batching feature, we can

mitigate the problems that arise due to lower processing power at the switch's control

plane. The results of various start delays are shown in Figure 5.9.

5.7 MCAST Versus SWP2P in Server's Perspective

In this section, we show the results from our experiment, where we simulated a

various number of clients attempting to download the image from the server at the same

time. In the previous sections, we have illustrated the impact of clients starting at the

same time, the effect of it on the switch, and how it can be mitigated. In addition to that,

in Section 5.4, we discussed how SWP2P performs better than multicast in the server's

perspective. In this section, we further cement that opinion by showing how SWP2P

consistently outperforms multicast by having the least load on the server and trunk links.

From Figure 5.10, it can be observed that SWP2P consistently has a lower load on

the server node. This results in the server sending fewer packets over the trunk link, thus

reducing the usage of trunk links.

 We chose to showcase this scenario as multicast has its maximum efficiency

when clients start at the same time. However, due to minor start delays introduced by the

multicast join mechanism, it still does not perform as good as SWP2P. This is because in

the SWP2P-based transfer, even when the clients start with a delay, they leverage their

concurrency on overall runtime.

 47

5.8 Effectiveness of New Request Mechanism

As part of the SWP2P implementation, we have made the two following changes

to the request mechanism of the Frisbee system:

 Ordered request with dedicated range for each client (Section 4.2.4).

 Request batching (Section 4.2.4).

Both enhancements are introduced to reduce the processing load of the switch.

Figure 5.11 illustrates the difference introduced by these features in average client

runtime. When the chunks are requested in random order, the request batching feature

cannot be implemented at the clients and server. Due to this, the clients need to send a

request for each chunk. This significantly increases the number of requests that must be

redirected at the switch.

As more requests are sent to switch at the same time, the requests get queued at

the switch. This introduces a delay in the chunks being served; thus, the overall runtime

of the client increases significantly. The request batching feature, when enabled, allows

the clients to send only one request message for requesting 10 chunks.

5.9 Evaluation Summary

In summary, SWP2P outperforms multicast-based Frisbee implementation in all

the scenarios we tested. Our SWP2P implementation shows that it is possible to take

advantage of the concurrency among clients and thus having a lower load on the server

machine and the trunk links.

The only hiccup we faced in the SWP2P implementation was the low processing

power at the switch's control plane. In this thesis, we also show how such hiccups can be

 48

successfully overcome using the start delay parameter. From Figure 5.3, it can be

observed that there are significant advantages when the start delay is less than the client's

runtime. For example, with a 3-second start delay, the SWP2P sends only 730 chunks,

whereas the multicast implementation sends 14 times of that.

Thus, we show that SWP2P transfer mechanism significantly reduces the load on

the server and trunk links when compared to the multicast-based Frisbee system.

Figure 5.1 Analysis of client runtime

Image 1 ‐ 730 MB Image 2 ‐ 1984 MB Image 3 ‐ 6827 MB

Decompress and Write Time 7.66 13.66 48.06

Network Recv Time 1.996075 5.195049 17.963275

0

10

20

30

40

50

60

70

Client Runtime Components

Network Recv Time Decompress and Write Time

 49

Figure 5.2 One-second start delay among five clients

Figure 5.3 Start delay's effect on server load

 50

Figure 5.4 Client runtime overlap on component 2

Figure 5.5 Detailed analysis of zero-second start delay

920

1152

730

0 200 400 600 800 1000 1200 1400

SWP2P

MCAST

Ideal

Chunks Sent Out by Server

0 Sec Start Delay

 51

Figure 5.6 No overlap illustration

Figure 5.7 Processing time on the switch

2
.9
5

2
.9
5

6
.0
4 8
.7
8 1
1
.3
1 1
4
.7
5 1
7
.7
5

1 5 10 15 20 25 30

R
EP
O
R
T
P
R
O
C
ES
SI
N
G
 T
IM

E

(S
EC
O
N
D
S)

NUMBER OF CLIENTS

PROCESSING TIME ON SWITCH

 52

Figure 5.8 Linear increase in client runtime when clients start at the same time

Figure 5.9 Start delay's effect on average client runtime

 53

Figure 5.10 Consistent performance of SWP2P

Figure 5.11 Request mechanism effectiveness

9
2
0

8
3
0

8
2
0

7
6
0 8
1
0

7
5
0

7
3
0

1
1
5
2

1
1
0
8

1
1
3
0

1
0
7
3

1
0
2
7

9
0
8

7
3
0

30 25 20 15 10 5 1

C
H
U
N
K
S
SE
N
T
 B
Y
 S
E
R
V
E
R

NUMBER OF CLIENTS RUNNING IN PARALLEL

EFFECT OF NUMBER OF CLIENTS ON CHUNKS SERVED

SWP2P MCAST

61

19

0

10

20

30

40

50

60

70

Random order Pre‐decided order with request bulking

Avg Runtime of 30 Clients starting at same time

Random order Pre‐decided order with request bulking

 54

Table 5.1 Node configuration

Table 5.2 Client receive time

Component 1 Network Receive Time 2 to 3 Seconds

Component 2 Decompression and Disk Write Time 8 to 9 Seconds

Processor Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz

Memory 64 GB

Network Speed 10000Mb/s

 55

CHAPTER 6

CONCLUSION

Our motivation for this thesis was the high load on the server and trunk links

when the multicast-based Frisbee protocol was deployed in Cloudlab. We introduced

Switch Assisted Peer-to-Peer transfer mechanism to overcome this issue. In the

evaluation chapter, we addressed various challenges that were overcome by the SWP2P

method and how the concurrency among clients can be leveraged to attain a lower load

on the server and the trunk links. We also showed how the longer decompression and

disk write times help achieve our goal. The SWP2P method provides the advantages of a

peer-to-peer transfer system by only maintaining the availability database on the switch,

thus eliminating the need to maintain an overlay network. In our evaluation, SWP2P

reduces the server load from 21% to 96%, depending on the start delay parameter.

SWP2P also performed better than multicast transfer in all the scenarios we tested.

Thus, we proved that in the Frisbee disk loading system, Switch Assisted Peer-to-

Peer transfer could significantly lower the load on the server while maintaining high

performance.

In the future, the SWP2P system can be extended to be used across switches by

exchanging a consolidated report message among switches. Such an extension will allow

 56

the benefits of the SWP2P system to be scaled across the network by further lowering the

load on server and trunk links.

REFERENCES

[1] M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb, "Fast, scalable disk imaging
with Frisbee," in USENIX 2003 Annual Technical Conference, San Antonia, TX,
USA, 2003.

[2] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M.
Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, and L. Landweber,
"The design and operation of cloudlab," in USENIX Conference on Usenix Annual
Technical Conference, Renton, WA, USA, 2019.

[3] R. Ricci, "CloudLab," 22 05 2020. [Online]. Available: https://cloudlab.us/.
[Accessed 22 05 2020].

[4] R. Ricci and E. Eide, "Introducing loudLab: Scientific infrastructure for advancing
cloud architectures and applications," Login USENIX Mag., vol. 39, no. 6, 2014.

[5] K. Atkinson, G. Wong, and R. Ricci, "Operational experiences with disk imaging,"
in 11th USENIX Symposium on Networked Systems Design and Implementation,
Seattle, WA, USA, 2014.

[6] C. Papadopoulos, G. Parulkar, and G. Varghese, "Light-weight multicast services
(LMS): a router-assisted scheme for reliable multicast," IEEE/ACM Trans. on Netw.
vol. 12, no. 3, pp. 456-468, 2004.

[7] P. Savola, "Overview of the internet multicast routing architecture," 2008. [Online].
Available: https://tools.ietf.org/html/rfc5110 [Accessed 22 05 2020]

[8] "OPX (OpenSwitch)," [Online]. Available: https://www.openswitch.net/. [Accessed
22 05 2020].

[9] "OpenSwitch OPX Developers Guide Release 3.0.0," 2018. [Online]. Available:
https://archive.openswitch.net/docs/3.0.0/openswitch_opx_300_dev_guide.pdf.
[Accessed 22 05 2020].

[10] Big Switch Networks , "Open Network Linux," [Online]. Available:
http://opennetlinux.org/. [Accessed 22 05 2020].

 58

[11] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Content-based addressing and
routing: A general model and its application.," Technical Report CU-CS-902-00,
2000.

[12] W. Li, S. Chen, and T. Yu, "UTAPS: An underlying topology-aware peer selection
algorithm in BitTorrent," in 22nd International Conference on Advanced
Information Networking and Applications, IEEE, 2008, pp. 539-545.

[13] B. Cohen, "The BitTorrent Protocol Specification," 4 02 2017 . [Online]. Available:
https://www.bittorrent.org/beps/bep_0003.html. [Accessed 22 05 2020].

[14] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, "A reliable multicast
framework for light-weight sessions and application level framing," IEEE/ACM
Trans. on Netw., vol. 5, no. 6, pp. 784-803, 1997.

[15] V. Jacobson, M. Mosko, D. Smetters, and J. Garcia-Luna-Aceves, "Content-centric
networking," Whitepaper, Palo Alto Research Center, pp. 2-4, 2007.

[16] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, "Networking named content," in 5th International Conference on
Emerging Networking Experiments and Technologies, Rome, Italy, 2009.

[17] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, "Topology-aware routing in
structured peer-to-peer overlay networks," in Future Directions in Distributed
Computing: Research and Position Papers, Springer Berlin Heidelberg, 2003, pp.
103-107.

[18] X. Lin, M. Hibler, E. Eide, and R. Ricci, "Using deduplicating storage for efficient
disk image deployment," in 10th International Conference on Testbeds and
Research Infrastructures for the Development of Networks and Communities
(TRIDENTCOM), Vancouver, Canada, 2015.

