

EVALUATING MACHINE LEARNING MODELS

FOR ANOMALY DETECTION OF SYSTEM LOGS

by

Joseph Porter

A project report submitted to the faculty of

The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

April 2020

Copyright © Joseph Porter 2020

All Rights Reserved

ABSTRACT

 Training Machine Learning (ML) models for anomaly detection of system logs is

a promising approach that empowers system administrators to quickly and automatically

identify incidents in their systems. In this work, we have explored the abilities of various

ML classifiers to identify anomalies in log sequences from CloudLab logs as determined

by a separate unsupervised ML classifier. While all of the models investigated come

from the sci-kit learn package in Python, each model differs in its algorithmic approach,

making certain models like Logistic Regression and Multi-Layer Perceptron a better

classifier choice than others.

TABLE OF CONTENTS

Table	of	Contents	
ABSTRACT ... iii

INTRODUCTION .. 5

BACKGROUND RESEARCH AND MOTIVATION ... 7

2.1 Anomaly Detection .. 7

2.2 CloudLab System Logs .. 8

2.3 Moving Forward ... 10

EXPERIMENT METHODS ... 12

3.1 Data Set ... 12

3.2 Labeling with Invariant Miner .. 13

3.3 Classifier Selection ... 14
3.3.1 Cross Validation ... 14

EXPERIMENT RESULTS .. 16

4.1 Classification with Logistic Regression and SVM ... 16

4.2 Further Logistic Regression Experiments .. 17
4.2.1 Logistic Regression with Bigrams ... 20
4.2.2 Logistic Regression Trained on Partial Examples ... 22

4.3 Other Classifier Experiments .. 23
4.3.1 Naïve Bayes .. 24
4.3.2 Multi-Layer Perceptron .. 26

4.4 Comparing Classifiers ... 28

CONCLUSION .. 31

REFERENCES ... 32

CHAPTER 1

INTRODUCTION

Monitoring and management of large systems is often a time-consuming task for

system administrators. With systems growing larger and scaling on increasingly popular

cloud environments, the task of monitoring systems is difficult and varies widely between

systems [1]. Logs generated by the system often contain the information needed to

identify the occurrence of outages, security incidents or unexpected changes in behavior

as well as their root cause [2]. However, the massive amount of log data is difficult to

monitor in real-time by administrators and often only leveraged to diagnosis problems

after they have been identified.

Commonly applied in Intrusion Detection Systems, a number of anomaly

detection tools have been leveraged by system administrators to help monitor their

systems [3]. Anomaly detection is meant to create systems that can detect atypical

patterns in data which, for the purpose of monitoring system logs, would mean

identifying abnormal sequences or sessions of logs [4]. Anomaly detection techniques

have been used to monitor systems with success, but these anomaly detection systems are

often very application specific, being designed to perform detection on a specific type of

system [5]. This makes it difficult to apply such detection systems in a general manner

with potentially multiple uses [6].

6

In anomaly detection systems, machine learning (ML) seems the perfect tool to

leverage as it can sift through massive amounts of data to automatically learn the

underlying principles that would describe normal and abnormal examples. While ML

techniques have been successfully leveraged in anomaly detection, a number of

challenges still exist for such approaches. Most ML approaches use supervised learning

methods, which require large amounts of accurately labeled data such as log sequences

that have been identified as normal or anomalous. These datasets of labeled information

can be time-consuming to create and require expert knowledge to evaluate [7]. For

system administrators, the time cost would often be prohibitive to produce the necessary

labeled dataset to train an ML anomaly detection system for their particular systems.

Because of this difficult in hand labeling log sequences, this project attempts to

simplify that challenge by using a separate, unsupervised learning technique to provide

labels for log sequences. While this labeling process may not correctly identify all

anomalous and normal sequences, it does provide labels for all examples so that

supervised learning techniques can be trained and their performance evaluated on the

CloudLab log sequences [8]. With the labeling technique, scikit-learn models based on

supervised learning can be trained using the assigned labels and their performance

evaluated.

CHAPTER 2

BACKGROUND RESEARCH AND MOTIVATION

The goal of evaluating the performance of ML classifiers on sequences of system logs

was based on an understanding of existing and successful approaches in anomaly

detection for this data type. This included learning about preprocessing necessary to

train models with log sequences, the disadvantages of certain approaches and the

challenge of labeling examples with expert knowledge.

2.1 Anomaly Detection

Providing pragmatic anomaly detection to system administrators requires an

understanding of existing anomaly detection techniques and the problems they are

designed to address. Most commercial anomaly detection systems rely on carefully

tuned threshold values that are either designed for a specific application or must be

manually determined by system administrators for their particular system. For system

logs, false positives are particularly costly as they require a system administrator to

investigate and determine if it relates to an incident that must be addressed [2].

Anomaly detection systems can suffer from high false positive rates, because of the

rarity and variety of anomalies, reducing the usefulness of the system. Additionally, the

accurate detection of an anomaly does not mean that the anomaly indicates some

incident that requires a response from an administrator [4].

8

 In a number of research application, deep learning techniques have shown

substantial promise in detecting anomalies in system logs. However, deep learning

generally requires a huge amount of data to train because of the number and complexity

of the multiple layers in the model [9]. Creating those labeled sets of log sequences can

be difficult and requires expert knowledge to perform accurately [10]. The ability of

unsupervised and semi-supervised learning to learn on unlabeled data would generalize

the task of anomaly detection but such systems have generally underperformed in

comparison to supervised learning [11].

 One work that motivates this project is DeepLog, which performs anomaly

detection of system logs through deep learning [4]. Several aspects of DeepLog are

designed to be particularly applicable to system administrators. Firstly, in addition to

detecting anomalies a log line level, DeepLog also provides a workflow model that will

assist in diagnosing root cause of the anomaly. Secondly, the system provides a

feedback mechanism so that system administrators can identify false positives and

DeepLog would learn from that information to reduce false positives in the future. This

user feedback mechanism would help the system to reduce false positives, ignore

unimportant anomalies and adapt to changing system behavior.

2.2 CloudLab System Logs

 CloudLab is a cloud computing testbed that provides researchers with the

infrastructure to perform cloud experiments with the control and visibility needed to test

9

new architectures [12]. CloudLab clusters have almost 15,000 cores and provide a

variety of machine types spread across three sites [13]. Because of the different types of

resources and the large amount of user control over experiments, the behavior of

CloudLab nodes vary greatly and create a significant challenge for anomaly detection.

 With the goal of eventually monitoring CloudLab system logs with anomaly

detection, we have collected system logs from a variety of CloudLab nodes for over a

year. Log sources currently include:

• Stated.log: reports the status of an internal state machine used in some CloudLab

processes

• Bootinfo.log: records the progress of nodes in the booting process

• Dhcpd.log: records DHCP events

• Reboot.log: logs the progress of requested reboots

The system logs are gathered, processed and stored in a standard ELK (Elasticsearch,

Logstash, Kibana) stack to be used later in our research [14].

 During the processing of the log messages, each message is checked against a

series of regular expressions to determine which event ID to assign to the message. An

event ID, also referred to as a log key, is a value assigned to a message that matches a

specific log pattern. Since most log messages are of a particular format, types of log

messages, ie. State_changed or DHCP_request, tend to have identical patterns that

separate types of messages. It is a common technique in log parsing and often

automated to extract both the event ID and the values of any parameters contained in

10

the pattern [15], [16]. For our research, the patterns were manually specified to ensure

accurate patterns and to increase our understanding of the log data. With the five log

sources, we identified approximately three dozen log patterns and assigned each a

unique event ID.

 As part of the background research, invariant mining was applied to CloudLab

system logs as a method to detect anomalies. Invariant mining utilizes counts of the

event IDs to determine linear relationships between the counts that hold true for a large

threshold of the data [17]. For example, the count of “open file” event IDs would equal

the number of “close file” counts. To perform invariant mining, set of event IDs had to

be grouped into sessions from a specific range of timestamps and machine locations,

which are used to count the occurrences of each event ID for mining invariants [2].

While some system logs may have very distinct sessions, such as for a particular job or

task, CloudLab logs do not have similar delineations. Grouping at the experiment level

does not provide an acceptable level of granularity since experiments can run for

extended periods of time and only allow anomaly detection after the experiment has

ended. To form sessions of the log sequences, each session was formed of the five

target logs for a particular machine node and a specified day. This enables session-

based anomaly detectors to identify normal or abnormal behavior at a daily, node level.

2.3 Moving Forward

The background detailed in this section provided several important elements that

influenced the direction of experiments. First, the background research identified

11

important preprocessing steps needed for logs to give structure to the unstructured logs

messages by assigning event IDs as well as methods of grouping into sessions. These

steps are necessary for many anomaly detection techniques to be applied on this type of

data and opened up the possibility of evaluating a great many methods. Secondly, the

background work found disadvantages or weaknesses in a number of anomaly detection

methods that emphasized the importance of reducing false positives as well as the

challenge of identifying anomalies in continuous sequences. This motivated

experiments to reduce false positives and analysis to explore how classifiers performed

throughout an anomalous sequence.

CHAPTER 3

EXPERIMENT METHODS

The experiments for this project consisted of several distinct efforts to reach its

final goal. From the CloudLab logs previously gathered, a data set was selected from a

subset and formed into usable examples. After forming the data, it was labeled using an

unsupervised learning technique, invariant mining. This data set was then used in a

variety of experiments that trained and evaluated classifiers.

3.1 Data Set

From the previously discussed CloudLab log data, a data set was formed from the

logs of the 200 HP type machines for the year of 2019. This set was then further

subdivided into training and testing sets. The training set contained logs from January to

September 2019, resulting in 24,430 sessions, while the test set contained all logs from

October to December 2019, containing 9,708 sessions. The log entries were grouped

based on their assigned session ID, which formed groups of logs for each machine for

each day. The event IDs of these sessions were then ordered based on their timestamp

and offset, an indicator of order when timestamps are identical, to form the sessions into

chronological examples.

To train ML models with these examples, they first had to converted to features

vectors. Features vectors were formed in several ways depending on the experiment’s

intended purpose. One method to convert to feature vectors was a simple unigram

13

representation; a count of the occurrences of each event ID in a session. This resulted in a

vector based on the number of event IDs with each item in the vector representing the

count of that event ID. This method provides a simple representation that preserves only

the counts of event IDs and disregards the ordering of the logs. Another approach created

feature vectors using bigram counts. In this case, each bigram represents a transition from

one event ID to another. This creates a feature vector where each entry represents some

unique, chronological transition X->Y where X and Y are both event IDs. Unlike the

unigram representation, the bigram representation preserves some information about the

ordering of messages because transitions are counted. The final method still creates

feature vectors of event ID counts but does so with partial sessions instead of complete

day-long sessions. With this method, the log messages are processed chronologically, and

a new example feature vector is created for the log sequence up to that point. This allows

the examples to be considered at any point in the sequence, thus performing similarly to a

real-time system that performs anomaly detection as new log messages occur.

3.2 Labeling with Invariant Miner

To use supervised learning approaches, each example needs to be assigned a label

for the learning process to function. These experiments used an invariant miner, the

previously mentioned unsupervised learning technique, to label the examples. While the

labels supplied by the invariant miner may not reflect the true labels of the examples,

they are a suitable starting point to explore the efficacy of these learning techniques. In a

related paper recently submitted for publication, systems experts labeled a set of logs

sequences to compare to the invariant miner. The results:

14

“The accuracy of the invariant miner was reasonable: it correctly labeled 70% of

sessions identified by the administrators as normal, and 73% of the sessions labeled as

anomalous. This gives us an overall false positive rate of 30% and false negative rate of

27%.”

 The data set was labeled with a single set of invariants to ensure consistent

labeling across the training and test set. This labeling method resulted in 1,972 out of the

24,430 sessions in the training set to be labeled as anomalous while the test set was

labeled as containing 455 anomalous sessions out of 9,708.

3.3 Classifier Selection

For this project, all classifiers were selected from those supplied in the scikit-learn

[18] Python library. The library provides simple, open source tools for data analysis built

on other common Python libraries NumPy [19], SciPy [20] and matplotlib [21]. The

classifiers selected for this project had characteristics that seemed suitable for this type of

classification problem but were also varied enough to warrant exploration of each.

3.3.1 Cross Validation

Each ML classifier requires a set of hyper-parameters that influence the learning

process for that classifier. These hyperparameters are not learned directly during the

training of the model and are instead evaluated in a process called cross validation to

improve the performance and generality of the classifier. In this project, hyperparameters

were evaluated in a grid search, meaning that each set of proposed hyperparameters were

15

evaluated and the best set of parameters was chosen for the final training of the model.

To ensure that each set of hyperparameters were evaluated correctly, cross validation was

performed with 5-fold cross validation. For each set of parameters, the data was divided

into five splits of data were formed from the training set. Then, five models were trained

with the specified hyperparameters and all but one of the splits of data. The held out split

is used for testing of the model to evaluate performance and all of the scores were

averaged together to select the best set of hyperparameters.

16

CHAPTER 4

EXPERIMENT RESULTS

This section includes results for the various experiments performed to evaluate

the performance of classifiers from the Python scikit-learn package. The experiments

begin with evaluations of SVM and logistic regression classifiers to establish a baseline.

Later experiments work with different classifiers and analyze performance with an

emphasis on reducing false positives and observing partial sequences.

4.1 Classification with Logistic Regression and SVM

The first experiments for this project began by testing the efficacy of the support

vector machines (SVMs) [22] and logistic regression [23] classifiers from the sci-kit learn

package on this data set. Because the data is labeled with a series of linear relationships

established by the invariant miner, SVMs appeared to have a high chance of success

given their strength in linear classification while also being very effective in high

dimensional spaces [24]. Similarly, logistic regression was chosen because it is a linear

model and was expected to perform well based on the labeling scheme [25].

These models were trained with features vectors of unigram event IDs and cross

validation was performed to select the best hyperparameters. When evaluating on the test

data, the results showed that both classifiers were trained to correctly label all examples

in the test set. Given the rarity of classifiers perfectly labeling a test set, the models were

investigated, and both showed that they had learned linear relationships that enabled them

17

to achieve this result. The performance of these models was partially a result of labeling

method as well as the linear nature of these classifiers.

4.2 Further Logistic Regression Experiments

Since the previous experiment demonstrated that logistic regression and SVM

classifiers could perfectly classify entire sessions of logs, the next experiment was meant

to explore how much data in a log sequence was needed for the classifier to correctly

label it. In this experiment, log sequences from the test set were used to generate partial

examples so that predictions could be made on all progressions of the sequence resulting

in 3,151,655 examples. For each feature vector, the percent of progress in the sequence

was tracked to enable further data analysis. Below is the confusion matrix showing the

performance of the logistic regression classifier on the partial examples from the test set:

 Labeled Normal Labeled Anomaly

Predicted Normal 2,976,781 (94.4%) 55,455 (1.76%)

Predicted Anomaly 50,430 (1.60%) 68,989 (2.19%)

 These results show that 42% of identified anomalies are actually normal

sequences. This high false positive rate is alarming because of the implications if this was

actually a real-time system. The below graphs show the percent of correct examples for

each label based on the percent of progress through the log sequence.

18

The above graphs demonstrate several interesting points about the performance of

the classifier on partial sequences. When labeling normal sequences, the classifier is

highly accurate throughout but varies before correctly classifying all sequences at the

end. For anomalous sequences, the classifier gradually becomes more accurate as it

receives more of the sequence. This is likely because the anomalous behavior occurs at a

specific point in the sequence and would appear normal before that.

Using this same data, an analysis was performed to determine at what point the

classifier ‘converges’ for each example, that is, all further predictions for that session are

correct. This is especially important when trying to understand the frequency of false

positives, normal sequences that are incorrectly labeled as anomalies, when the sessions

are considered as partial examples.

19

The convergence graph for the normal sequences demonstrates that the classifier

frequently mislabels normal sequences before converging at the end. For anomalies, the

convergence graph shows steady progress as more sequences converge with longer

sequences.

While the logistic regression model predicts correctly for complete sessions, it

does predict a large number of false positives in the partial sequences. This would be

particularly troublesome if such a model was leveraged as a real-time system to identify

anomalies as they occurred. The model was trained on complete sessions because the

model is known to predict the correct label at the end, so the model is not designed to

label partial results. Similarly, the anomalous examples cannot always be labeled early in

the sequence because the anomalous behavior has not occurred or been predicted.

Overall, the classifier does show promise based on its results on full sessions, but the

high false positive rate is concerning for this model with partial sequences.

20

4.2.1 Logistic Regression with Bigrams

After observing how the logistic regression model performs on partial data, this

experiment explores if that performance can be improved by providing more information

to the model. In this experiment, each example is now formed using both unigram and

bigram information so that the feature vectors now hold information about event ID

counts and counts of event ID transitions. Training the model with these new bigram type

vectors results in the following confusion matrix for the complete sessions in the test set.

 Labeled Normal Labeled Anomaly

Predicted Normal 9252 (95.3%) 4 (0.04%)

Predicted Anomaly 1 (0.01%) 451 (4.64%)

Unlike the classifier trained with unigram features, this classifier mislabels several of the

sessions but does not severely degrade the performance. This is likely a consequence of

the expanded feature space, which would require more examples to predict all complete

sessions correctly. When predicting on partial examples, the bigram model results in the

following confusion matrix:

 Labeled Normal Labeled Anomaly

Predicted Normal 3,027,165 (96.1%) 59,134 (1.88%)

Predicted Anomaly 46 (0.001%) 65,310 (2.07%)

The confusion matrix shows that when given bigram features as well, the model performs

slightly worse in identifying anomalies but correctly labels nearly all of the normal

examples. This is also seen in the graphs showing percent correct:

21

The graphs demonstrate that the classifier correctly labels nearly all normal sequences

throughout while only slightly underperforming the previous classifier on anomalous

sequences. Similarly, in the convergence graphs:

These results are quite interesting because they indicate that such a classifier could

perform well in a real-time system since nearly every partial sequence labeled anomalous

is actually labeled as an anomaly. The larger feature space does appear to have an effect

of reducing the performance on complete sessions, but this could potentially be solved

with additional training data or creating an ensemble of this classifier and the classifier

trained on just unigram features.

22

4.2.2 Logistic Regression Trained on Partial Examples

In the previous experiments, the classifier was trained using only examples

formed from complete sessions. This was done because identifying every anomaly is

important and the initial logistic regression classifier was able to do this using only

complete sessions as training examples. However, after analyzing the results on partial

data, a next step is to see if training on partial data improves the results predictions on

partial data. This experiment does exactly that; training and testing the classifier using

partial examples. The confusion matrix for the resulting classifier on complete sessions is

shown below:

 Labeled Normal Labeled Anomaly

Predicted Normal 9252 (95.3%) 19 (0.20%)

Predicted Anomaly 1 (0.01%) 436 (4.49%)

This classifier does mislabel more anomalies than the previous classifier, but the

change is not extreme. The confusion matrix for the partial sequences are shown below:

 Labeled Normal Labeled Anomaly

Predicted Normal 3,027,128 (96.0%) 60,874 (1.93%)

Predicted Anomaly 83 (0.003%) 63,570 (2.02%)

Similar to the classifier trained with bigram features, this classifier greatly reduces

the false positives since nearly all predicted anomalies are labeled as anomalies. This

model does not perform as well as the bigram model, but it does demonstrate that training

23

the model with partial examples does have benefits when evaluating partial examples.

Again, this is also observable in the percent correct graph:

As well as in the convergence graph:

These results demonstrate that training with partial sequences, similar to adding

bigram features, significantly reduces the false positive rate while slightly reducing the

accuracy in labeling anomalies.

4.3 Other Classifier Experiments

After exploring the performance of multiple approaches with logistic regression,

our experiments shifted to finding other appropriate classifiers to compare. These

24

classifiers also came from the sci-kit learn library and each was selected because of its

different characteristics and high potential for success.

4.3.1 Naïve Bayes

Naïve Bayes classifiers are supervised learning algorithms that leverage Bayes’

theorem and make the naïve assumption of conditional independence between features.

Sci-kit learn has a number of Naïve Bayes classifiers, several of which were evaluated for

this experiment. Initially, the Complement Naïve Bayes algorithm, which is described as

being suited for imbalanced data sets, and Multinomial Naïve Bayes algorithm, which is

a variant used in text classification, seemed like the most promising approaches [26].

However, both proved to perform very poorly for this dataset. Instead, the Gaussian

Naïve Bayes algorithm performed the best and is evaluated in this experiment [27]. As its

name suggests, the Gaussian Naïve Bayes assume the likelihood of a feature to be

Gaussian. The classifier was trained on complete sessions with unigram features; its

performance on the complete sequences in the test set are below:

 Labeled Normal Labeled Anomaly

Predicted Normal 9081 (93.54%) 25 (0.26%)

Predicted Anomaly 172 (1.77%) 430 (4.43%)

This is the worst performance of any of the classifiers thus far, but the model is

fairly simplistic and does reasonably well. The number of mislabeled normal sequences

jumps from previous classifiers. For the partial examples, the confusion matrix is below:

25

 Labeled Normal Labeled Anomaly

Predicted Normal 3,012,161 (95.6%) 61,015 (1.94%)

Predicted Anomaly 15,050 (0.48%) 63,429 (2.01%)

The results appear fairly average as a classifier using just unigram features,

predicting the normal sequences better than the logistic regression but predicting the

anomalies with less accuracy. These results are more noteworthy when the percent

correct graphs are considered:

Interestingly, the percent of correct predictions for normal examples decreases as

the sequence progresses. The percent of correct predictions for anomalies is slightly

lower than logistic regression but follows the same trend. The convergence graphs are

below:

26

Despite the differences in the percent correct graph, the convergence for normal

sequences jumps very quickly, although it never converges for some of the sequences.

The convergence graph for anomalous sequences is very similar to the logistic regression

with slightly less accuracy. This classifier does perform rather well considering the

assumptions made by the model but may not be the most appropriate classifier for this

problem.

4.3.2 Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) algorithm differs from the other models used

because it is a type of neural network. The MLP algorithm contains the hidden layers

typical of a neural network and has the advantage of being able to learn non-linear

models [28]. As the only neural network model in sci-kit learn, MLP is clearly different

from the models used in previous experiments [29]. After evaluating multiple hidden

layer designs, the model performed best with a simple (20,5) layout. This layout has

twenty nodes in the first layer and five in the second. The results on complete sessions

are shown below:

27

 Labeled Normal Labeled Anomaly

Predicted Normal 9252 (95.3%) 13 (0.13%)

Predicted Anomaly 1 (0.01%) 442 (4.55%)

These results show the model to predict nearly all of the normal sequences

correctly while incorrectly classifying several anomalies. The confusion matrix for MLP

on partial sequences in below:

 Labeled Normal Labeled Anomaly

Predicted Normal 3,017,168 (95.7%) 59,161 (1.88%)

Predicted Anomaly 10,043 (0.32%) 65,283 (2.07%)

The MLP classifier identified anomalies as well as any of the models evaluated

and had fewer false positives than the classifiers using Naïve Bayes or Logistic

Regressions and unigram features. The percent correct graphs are shown below:

28

The MLP classifier does better in labeling normal sequences but still varies

slightly like the logistic classifier while slightly underperforming logistic regression in

identifying anomalies. The convergence graphs are below:

Again, the MLP classifier converges more quickly for normal sequences and does

slightly worse for normal sequences than the logistic regression model. These results do

suggest that the MLP classifier could be a good choice for classifying this data set. The

results would likely improve with more examples as neural networks typically require

large numbers of examples to train all of the hidden layers.

4.4 Comparing Classifiers

When comparing all of the results for these experiments, it is important to

consider that each experiment uses a fundamentally different classifier or provides a

different set of information to the model. Below are the percent correct graphs for all

29

experiments including an entry for the invariant miner, the classifier used to provide

labels:

Overall, the percent correct graph for the normal sequences shows more variety in

performance, although the performance is generally very high. Logistic regression clearly

outperforms invariant mining but MLP clearly has even better performance. This

indicates the ranking of each model for predicting invariant miner labels using partial

sequences. The models using bigram features and partial sequences for training

demonstrate that providing this type of information greatly reduces the number of false

positives. For anomalies, the classifiers do not vary as greatly with only small differences

in performance between models but the same upward trend in identifying anomalies.

30

The convergence graphs for all classifier do not offer any additional information that is

not shown in the percent correct graph. They do emphasize how quickly the models with

bigram and partial training data identify normal sequences.

31

Chapter 5

CONCLUSION

The experiments in this project explore the performance of a number of sci-kit

learn classifiers on a data set of on a collection of CloudLab system logs. The

evaluations explored using day-long sessions and partial sessions that better reflect a real

time monitoring system. Based on the results, logistic regression, and multi-layer

perceptron show promise in both session-based identification while the variations of

logistic regression and multi-layer perceptron models demonstrate potential for operating

real time anomaly detectors.

Future work with these experiments would suggest several avenues to improve

this work or leverage these results. A better classifier could almost certainly be created by

creating an ensemble, a ML technique that leverages multiple classifiers to make a single

prediction, to combine the strengths of several of the promising models. Additionally,

evaluating the various training methods used for the logistic regression model could be

applied to the Naïve Bayes and MLP classifiers to note their effects. Further work could

also be done to evaluate implementing a real-time monitoring system for CloudLab data.

Several issues regarding the number of false positives and identifying anomalies that

require system administrator intervention would need to be explored.

REFERENCES

[1] B. Canner, “4 Challenges of Traditional Log Management Solutions,” 2018.

[Online]. Available: https://solutionsreview.com/security-information-event-

management/4-challenges-traditional-log-management-solutions/. [Accessed: 13-

Nov-2019].

[2] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience Report: System Log Analysis for

Anomaly Detection,” in Proceedings - International Symposium on Software

Reliability Engineering, ISSRE, 2016, pp. 207–218.

[3] M. Tanase, “One of These Things is not Like the Others: The State of Anomaly

Detection | Symantec Connect Community,” 2002. [Online]. Available:

https://www.symantec.com/connect/articles/one-these-things-not-others-state-

anomaly-detection. [Accessed: 14-Nov-2019].

[4] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly detection and

diagnosis from system logs through deep learning,” in Proceedings of the ACM

Conference on Computer and Communications Security, 2017, pp. 1285–1298.

[5] D. Balaban, “Why anomaly detection should be your number one priority in 2019 |

Articles | Big Data | Innovation Enterprise,” 2019. [Online]. Available:

https://channels.theinnovationenterprise.com/articles/why-anomaly-detection-

should-be-your-number-one-priority-in-2019. [Accessed: 14-Nov-2019].

[6] A. (UC B. Oliner, A. (Splunk) Ganapathi, and W. (Google) Xu, “Advances and

Challenges in Log Analysis - ACM Queue.” [Online]. Available:

https://queue.acm.org/detail.cfm?id=2082137. [Accessed: 13-Nov-2019].

33

[7] D. Li, D. Chen, J. Goh, and S. Ng, “Anomaly Detection with Generative

Adversarial Networks for Multivariate Time Series,” in BigMine 2018 : 7th

BigMine Workshop on Big Data Mining (at SIGKDD 2018), 2018.

[8] “CloudLab.” [Online]. Available: https://www.cloudlab.us/. [Accessed: 14-Nov-

2019].

[9] “Why go large with Data for Deep Learning? - Towards Data Science.” [Online].

Available: https://towardsdatascience.com/why-go-large-with-data-for-deep-

learning-12eee16f708. [Accessed: 13-Nov-2019].

[10] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi, “A Survey on GANs for

Anomaly Detection,” Jun. 2019.

[11] S. Curtis, “Should We Be Rethinking Unsupervised Learning?,” 2016. [Online].

Available: https://www.kdnuggets.com/2016/08/rethinking-unsupervised-

learning.html. [Accessed: 15-Nov-2019].

[12] “CloudLab - Software Technology.” [Online]. Available:

https://www.cloudlab.us/technology.php. [Accessed: 14-Nov-2019].

[13] “CloudLab - Hardware.” [Online]. Available:

https://www.cloudlab.us/hardware.php. [Accessed: 14-Nov-2019].

[14] “ELK Stack: Elasticsearch, Logstash, Kibana | Elastic.” [Online]. Available:

https://www.elastic.co/what-is/elk-stack. [Accessed: 14-Nov-2019].

[15] “GitHub - logpai/logparser: A toolkit for automated log parsing [ICSE’19,

TDSC’18, DSN’16].” [Online]. Available: https://github.com/logpai/logparser.

[Accessed: 14-Nov-2019].

[16] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “An evaluation study on log parsing and

34

its use in log mining,” in Proceedings - 46th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, DSN 2016, 2016, pp. 654–661.

[17] A. Pecchia, S. Russo, and S. Sarkar, “Assessing Invariant Mining Techniques for

Cloud-based Utility Computing Systems,” IEEE Trans. Serv. Comput., Mar. 2017.

[18] “scikit-learn: machine learning in Python — scikit-learn 0.22.2 documentation.”

[Online]. Available: https://scikit-learn.org/stable/. [Accessed: 10-Apr-2020].

[19] “NumPy — NumPy.” [Online]. Available: https://numpy.org/. [Accessed: 10-Apr-

2020].

[20] “SciPy.org — SciPy.org.” [Online]. Available: https://www.scipy.org/. [Accessed:

10-Apr-2020].

[21] “Matplotlib: Python plotting — Matplotlib 3.2.1 documentation.” [Online].

Available: https://matplotlib.org/. [Accessed: 10-Apr-2020].

[22] “sklearn.svm.SVC — scikit-learn 0.22.2 documentation.” [Online]. Available:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

[Accessed: 10-Apr-2020].

[23] “sklearn.linear_model.LogisticRegression — scikit-learn 0.22.2 documentation.”

[Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html.

[Accessed: 10-Apr-2020].

[24] “1.4. Support Vector Machines — scikit-learn 0.22.2 documentation.” [Online].

Available: https://scikit-learn.org/stable/modules/svm.html. [Accessed: 10-Apr-

2020].

[25] “1.1. Linear Models — scikit-learn 0.22.2 documentation.” [Online]. Available:

35

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression.

[Accessed: 10-Apr-2020].

[26] “1.9. Naive Bayes — scikit-learn 0.22.2 documentation.” [Online]. Available:

https://scikit-learn.org/stable/modules/naive_bayes.html. [Accessed: 10-Apr-

2020].

[27] “sklearn.naive_bayes.GaussianNB — scikit-learn 0.22.2 documentation.”

[Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html.

[Accessed: 10-Apr-2020].

[28] “sklearn.neural_network.MLPClassifier — scikit-learn 0.22.2 documentation.”

[Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html.

[Accessed: 10-Apr-2020].

[29] “1.17. Neural network models (supervised) — scikit-learn 0.22.2 documentation.”

[Online]. Available: https://scikit-

learn.org/stable/modules/neural_networks_supervised.html. [Accessed: 10-Apr-

2020].

