
 

 

 

 

EVALUATING MACHINE LEARNING MODELS  

FOR ANOMALY DETECTION OF SYSTEM LOGS 

 

 

 

by 

 

Joseph Porter 

 

 

 

 

A project report submitted to the faculty of 

The University of Utah 

in partial fulfillment of the requirements for the degree of 

 

 

 

 



 

Master of Science 

 

in 

 

Computer Science 

 

 

 

 

School of Computing 

 

The University of Utah 

 

April 2020 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Joseph Porter 2020 

 

All Rights Reserved 

 



 

 

ABSTRACT 

 Training Machine Learning (ML) models for anomaly detection of system logs is 

a promising approach that empowers system administrators to quickly and automatically 

identify incidents in their systems. In this work, we have explored the abilities of various 

ML classifiers to identify anomalies in log sequences from CloudLab logs as determined 

by a separate unsupervised ML classifier.  While all of the models investigated come 

from the sci-kit learn package in Python, each model differs in its algorithmic approach, 

making certain models like Logistic Regression and Multi-Layer Perceptron a better 

classifier choice than others. 
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CHAPTER 1 

 

INTRODUCTION 

 

Monitoring and management of large systems is often a time-consuming task for 

system administrators. With systems growing larger and scaling on increasingly popular 

cloud environments, the task of monitoring systems is difficult and varies widely between 

systems [1]. Logs generated by the system often contain the information needed to 

identify the occurrence of outages, security incidents or unexpected changes in behavior 

as well as their root cause [2]. However, the massive amount of log data is difficult to 

monitor in real-time by administrators and often only leveraged to diagnosis problems 

after they have been identified. 

 

Commonly applied in Intrusion Detection Systems, a number of anomaly 

detection tools have been leveraged by system administrators to help monitor their 

systems [3]. Anomaly detection is meant to create systems that can detect atypical 

patterns in data which, for the purpose of monitoring system logs, would mean 

identifying abnormal sequences or sessions of logs [4]. Anomaly detection techniques 

have been used to monitor systems with success, but these anomaly detection systems are 

often very application specific, being designed to perform detection on a specific type of 

system [5]. This makes it difficult to apply such detection systems in a general manner 

with potentially multiple uses [6]. 
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In anomaly detection systems, machine learning (ML) seems the perfect tool to 

leverage as it can sift through massive amounts of data to automatically learn the 

underlying principles that would describe normal and abnormal examples. While ML 

techniques have been successfully leveraged in anomaly detection, a number of 

challenges still exist for such approaches. Most ML approaches use supervised learning 

methods, which require large amounts of accurately labeled data such as log sequences 

that have been identified as normal or anomalous. These datasets of labeled information 

can be time-consuming to create and require expert knowledge to evaluate [7]. For 

system administrators, the time cost would often be prohibitive to produce the necessary 

labeled dataset to train an ML anomaly detection system for their particular systems. 

 

Because of this difficult in hand labeling log sequences, this project attempts to 

simplify that challenge by using a separate, unsupervised learning technique to provide 

labels for log sequences. While this labeling process may not correctly identify all 

anomalous and normal sequences, it does provide labels for all examples so that 

supervised learning techniques can be trained and their performance evaluated on the 

CloudLab log sequences [8].  With the labeling technique, scikit-learn models based on 

supervised learning can be trained using the assigned labels and their performance 

evaluated. 



 

 

 

CHAPTER 2 

 

BACKGROUND RESEARCH AND MOTIVATION 

The goal of evaluating the performance of ML classifiers on sequences of system logs 

was based on an understanding of existing and successful approaches in anomaly 

detection for this data type. This included learning about preprocessing necessary to 

train models with log sequences, the disadvantages of certain approaches and the 

challenge of labeling examples with expert knowledge. 

 

2.1 Anomaly Detection 

Providing pragmatic anomaly detection to system administrators requires an 

understanding of existing anomaly detection techniques and the problems they are 

designed to address. Most commercial anomaly detection systems rely on carefully 

tuned threshold values that are either designed for a specific application or must be 

manually determined by system administrators for their particular system. For system 

logs, false positives are particularly costly as they require a system administrator to 

investigate and determine if it relates to an incident that must be addressed [2]. 

Anomaly detection systems can suffer from high false positive rates, because of the 

rarity and variety of anomalies, reducing the usefulness of the system. Additionally, the 

accurate detection of an anomaly does not mean that the anomaly indicates some 

incident that requires a response from an administrator [4]. 
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 In a number of research application, deep learning techniques have shown 

substantial promise in detecting anomalies in system logs. However, deep learning 

generally requires a huge amount of data to train because of the number and complexity 

of the multiple layers in the model [9].  Creating those labeled sets of log sequences can 

be difficult and requires expert knowledge to perform accurately [10]. The ability of 

unsupervised and semi-supervised learning to learn on unlabeled data would generalize 

the task of anomaly detection but such systems have generally underperformed in 

comparison to supervised learning [11]. 

 

 One work that motivates this project is DeepLog, which performs anomaly 

detection of system logs through deep learning [4]. Several aspects of DeepLog are 

designed to be particularly applicable to system administrators. Firstly, in addition to 

detecting anomalies a log line level, DeepLog also provides a workflow model that will 

assist in diagnosing root cause of the anomaly. Secondly, the system provides a 

feedback mechanism so that system administrators can identify false positives and 

DeepLog would learn from that information to reduce false positives in the future. This 

user feedback mechanism would help the system to reduce false positives, ignore 

unimportant anomalies and adapt to changing system behavior. 

 

2.2 CloudLab System Logs 

 CloudLab is a cloud computing testbed that provides researchers with the 

infrastructure to perform cloud experiments with the control and visibility needed to test 
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new architectures [12]. CloudLab clusters have almost 15,000 cores and provide a 

variety of machine types spread across three sites [13]. Because of the different types of 

resources and the large amount of user control over experiments, the behavior of 

CloudLab nodes vary greatly and create a significant challenge for anomaly detection. 

 

 With the goal of eventually monitoring CloudLab system logs with anomaly 

detection, we have collected system logs from a variety of CloudLab nodes for over a 

year. Log sources currently include: 

• Stated.log: reports the status of an internal state machine used in some CloudLab 

processes 

• Bootinfo.log: records the progress of nodes in the booting process 

• Dhcpd.log: records DHCP events 

• Reboot.log: logs the progress of requested reboots 

The system logs are gathered, processed and stored in a standard ELK (Elasticsearch, 

Logstash, Kibana) stack to be used later in our research [14]. 

 

 During the processing of the log messages, each message is checked against a 

series of regular expressions to determine which event ID to assign to the message. An 

event ID, also referred to as a log key, is a value assigned to a message that matches a 

specific log pattern. Since most log messages are of a particular format, types of log 

messages, ie. State_changed or DHCP_request, tend to have identical patterns that 

separate types of messages. It is a common technique in log parsing and often 

automated to extract both the event ID and the values of any parameters contained in 
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the pattern [15], [16]. For our research, the patterns were manually specified to ensure 

accurate patterns and to increase our understanding of the log data. With the five log 

sources, we identified approximately three dozen log patterns and assigned each a 

unique event ID. 

 

 As part of the background research, invariant mining was applied to CloudLab 

system logs as a method to detect anomalies. Invariant mining utilizes counts of the 

event IDs to determine linear relationships between the counts that hold true for a large 

threshold of the data [17]. For example, the count of “open file” event IDs would equal 

the number of “close file” counts. To perform invariant mining, set of event IDs had to 

be grouped into sessions from a specific range of timestamps and machine locations, 

which are used to count the occurrences of each event ID for mining invariants [2]. 

While some system logs may have very distinct sessions, such as for a particular job or 

task, CloudLab logs do not have similar delineations. Grouping at the experiment level 

does not provide an acceptable level of granularity since experiments can run for 

extended periods of time and only allow anomaly detection after the experiment has 

ended. To form sessions of the log sequences, each session was formed of the five 

target logs for a particular machine node and a specified day. This enables session-

based anomaly detectors to identify normal or abnormal behavior at a daily, node level. 

 

2.3 Moving Forward 

The background detailed in this section provided several important elements that 

influenced the direction of experiments. First, the background research identified 
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important preprocessing steps needed for logs to give structure to the unstructured logs 

messages by assigning event IDs as well as methods of grouping into sessions. These 

steps are necessary for many anomaly detection techniques to be applied on this type of 

data and opened up the possibility of evaluating a great many methods. Secondly, the 

background work found disadvantages or weaknesses in a number of anomaly detection 

methods that emphasized the importance of reducing false positives as well as the 

challenge of identifying anomalies in continuous sequences. This motivated 

experiments to reduce false positives and analysis to explore how classifiers performed 

throughout an anomalous sequence. 

 



 

CHAPTER 3 

 

EXPERIMENT METHODS 

The experiments for this project consisted of several distinct efforts to reach its 

final goal. From the CloudLab logs previously gathered, a data set was selected from a 

subset and formed into usable examples. After forming the data, it was labeled using an 

unsupervised learning technique, invariant mining. This data set was then used in a 

variety of experiments that trained and evaluated classifiers. 

 

3.1 Data Set 

From the previously discussed CloudLab log data, a data set was formed from the 

logs of the 200 HP type machines for the year of 2019. This set was then further 

subdivided into training and testing sets. The training set contained logs from January to 

September 2019, resulting in 24,430 sessions, while the test set contained all logs from 

October to December 2019, containing 9,708 sessions. The log entries were grouped 

based on their assigned session ID, which formed groups of logs for each machine for 

each day. The event IDs of these sessions were then ordered based on their timestamp 

and offset, an indicator of order when timestamps are identical, to form the sessions into 

chronological examples. 

 

To train ML models with these examples, they first had to converted to features 

vectors. Features vectors were formed in several ways depending on the experiment’s 

intended purpose. One method to convert to feature vectors was a simple unigram 
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representation; a count of the occurrences of each event ID in a session. This resulted in a 

vector based on the number of event IDs with each item in the vector representing the 

count of that event ID. This method provides a simple representation that preserves only 

the counts of event IDs and disregards the ordering of the logs. Another approach created 

feature vectors using bigram counts. In this case, each bigram represents a transition from 

one event ID to another. This creates a feature vector where each entry represents some 

unique, chronological transition X->Y where X and Y are both event IDs. Unlike the 

unigram representation, the bigram representation preserves some information about the 

ordering of messages because transitions are counted. The final method still creates 

feature vectors of event ID counts but does so with partial sessions instead of complete 

day-long sessions. With this method, the log messages are processed chronologically, and 

a new example feature vector is created for the log sequence up to that point. This allows 

the examples to be considered at any point in the sequence, thus performing similarly to a 

real-time system that performs anomaly detection as new log messages occur. 

 

3.2 Labeling with Invariant Miner 

To use supervised learning approaches, each example needs to be assigned a label 

for the learning process to function. These experiments used an invariant miner, the 

previously mentioned unsupervised learning technique, to label the examples. While the 

labels supplied by the invariant miner may not reflect the true labels of the examples, 

they are a suitable starting point to explore the efficacy of these learning techniques. In a 

related paper recently submitted for publication, systems experts labeled a set of logs 

sequences to compare to the invariant miner. The results: 
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“The accuracy of the invariant miner was reasonable: it correctly labeled 70% of 

sessions identified by the administrators as normal, and 73% of the sessions labeled as 

anomalous. This gives us an overall false positive rate of 30% and false negative rate of 

27%.” 

  The data set was labeled with a single set of invariants to ensure consistent 

labeling across the training and test set. This labeling method resulted in 1,972 out of the 

24,430 sessions in the training set to be labeled as anomalous while the test set was 

labeled as containing 455 anomalous sessions out of 9,708. 

 

3.3 Classifier Selection 

For this project, all classifiers were selected from those supplied in the scikit-learn 

[18] Python library. The library provides simple, open source tools for data analysis built 

on other common Python libraries NumPy [19], SciPy [20] and matplotlib [21]. The 

classifiers selected for this project had characteristics that seemed suitable for this type of 

classification problem but were also varied enough to warrant exploration of each. 

 

3.3.1 Cross Validation 

Each ML classifier requires a set of hyper-parameters that influence the learning 

process for that classifier. These hyperparameters are not learned directly during the 

training of the model and are instead evaluated in a process called cross validation to 

improve the performance and generality of the classifier. In this project, hyperparameters 

were evaluated in a grid search, meaning that each set of proposed hyperparameters were 
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evaluated and the best set of parameters was chosen for the final training of the model. 

To ensure that each set of hyperparameters were evaluated correctly, cross validation was 

performed with 5-fold cross validation. For each set of parameters, the data was divided 

into five splits of data were formed from the training set. Then, five models were trained 

with the specified hyperparameters and all but one of the splits of data. The held out split 

is used for testing of the model to evaluate performance and all of the scores were 

averaged together to select the best set of hyperparameters. 
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CHAPTER 4 

 

EXPERIMENT RESULTS 

This section includes results for the various experiments performed to evaluate 

the performance of classifiers from the Python scikit-learn package. The experiments 

begin with evaluations of SVM and logistic regression classifiers to establish a baseline. 

Later experiments work with different classifiers and analyze performance with an 

emphasis on reducing false positives and observing partial sequences. 

 

4.1 Classification with Logistic Regression and SVM 

The first experiments for this project began by testing the efficacy of the support 

vector machines (SVMs) [22] and logistic regression [23] classifiers from the sci-kit learn 

package on this data set. Because the data is labeled with a series of linear relationships 

established by the invariant miner, SVMs appeared to have a high chance of success 

given their strength in linear classification while also being very effective in high 

dimensional spaces [24]. Similarly, logistic regression was chosen because it is a linear 

model and was expected to perform well based on the labeling scheme [25]. 

 

These models were trained with features vectors of unigram event IDs and cross 

validation was performed to select the best hyperparameters. When evaluating on the test 

data, the results showed that both classifiers were trained to correctly label all examples 

in the test set. Given the rarity of classifiers perfectly labeling a test set, the models were 

investigated, and both showed that they had learned linear relationships that enabled them 
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to achieve this result. The performance of these models was partially a result of labeling 

method as well as the linear nature of these classifiers. 

 

4.2 Further Logistic Regression Experiments 

Since the previous experiment demonstrated that logistic regression and SVM 

classifiers could perfectly classify entire sessions of logs, the next experiment was meant 

to explore how much data in a log sequence was needed for the classifier to correctly 

label it. In this experiment, log sequences from the test set were used to generate partial 

examples so that predictions could be made on all progressions of the sequence resulting 

in 3,151,655 examples. For each feature vector, the percent of progress in the sequence 

was tracked to enable further data analysis. Below is the confusion matrix showing the 

performance of the logistic regression classifier on the partial examples from the test set: 

 Labeled Normal Labeled Anomaly 

Predicted Normal 2,976,781 (94.4%) 55,455 (1.76%) 

Predicted Anomaly 50,430 (1.60%) 68,989 (2.19%) 

 

  These results show that 42% of identified anomalies are actually normal 

sequences. This high false positive rate is alarming because of the implications if this was 

actually a real-time system. The below graphs show the percent of correct examples for 

each label based on the percent of progress through the log sequence. 
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The above graphs demonstrate several interesting points about the performance of 

the classifier on partial sequences. When labeling normal sequences, the classifier is 

highly accurate throughout but varies before correctly classifying all sequences at the 

end. For anomalous sequences, the classifier gradually becomes more accurate as it 

receives more of the sequence. This is likely because the anomalous behavior occurs at a 

specific point in the sequence and would appear normal before that. 

 

Using this same data, an analysis was performed to determine at what point the 

classifier ‘converges’ for each example, that is, all further predictions for that session are 

correct. This is especially important when trying to understand the frequency of false 

positives, normal sequences that are incorrectly labeled as anomalies, when the sessions 

are considered as partial examples. 
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The convergence graph for the normal sequences demonstrates that the classifier 

frequently mislabels normal sequences before converging at the end. For anomalies, the 

convergence graph shows steady progress as more sequences converge with longer 

sequences.  

 

While the logistic regression model predicts correctly for complete sessions, it 

does predict a large number of false positives in the partial sequences. This would be 

particularly troublesome if such a model was leveraged as a real-time system to identify 

anomalies as they occurred. The model was trained on complete sessions because the 

model is known to predict the correct label at the end, so the model is not designed to 

label partial results. Similarly, the anomalous examples cannot always be labeled early in 

the sequence because the anomalous behavior has not occurred or been predicted. 

Overall, the classifier does show promise based on its results on full sessions, but the 

high false positive rate is concerning for this model with partial sequences.  
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4.2.1 Logistic Regression with Bigrams 

After observing how the logistic regression model performs on partial data, this 

experiment explores if that performance can be improved by providing more information 

to the model. In this experiment, each example is now formed using both unigram and 

bigram information so that the feature vectors now hold information about event ID 

counts and counts of event ID transitions. Training the model with these new bigram type 

vectors results in the following confusion matrix for the complete sessions in the test set. 

 Labeled Normal Labeled Anomaly 

Predicted Normal 9252 (95.3%) 4 (0.04%) 

Predicted Anomaly 1 (0.01%) 451 (4.64%) 

 

Unlike the classifier trained with unigram features, this classifier mislabels several of the 

sessions but does not severely degrade the performance. This is likely a consequence of 

the expanded feature space, which would require more examples to predict all complete 

sessions correctly. When predicting on partial examples, the bigram model results in the 

following confusion matrix: 

 Labeled Normal Labeled Anomaly 

Predicted Normal 3,027,165 (96.1%) 59,134 (1.88%) 

Predicted Anomaly 46 (0.001%) 65,310 (2.07%) 

 

The confusion matrix shows that when given bigram features as well, the model performs 

slightly worse in identifying anomalies but correctly labels nearly all of the normal 

examples. This is also seen in the graphs showing percent correct: 
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The graphs demonstrate that the classifier correctly labels nearly all normal sequences 

throughout while only slightly underperforming the previous classifier on anomalous 

sequences. Similarly, in the convergence graphs: 

 

These results are quite interesting because they indicate that such a classifier could 

perform well in a real-time system since nearly every partial sequence labeled anomalous 

is actually labeled as an anomaly. The larger feature space does appear to have an effect 

of reducing the performance on complete sessions, but this could potentially be solved 

with additional training data or creating an ensemble of this classifier and the classifier 

trained on just unigram features. 
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4.2.2 Logistic Regression Trained on Partial Examples 

In the previous experiments, the classifier was trained using only examples 

formed from complete sessions. This was done because identifying every anomaly is 

important and the initial logistic regression classifier was able to do this using only 

complete sessions as training examples. However, after analyzing the results on partial 

data, a next step is to see if training on partial data improves the results predictions on 

partial data. This experiment does exactly that; training and testing the classifier using 

partial examples. The confusion matrix for the resulting classifier on complete sessions is 

shown below: 

 Labeled Normal Labeled Anomaly 

Predicted Normal 9252 (95.3%) 19 (0.20%) 

Predicted Anomaly 1 (0.01%) 436 (4.49%) 

 

This classifier does mislabel more anomalies than the previous classifier, but the 

change is not extreme. The confusion matrix for the partial sequences are shown below: 

 Labeled Normal Labeled Anomaly 

Predicted Normal 3,027,128 (96.0%) 60,874 (1.93%) 

Predicted Anomaly 83 (0.003%) 63,570 (2.02%) 

 

Similar to the classifier trained with bigram features, this classifier greatly reduces 

the false positives since nearly all predicted anomalies are labeled as anomalies. This 

model does not perform as well as the bigram model, but it does demonstrate that training 
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the model with partial examples does have benefits when evaluating partial examples. 

Again, this is also observable in the percent correct graph: 

 

As well as in the convergence graph: 

 

These results demonstrate that training with partial sequences, similar to adding 

bigram features, significantly reduces the false positive rate while slightly reducing the 

accuracy in labeling anomalies. 

  

4.3 Other Classifier Experiments 

After exploring the performance of multiple approaches with logistic regression, 

our experiments shifted to finding other appropriate classifiers to compare. These 
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classifiers also came from the sci-kit learn library and each was selected because of its 

different characteristics and high potential for success. 

 

4.3.1 Naïve Bayes 

Naïve Bayes classifiers are supervised learning algorithms that leverage Bayes’ 

theorem and make the naïve assumption of conditional independence between features. 

Sci-kit learn has a number of Naïve Bayes classifiers, several of which were evaluated for 

this experiment. Initially, the Complement Naïve Bayes algorithm, which is described as 

being suited for imbalanced data sets, and Multinomial Naïve Bayes algorithm, which is 

a variant used in text classification, seemed like the most promising approaches [26]. 

However, both proved to perform very poorly for this dataset. Instead, the Gaussian 

Naïve Bayes algorithm performed the best and is evaluated in this experiment [27]. As its 

name suggests, the Gaussian Naïve Bayes assume the likelihood of a feature to be 

Gaussian. The classifier was trained on complete sessions with unigram features; its 

performance on the complete sequences in the test set are below: 

 

 Labeled Normal Labeled Anomaly 

Predicted Normal 9081 (93.54%) 25 (0.26%) 

Predicted Anomaly 172 (1.77%) 430 (4.43%) 

 

This is the worst performance of any of the classifiers thus far, but the model is 

fairly simplistic and does reasonably well. The number of mislabeled normal sequences 

jumps from previous classifiers. For the partial examples, the confusion matrix is below: 
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 Labeled Normal Labeled Anomaly 

Predicted Normal 3,012,161 (95.6%) 61,015 (1.94%) 

Predicted Anomaly 15,050 (0.48%) 63,429 (2.01%) 

 

The results appear fairly average as a classifier using just unigram features, 

predicting the normal sequences better than the logistic regression but predicting the 

anomalies with less accuracy. These results are more noteworthy when the percent 

correct graphs are considered: 

 

Interestingly, the percent of correct predictions for normal examples decreases as 

the sequence progresses. The percent of correct predictions for anomalies is slightly 

lower than logistic regression but follows the same trend. The convergence graphs are 

below: 
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Despite the differences in the percent correct graph, the convergence for normal 

sequences jumps very quickly, although it never converges for some of the sequences. 

The convergence graph for anomalous sequences is very similar to the logistic regression 

with slightly less accuracy. This classifier does perform rather well considering the 

assumptions made by the model but may not be the most appropriate classifier for this 

problem. 

 

4.3.2 Multi-Layer Perceptron 

The Multi-layer Perceptron (MLP) algorithm differs from the other models used 

because it is a type of neural network. The MLP algorithm contains the hidden layers 

typical of a neural network and has the advantage of being able to learn non-linear 

models [28]. As the only neural network model in sci-kit learn, MLP is clearly different 

from the models used in previous experiments [29]. After evaluating multiple hidden 

layer designs, the model performed best with a simple (20,5) layout. This layout has 

twenty nodes in the first layer and five in the second. The results on complete sessions 

are shown below: 
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 Labeled Normal Labeled Anomaly 

Predicted Normal 9252 (95.3%) 13 (0.13%) 

Predicted Anomaly 1 (0.01%) 442 (4.55%) 

 

These results show the model to predict nearly all of the normal sequences 

correctly while incorrectly classifying several anomalies. The confusion matrix for MLP 

on partial sequences in below: 

 Labeled Normal Labeled Anomaly 

Predicted Normal 3,017,168 (95.7%) 59,161 (1.88%) 

Predicted Anomaly 10,043 (0.32%) 65,283 (2.07%) 

 

 

The MLP classifier   identified anomalies as well as any of the models evaluated 

and had fewer false positives than the classifiers using Naïve Bayes or Logistic 

Regressions and unigram features.  The percent correct graphs are shown below: 
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The MLP classifier does better in labeling normal sequences but still varies 

slightly like the logistic classifier while slightly underperforming logistic regression in 

identifying anomalies. The convergence graphs are below: 

 

 

 

 

Again, the MLP classifier converges more quickly for normal sequences and does 

slightly worse for normal sequences than the logistic regression model. These results do 

suggest that the MLP classifier could be a good choice for classifying this data set. The 

results would likely improve with more examples as neural networks typically require 

large numbers of examples to train all of the hidden layers. 

 

4.4 Comparing Classifiers 

When comparing all of the results for these experiments, it is important to 

consider that each experiment uses a fundamentally different classifier or provides a 

different set of information to the model. Below are the percent correct graphs for all 
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experiments including an entry for the invariant miner, the classifier used to provide 

labels: 

 

Overall, the percent correct graph for the normal sequences shows more variety in 

performance, although the performance is generally very high. Logistic regression clearly 

outperforms invariant mining but MLP clearly has even better performance. This 

indicates the ranking of each model for predicting invariant miner labels using partial 

sequences. The models using bigram features and partial sequences for training 

demonstrate that providing this type of information greatly reduces the number of false 

positives. For anomalies, the classifiers do not vary as greatly with only small differences 

in performance between models but the same upward trend in identifying anomalies. 
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The convergence graphs for all classifier do not offer any additional information that is 

not shown in the percent correct graph. They do emphasize how quickly the models with 

bigram and partial training data identify normal sequences.  
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Chapter 5 

 

CONCLUSION 

The experiments in this project explore the performance of a number of sci-kit 

learn classifiers on a data set of on a collection of CloudLab system logs.  The 

evaluations explored using day-long sessions and partial sessions that better reflect a real 

time monitoring system. Based on the results, logistic regression, and multi-layer 

perceptron show promise in both session-based identification while the variations of 

logistic regression and multi-layer perceptron models demonstrate potential for operating 

real time anomaly detectors.  

 

Future work with these experiments would suggest several avenues to improve 

this work or leverage these results. A better classifier could almost certainly be created by 

creating an ensemble, a ML technique that leverages multiple classifiers to make a single 

prediction, to combine the strengths of several of the promising models. Additionally, 

evaluating the various training methods used for the logistic regression model could be 

applied to the Naïve Bayes and MLP classifiers to note their effects. Further work could 

also be done to evaluate implementing a real-time monitoring system for CloudLab data. 

Several issues regarding the number of false positives and identifying anomalies that 

require system administrator intervention would need to be explored.
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