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Abstract
The control plane for mobile wireless (eg. cellular) networks

faces challenges with respect to scaling, robustness, and handling
of bursty traffic. In this paper, we take a cloud-native approach to
building a mobile control plane, employing a design that maps tran-
sitions of device state to serverless functions. Using a prototype of
the LTE/EPC Mobility Management Entity (MME), we demonstrate
how to architect a mobile control plane using serverless computing
primitives. We demonstrate the practicality of this approach, which
differs significantly from designs based on traditional telecom in-
frastructure.

CCS Concepts
• Networks → Mobile networks; Control path algorithms; •

Computer systems organization → Cloud computing.
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1 Introduction
Serverless computing provides an execution model in which a

cloud provider manages the provisioning of resources dynamically,
abstracting management and low-level infrastructure away from
developers and operators. Services managed by the cloud provider
include Function as a Service (FaaS), databases, networking, and
security. For example, AWS offers Lambda (FaaS), S3 (storage), Dy-
namoDB (database), and IAM (Identity and Access Management).
FaaS is the “core” of serverless computing, providing a platform for
customers to develop, run, and manage application functionality at
the granularity of individual functions. The application developer
leverages this model to deploy independent actions or business
logic in the form of stateless functions. Functions are run in a sand-
boxed environment like containers or lightweight VMs, and any
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state that they may need can be stored in other service offerings
such as databases. With the promise of inherent scalability, avail-
ability, pay-per-invocation, and higher developer velocity offered
by serverless computing, it is an attractive choice for implementing
some network functions.
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Figure 1: EPC Architecture

In this work, we examine how the control plane of LTE/EPC
mobile network and future 5G networks can be implemented us-
ing serverless functions. The overall LTE network architecture
(shown in Figure 1) consists of the Radio Access Network (RAN)
and Evolved Packet Core (EPC). The RAN consists of eNodeB (eNB)
“base stations” and User Equipment (UE) such as phones, IoT de-
vices, etc. Functionality in the EPC is divided into a control plane
and a data plane. The control plane handles authentication of UEs
(through the Home Subscriber Service—HSS), attaching them to
the network and managing their mobility (Mobility Management
Entity—MME), and policy and billing (Policy and Charging Rules
Function—PCRF). The main task of the control plane is to configure
the data plane, which forwards the actual traffic between UEs and
other networks such as the Internet.

We focus on the MME, as it is the key element of the control
plane for managing the state of UEs. With the huge growth in IoT
and mobile devices, the signaling traffic in the control plane has
increased considerably and it is projected to increase further[9].
If an MME becomes overloaded, new devices cannot attach, ex-
isting devices may not be able to migrate to new base stations as
they move, and the network degrades even if there is plenty of
data-plane capacity. For this reason, commercial networks place
a great emphasis on making these devices reliable and scalable,
and vastly over-provision them (60-100% [28]) to respond to bursts
in traffic. Traditionally, MMEs have been large, extremely expen-
sive, dedicated hardware devices designed as monolithic services. A
provider might typically have O(10)MMEs to serve a country the
size of the United States and must put in significant resources into
ensuring that those few devices do not fail. Recently, providers have
moved towards hosting these in NFV environments for cost and
management, but the basic monolithic architecture has remained
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the same, making it difficult (and expensive) to scale and replicate
these services.

In this paper, we approach the problem of building a mobile
control framework from the cloud-native direction, using serverless
computing at the base. We build a simple model of some MME
functionality, and make the following contributions:

(1) We evaluate the serverless platform for the features it promises
as part of background research and motivation.

(2) We redesign MME as stateless functions (using remote data-
store) running on the serverless platform.

(3) Then we evaluate the MME FaaS solution on OpenFaaS[7]
and AWS Lambda[2] with different datastores.

2 Motivation and Related Work
Why Serverless?Most work on scaling the EPC takes the cur-

rent monolithic design and changes it in some way to make it more
scalable. These designs co-locate state and computation, that is, they
tightly couple the data used to track elements such as UEs with the
computational resources used to manage that state. This makes scal-
ing challenging: when new resources are “spun up” for computation,
complex synchronization is required to hand off responsibilities
from one server to another. Load balancing is similarly difficult.
Our approach starts from a different direction: in the style of many
“cloud native” services, we decouple state from computation: state
is stored in a scalable database, and computation is performed in
serverless functions. Because most control logic updates the state
of one UE, independently, this requires no coordination between
functions, keeps database access simple, and allows us to scale and
load balance without complex synchronization. It also has the ben-
efit of making cost directly proportional to traffic, enabling easy
scale-up for uncommon events and reducing the need for costly
over-provisioning.

In PEPC [26] a state-driven packet core is designed such that
all the state associated with a user is consolidated into a slice. In
C3PO [8], the bottlenecks in mobile core packet performance are ad-
dressed by separating and independently scaling the data plane and
control plane. In both cases, the UE state is local to the VNF. Some
control plane specific solutions are DMME [11] and SCALE [15];
DMME splits the control plane processing task among multiple
servers which maintain the UE mobility independently. The states
are transferred between DMME replicas. In SCALE [15], the control
plane functionality is divided into frontend load balancer which
maintains the standard interfaces and a backend elastic MME pro-
cessing cluster of VMs. While SCALE stores the UE information
in the VM, DMME stores it to an external datastore. Keeping the
state locally at VM can give fast access to the data, but using a
cloud-based datastore is highly reliable and scalable. There have
been attempts to build MMEs that use cloud services even more ex-
tensively, such as CNS-MME [10]. CNS-MME uses a stateless MME
and runs as microservices or on a VNF pool. Since it uses these
cloud services, CNS-MME provides auto-scaling and availability.
These stateless microservices are instantiated behind an L7 load
balancer which classifies packets and forwards them to respective
VNF.

Our approach starts from a different direction: rather than start-
ing from the telecom-inspired monolithic design of today’s MME

and adapting it to cloud technologies, we start from a purely cloud-
native design. The work we present here represents an early proof-
of-concept of this design; while it is not a complete EPC or MME
implementation, by using a different fundamental design, further
development of this idea will result in a control plane with substan-
tially different scaling properties.

3 Background: EPC and Cloud Features
Telecom networks contain purpose-built infrastructure which is

comprised of different devices coming from different third-party
vendors. This results in a lot of integration effort which reduces the
agility of deployments. Increasing capacity is costly and slow, as it
involves the physical installation and configuration of new devices,
and many services are designed in a monolithic fashion that makes
it difficult to flexibly balance the load. While network operators are
moving towards softwarization (VNF and SDN) and Infrastructure-
as-a-Service to bring agility, IaaS requires overprovisioning to meet
bursty traffic demands. Thus, usingmanaged services and serverless
platform presents an effective way to reap the benefits of the cloud,
mainly scalability and cost-effectiveness. Next, we discuss relevant
features of serverless computing, matching them up with control
plane requirements.

Auto-scalability: We examined the scaling provided by AWS
Lambda using the method proposed by L. Wang et al. [29]. Figure 2
shows the effect of increased concurrency on the total number of
containers created for processing 10k requests. We observe that
the system scales up to meet the increased requirement, which in
turn increases the throughput. The latency of each request remains
almost flat. In another experiment, the response time of 10k AWS
Lambda requests (Figure 3) at a concurrency level of 200, show
a few spikes which indicate the spawning of new containers to
handle the increased load. Once the scale-up is performed, the
response times stabilize. The serverless model makes scale-up/-
down dynamic without pre-provisioning resources. Thus, it can be
used for network functions if the scaling is seamless.

3GPP Timers: The 3GPP standards that govern LTE and EPC
networks define timers which set the maximum limits for different
procedures to execute. For example, a UE will wait up to 15s for
an Attach request to succeed, as defined by timer T3410. Thus, we
need to build an MME which can perform the processing within
these time limits.

Independent and event-driven: Services in FaaS are written
as event-driven functions, which aligns with the signaling model of
control plane entities in 3GPP. Each instance works independently
on the state of a UE; instead of building a monolithic application,
FaaS allows the control plane to be built in the form of indepen-
dently scalable functions. Rather than scaling the entire app, scaling
can be done at a much finer-grained level in terms of the resources
used and in time. Such scaling has the potential for significant cost
savings.

5G:As per the specs for 5G core [1], a Service Based Architecture
(SBA) is being followed for connecting the control plane entities
using Service Based Interfaces (SBIs). In this design, the control
plane is broken down into services communicating via HTTP [5, 6].
Thus, we expect that a serverless approach will be an even better
fit for 5G than 4G.
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Figure 2: AWS RPS, Containers, and
Latency with concurrency

Figure 3: Response times of 10k reqs
on AWS Lambda
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4 Design
Having seen that a serverless platform can provide scalability

with acceptable latency, we present the basic design features of a
mobile control plane based on a serverless architecture:

Asynchronous response from MME: In a mobile network
control plane, functions are required to process the incoming re-
quest and generate a new response/request to the caller or other
network components. FaaS functions are not intended to be long-
lived; it is in large part their short duration that makes it easy to
flexibly schedule them. Thus, in our design, we use an asynchro-
nous style: for example, when the MME needs to communicate with
a data plane component, the function terminates after sending the
message. When the reply from the data plane arrives, it is treated
as a new event, causing a new FaaS function to be invoked, perform
its processing work, send a reply to the UE, and then terminate.

Asyncmode also helps avoidAPI Gateway timeouts. Even though
the function timeout is 15 minutes in AWS Lambda, the AWS API
Gateway times out after 29 seconds. As a result, the calling entity
might get a failure message even though the MME function is still
waiting for some response from other entities. OpenFaaS supports
async responses using Callback-URLs while AWS supports it using
dead letter queues[21]. For simplicity, our prototype uses sync re-
sponses from AWS Lambda and async responses from OpenFaaS
functions.

Separate processing and state: FaaS functions do not, them-
selves, hold state between invocations; this is another key factor in
their scalability. Since the purpose of the mobile control plane is to
manage connection states for UEs and the data plane, we must (like
many serverless applications) access external state storage. We find
that NoSQL [12, 17] datastores are ideally suited to this application:
because each UE’s state is separate, it fits this data model well, and
NoSQL stores can achieve high scalability.

State passing: Using asynchronous function invocation with
an external state store raises two challenges to state management:
failures could leave stale state in the store, and function invocations
are likely to repeatedly re-access the same state, increasing latency
and cost. We address these problems by passing state along with our
messages: For example, in Figure 5, when MME-4 sends a Location
Update Request to HSS, it passes the state to HSS. The HSS sends
Location Update Answer along with the state needed by MME-
5. As a result, we don’t have to generate another access to the

datastore to retrieve MME-5’s state and can delay writing state into
the datastore until an entire operation has successfully completed.
This is analogous to the “Continuation Passing Style”[30] used in
many functional programming languages.

Optimistic concurrency control:While most state in the con-
trol plane is specific to a particular UE, there are a few cases where
globally unique identifiers must be generated. We use “Optimistic
Concurrency Control” [31] when generating these identifiers: we
generate them randomly, then insert them using a method that suc-
ceeds only if the identifier does not already exist in the state store.
If it does, we generate a new one and try again. The size of these
identifiers is sufficiently large to make such collisions extremely
rare.

Using these design principles, we built the prototype MME FaaS
shown in Figure 4. Our early proof-of-concept implements only
the Attach procedure (the most complex of all MME functions),
and while it models the major functions of the messages, it is not
standards-compliant.

5 Evaluation
We used both proprietary and open source platforms for our eval-

uations. For the serverless platform, we used OpenFaaS and AWS
Lambda. For the datastore, we used CassandraDB [12] deployed on
CloudLab [4] and AWS DynamoDB [17].

5.1 OpenFaaS Functions
We used CloudLab [16] servers to deploy CassandraDB and

OpenFaaS for our first set of tests. We capture the time taken using
both synchronous and asynchronous interactions with the function
(Figure 6). In the synchronous mode, the eNB App sends requests in
HTTP POST and receive responses in the body of the 200 OK replies.
In the asynchronous mode, when the eNB App sends a request, it
also sends a callback URL to OpenFaaS in the HTTP POST header.
In both the cases, the latency is similar but we suggest Async mode
for the reasons discussed in Section 4.

5.2 AWS Lambda
Our next set of tests uses AWS Lambda with AWS’s managed

DyanmoDB service and a CassandraDB instance that we managed
ourselves. Figure 7 shows the spread of time taken by 1,000 re-
quests. DynamoDB was deployed in the same region as the MME
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FaaS Lambda (US-East-2). This resulted in faster query responses
compared with CassandraDB, which was running at the CloudLab
Utah cluster in the western US. With DynamoDB, the 95% latency
extends up to about 650ms while the median remained at 250ms.
This shows that DynamoDB can take a variable amount of time for
different queries. With CassandraDB, although the median lies at
about 500ms, all requests finish between 500ms to 600ms except
one. Since all of these latency ranges fall well within the limit of
the timer (15s), both solutions are viable options.

5.3 Concurrent execution
Next, we use different concurrency levels for requests. Figures 8

and 9 show latency for both CassandraDB and DynamoDB with
MME FaaS running in AWS Lambda. In both tests, as the concur-
rency increases, the time taken to complete the procedure remains
stable until a concurrency level of 100. This shows that at high con-
currency, the databases don’t scale well with our configuration: this
could be due to our single-node CassandraDB and capacity mode
for DynamoDB. Another observation is that CassandraDB has a
higher latency for low concurrency, but as concurrency increases,
its latency curve is flatter and less variable than DynamoDB.

The tables in DynamoDB (in Provisioned mode) are configured
with RCUs and WCUs which limits the number of read/write access
per second to the DB. A working configuration for our tests was
200 RCUs and 400 WCUs. From our sensitivity analysis (Figure 10)
the latency of Attach procedure remains constant with RCUs 100
or more and WCUs 200 or more. Since we observed a few spikes
in some tests with this config, we performed all our tests with 200
RCUs and 400 WCUs. With lower capacity units we observed many
failures due to throttled requests at the datastore. For 10k requests,
we saw 1523, 1010 and 502 failures with 25rcu/50wcu, 25rcu/50wcu
with auto-scale and 50rcu/100wcu respectively.

5.4 Comparison with other implementations
To compare our latency results with other EPC solutions we per-

formed UE Attach with OpenEPC [20] and OpenAirInterface [24],
using the setup suggested in [19] and [18] to attach a simulated
UE by running experiments on the PhantomNet [25] testbed. All
devices ran in the same datacenter. OpenEPC takes 450ms to attach
and OpenAirInterface takes 1800ms. In comparison, our single-
datacenter configuration (OpenFaaS and CassandraDB) completes
theAttach procedure in 42ms, as seen in Figure 6. BecauseOpenEPC
and OpenAirInterface are much more mature than MME-FaaS, and
have more complete implementations of the 3GPP protocols, we

don’t claim that this shows that MME-FaaS is “faster”; what it does
demonstrate, however, is that it can be competitive with existing
implementations.

5.5 Cost
In order to show that this system can be deployed at a reasonable

cost, we use data from our experiments and AWS’s current pricing
to estimate the costs of a full deployment. From Figure 5, an Attach
involves 10 function calls (9 MME FaaS function + 1 timer function),
5 write calls to the database, and 4 read calls to the database. Call
duration is 100ms (CloudWatch logs shows that AWS billed each
function call for 100ms) and memory is 128MB, giving 0.0125 GB-
sec per request. Thus, the cost for an Attach can be calculated as
follows:

Resource Cost per Qty. Cost (¢)
Requests $0.20 per 1M [3] 10 0.0002
Duration $0.06 per GB-hr [3] 3.5e-5 0.0002
API Gateway $3.50 per 1M [13] 10 0.0035
DynamoDB R $0.25 per 1M [14] 4 0.000100
DynamoDB W $1.25 per 1M [14] 5 0.000625

The total cost 0.00465 cents per Attach procedure, or ≈ $46.5 for
1M attaches. Since UE attach is infrequent[22]—we assume once
per day per device—this is a very reasonable cost. The API Gateway
is the biggest contributor (75%). Since UE context is small (about
400bytes), we can maintain 2.7M UE states without extra cost at
DynamoDB (first 25GB free). We extrapolate costs using rough
estimates for 1M control events based upon example signaling
distribution from [23]. Using the AWS prices and the number of
control messages per NAS procedure (from Table 1 of [27]), we get:

Operation Fraction Cost (¢)
Mobility and Handover 30% 0.00091
Paging 30% 0.00091
Service Request 20% 0.00144
Service Release 10% 0.00144
Attach 4% 0.00465
Detach 1% 0.00091
Bearer Act./Deact./Mod. 5% 0.00182

The total cost for 1M events for the above distribution is about
$12.50. As per [23], 1M subscribers can generate 31,000 transactions
per second during busy hours resulting in 111.6M transactions per
busy hour for 1M subscribers: the cost for handling busy hour
control traffic for 1M subscribers is about $1,400—again, reasonable
given the national scale of these networks. Cost at off-peak hours
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Figure 10: Sensitivity Analysis with
DynamoDB

can be assumed to be lower, though no reliable utilization numbers
are publicly available.

6 Conclusion & Future work
We presented the design of a cloud-native serverless control

plane for mobile core networks, focusing mainly on the dependen-
cies and architectural challenges related to serverless platforms.
Given the expanding use of cloud technologies, there is clear in-
centive for telecom companies to use cloud-native architectures
for supporting rapid traffic growth. MME-FaaS provides a base for
further research and development of mobile network elements as
cloud-native applications.

With our initial analysis of MME FaaS for cost, latency and scal-
ability, there is a need to explore the serverless platforms further to
support fully-functional data and control planes. More work needs
to be done to break down the components to reduce the number of
interactions, since there is a cost associated with each interaction in
the serverless model. Strict latency and bandwidth requirements for
the data plane need further investigation to fit the serverless model.
Reducing cold start latency also needs more work at the platform
side, and is an active research topic. There are areas for saving cost
like instead of using an API gateway, and other event triggers can
be examined. Another important area for research is availability:
telecom grade-services need high availability of “five nines" which
is much higher than offered by an IT-cloud (about 99.95% availabil-
ity). Overall, our current work establishes a direction for further
research on fulfilling the requirements of the telecom world using
IT-grade cloud services.

All code used for this paper is available at:
https://github.com/sonijindal/lte-mme-faas
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