
Critical Reroute: A Practical Approach to Network
Flow Prioritization using Segment Routing

Simon Redman
School of Computing

University of Utah

Salt Lake City, United States
sredman@cs.utah.edu

David Johnson
School of Computing

University of Utah

Salt Lake City, United States
johnsond@flux.utah.edu

Jacobus van der Merwe
School of Computing

University of Utah

Salt Lake City, United States
kobus@cs.utah.edu

Abstract—It is widely recognized that reliable communications
are a key element of a successful response to a disaster situation.
To address this need, local and regional governments in all parts
of the world have deployed dedicated communications networks
for first responders. These systems are often prohibitively ex-
pensive, voice-only, and are needed only on rare occasions. It
would be more cost-effective to use already-existing networks or
to deploy networks for shared use. However, due to the sudden
increase in demand or physical failure caused by the disaster,
shared networks may become overloaded. In such situations,
it would be desirable to prioritize traffic flows belonging to
public safety applications over others. Solutions such as priority
queuing and differentiated services provide partial answers to
that goal but leave other problems unsolved. This work presents
a novel solution using Segment Routing and a Genetic Algorithm
optimizer to minimize the impact of network overload on critical
traffic flows. The results show that these methods can reroute
flows using a single midpoint such that the total network overload
is reduced compared to traditional shortest-path routing while
avoiding unnecessarily long paths and taking priority of flows
into account.

Index Terms—segment routing, genetic algorithms, network
reliability, metropolitan area networks

I. INTRODUCTION

Many local and regional governments in all parts of the
world have deployed dedicated communications networks for
first responders [1]. However, these systems are often pro-
hibitively expensive. They are only needed on rare occasions,
so there is little motivation to invest the necessary resources.
In the United States, GETS [2] and WPS [3] enable prioritized
use of the commercial landline and cellphone networks when
needed, thus avoiding the cost of dedicated infrastructure.

Voice-only calls are an important tool, but increasingly
emergency services would like to add reliable data com-
munications to their toolbox, which has led to the creation
of FirstNet [4]. However, this requires the installation of
dedicated infrastructure and is still under deployment. Public
safety’s takeup of FirstNet has been limited but is gaining
momentum [5]. Just as with phone networks, developing the
technology to reliably share already-deployed data networks
would significantly and immediately benefit the ability of
public safety to execute their mission.

This work is supported in part by the National Science Foundation grant
number 1647264. 978-1-7281-1434-7/19/$31.00 c⃝2019 IEEE

We present a practical approach to prioritizing data traffic in
the presence of network overload using single-midpoint Seg-
ment Routing. This solution operates on a single autonomous
system with a relatively simple core network which supports
segment routing and programmable traffic classifiers at the
edges of the network for installing routing rules. Live traffic
and topology information is captured from the network and
used to optimize the network in real-time.

Midpoint selection is an NP-hard problem, as discussed in
DEFO [6]. Therefore, it is difficult to establish any guarantees
about computation time of an optimizer or how a solution
compares to the optimal. Nevertheless, we have designed a
genetic optimizer which can provide useful solutions while
running quickly enough to be practical.

Real-world evaluation is ongoing, and initial results from
the Emulab testbed environment [7] show that the system
meets its design goal of real-time prioritization of network
traffic. Calculation of priority-protecting routes happens on a
timescale such that there would be minimal disruption to real-
world applications.

This work contributes the following: 1) Design and im-
plementation of an optimizer which computes routing rules
to protect priority flows. 2) Design and implementation of
a Segment Routing-enabled controller framework to enable
real-world, practical flow prioritization.

In essence, our solution tries to reduce overload of links in
the network by leveraging alternate paths, taking flow priority
into consideration, implemented with Segment Routing

II. BACKGROUND AND RELATED WORKS

Traffic engineering is not a new goal, and the proliferation
of works solving different aspects of this problem reflect its
importance. We present some recent efforts in this area and
compare each with our contributions. Segment Routing is
a modern Software Defined Networking (SDN) tool which
provides the ability to give fine-grained control over the route
of a particular packet, which we use to assign midpoints to
traffic flows by forwarding each packet of a flow through via
a specified router.

1) Optimizing Restoration with Segment Routing [8]:

Fundamentally, this work solves a similar problem as they
work to eliminate overloaded links by describing the situation

In the case that human intervention is required, such as
defining flow priority match rules or inputting initialization in-
formation, the Controller has a northbound Operator Interface.
This interface also provides information back to the operator
about the state of the network.

B. Route Planner

The core component of the Critical Reroute system is the
route planner. The route planner takes as inputs a graph of
the physical topology and a traffic matrix annotated with flow
bandwidth requests and priority and outputs a list of midpoints,
one for each flow, which minimizes the amount of overload
on links carrying critical traffic.

While the primary design goal of the Route Planner is
to provide optimal routes, an important consideration is that
it must run quickly enough that it can adapt to changing
circumstances. For instance, if nodes are removed from the
topology view or new flows are added to the traffic matrix,
the route planner should be able to respond to those changes
quickly, such that services using the network are disrupted as
little as possible. It should also never return a worse solution
than using pure shortest-path routing.

We elect to generate a solution with only a single mid-
point per flow for the practical reason that the search space
involving one midpoint per flow is vastly reduced compared
to any additional midpoints, allowing the solver to run in a
realistic amount of time. Simultaneously, one midpoint gives
the controller good control over the path the traffic takes based
on our experience as well as the experiences discussed in prior
work [8].

The following subsections describe the different compo-
nents of the route planner.

1) Cost Function: In order to define “better” or “mini-
mum”, we need to be able to quantify the usefulness of a
solution. In optimization problems, this quantifier is called
the cost function. Our cost function is three dimensional, with
each dimension acting as a tiebreaker for the one before it.
The factors considered are: 1) Total amount of critical traffic
flow on overloaded edges 2) Sum of the latency of each flow
multiplied by its priority value 3) Total number of extra edges
used in a solution compared to shortest-path

Essentially, this cost function is a restatement of our goal
of avoiding network overload while adding a latency term to
capture the idea that we would like our priority flows to receive
good service.

2) Priority Value: The priority value of a flow can be any
integer or floating-point value greater than or equal to zero.
If a priority of zero is assigned to a flow, the optimizer will
treat the flow as totally unimportant, and any congestion it
experiences would not be optimized, though it still contributes
to the used bandwidth of a link. Priority values should be
considered relative to other priority assignments in a solution,
where higher priority means the flow is more important.

3) Optimizer: With this cost function definition, we can
address the problem of how to solve for a “better” or “best”
solution. The most important consideration is that the solution

space is discrete. The midpoint for any flow can be exactly
one core router and flows are not divided into fractional parts,
as was done in [8].

Thus, we need an optimizer which works directly on discrete
solution spaces. One class which works well in many cases is
Genetic Optimizers [11].

4) Genetic Optimization Process: To start, a number of
proposed solutions, called ‘individuals’ are generated. Then, at
every step, the individuals are tested against the cost function
to determine their ‘fitness’ with the fittest solutions being given
the best chance to be selected to reproduce.

In this work, an allele is a single midpoint for a particular
flow, and an individual is a list of such midpoints, one per
flow. Each individual represents a valid solution.

5) Selection Algorithm: The first step in an iteration of the
Genetic Optimizer is selecting parents which will be used
to produce a new individual of the next generation. The
literature has many selection algorithms, each with their own
tradeoffs. This work uses Tournament Selection since it can
avoid evaluating the fitness of every individual in the gene
pool.

6) Crossover: Crossover is the step which builds the initial
child by copying some section of alleles from each parent. The
intuition behind crossover in any genetic optimizer is that the
solution might be structured such that nearby alleles influence
each other and keeping such groups together will result in a
better solution. This might be true, for instance, if flows were
sorted by source ID, so the selection of one allele might impact
its neighbors.

7) Mutation: After crossover, the resulting child might be
mutated. Mutation means that each allele in the child solution
might be changed. When a particular allele is selected to
be mutated, the midpoint that it represents is moved to a
neighboring router uniformly at random.

Once a new individual has been generated, the entire
process repeats from selecting new parents to generate another
individual until the entire new population has been generated.

8) Initial Population: Over time, the genetic optimizer
should converge towards the optimum regardless of how the
population is initially seeded. In practice, having a good
heuristic for initial population gives the optimizer a faster start.
For this work, we build an initial individual by selecting the
router which is the midpoint of the shortest path, then copy
that individual enough times to fill the gene pool.

9) Termination: In general, it is not possible to determine
whether a particular solution is the global optimum. Often,
this problem is solved by detecting when the optimization
algorithm stabilizes and assuming that the found optimum
is “good enough”. Another solution is, given a limited time
budget, find the best solution possible. Given this work’s goal
of attempting to optimize a live network, we opt for a time-
limited approach.

IV. THE CRITICAL REROUTE IMPLEMENTATION

Route Planner: All components of the Route Planner are
implemented in Python 3. The main work of the Route Planner

Due to lack of better information, we have assigned each
demand a priority value of 1 to represent non-critical flows and
10 to represent critical flows, with each flow being considered
critical with 20% probability. Each traffic matrix is rerun 5
time to evaluate the variance of the optimizer.

2) Results: In many cases, the result presented is Overload
Factor, since this is the quantity the optimizer is primarily
trying to reduce. Recall that this is computed for a particular
solution as the product of the highest priority value on each
link, multiplied by the bandwidth usage which exceeds the link
capacity, if any, summed over every edge in the network graph.
For instance, if for a particular solution a single link in the
entire network carrying traffic with a priority value of 10 were
overloaded by 1000 bandwidth units, the overload factor would
be 10000. Measuring a solution in this way should be thought
of in comparison to other solutions on the same topology,
rather than as a global measure. In all cases, an overload factor
of 0 indicates that the optimizer managed to find a solution
with no overload.

The other measure of interest is the latency factor, which is
more readily understandable in the real world. Latency factor
can be roughly understood in the same units as the link delay
(often milliseconds) since it is the product of the delay of
every link traversed by a flow multiplied by the flow’s priority
value. Once a flow has been optimized such that it is avoiding
overloaded links, which have an unbounded negative effect on
network performance, it becomes interesting to make sure that
it is taking the shortest path possible.

Topology Name Nodes Edges Demands
rf3967 79 294 6162
rf1239 315 1944 96057

TABLE II: Summary of tested topologies

3) Analysis: DEFO [6] seeks to optimize the most over-
loaded link such that, ideally, all links are below their the-
oretical bandwidth limit. For that work, the generated traffic
demands always have some solution where bandwidth per link
is below the threshold. In this environment, Critical Reroute
can also find a solution such that no link is overloaded.
However, this may take more time since Critical Reroute has
to compute a more complicated cost function.

Fig. 5: Overload Factor vs. Iterations for the rf3967 topology

Fig. 6: Overload Factor vs. Iterations for the rf1239 topology

Figures 5 and 6 show example runtimes of the tested
topologies and show the decrease in cost function over time
for each of the five trials on a particular topology using the
same traffic matrix and priority value annotations.

Figure 5 shows the relatively small 3697 Rocketfuel [22]
topology. Because of its size, it does not take long for the
optimizer to find an initial solution which eliminates overload.

Figure 6 shows runtimes of the largest topology we have
evaluated against. On our test hardware, Critical Reroute needs
roughly 30 minutes to converge to an initial solution which
eliminates overload on this topology. This is a larger scale
than Critical Reroute was originally designed to handle, but is
a good example of the limits of the current approach and the
ability of these methods to apply to more general problems.

It may seem that 30 minutes, or even 3 minutes, is too long
to wait in a real-world scenario. However, this is just the initial
setup time. In an operational deployment, we would be more
concerned with how well Critical Reroute can adapt to changes
in the network to keep traffic flowing smoothly. Section V-D
simulates how the optimizer might respond to the dynamic
nature of a live network.

Though DEFO [6] is able to optimize for its cost function
in all listed topologies in 3 minutes or less. Critical Reroute’s
cost function is more complicated to take into account the
priority and latency of individual flows; thus it is not able to
solve larger problems as quickly.

Each test with the same inputs was rerun five times to test a
total of 80 traffic matrices with different priority assignments
for each topology. In all runs, the optimizer was able to find
a solution which brought the total overload to 0. This is an
indicator that the optimizer is not getting stuck in local optima
or that at least those local optima result in useful solutions.
This has the real-world implication that leaving the optimizer
to run for the maximum available amount of time would result
in the best solution, as opposed to restarting the optimizer to
avoid locally-optimal solutions.

Table III shows the average factor increase in latency and
path length for the tested topologies. This equates to a latency
increase of about ten milliseconds and one additional link.
When considering that the initial network was suffering from
severe overload, causing routers to drop significant amounts

of traffic, network performance would have been terrible. An
increase of one extra link is a low price!

Topology Latency Path Length
rf3967 1.12x 1.12x
rf1239 1.15x 1.20x

TABLE III: Average factor increase in latency and path length
for the segment-routed solutions compared to OSPF

D. Critical Reroute Responds to Network Changes

Once the optimizer has converged to an acceptable solution,
it is expected that the network will only change in small steps.
Therefore, instead of being started from scratch, we can re-
use the midpoint assignment from the previous solution as a
starting point for a new solution.

For this simulation, we assume that Critical Reroute has
been given enough time to find a solution which eliminates
overload. Then, 1% of the nodes in the network are removed.
Even as the network experiences continuing failure, Critical
Reroute can respond in a reasonable amount of time to
maintain service performance.

Fig. 7: Graph showing recovery time from network failure.
The dashed vertical line indicates the point where 1% of the
remaining nodes are removed from the network

Figure 7 shows the response time of Critical Reroute to
a simulated failure in the larger rf1239 topology. It is not
surprising that finding a solution gets harder at every iteration
of this process since the same traffic has to share fewer paths.
For the first two iterations, Critical Reroute can find a solution
which eliminates overload in all test runs. In the third instance,
only two test runs are able to completely eliminate overload.

VI. CONCLUSION

This work presents a practical approach to network flow pri-
oritization using single-midpoint segment routing, automated
by a genetic algorithm. Additionally, it describes the design
and implementation of sufficient framework to run the system
on a physical network. Our evaluations show that the optimizer
can achieve its goals of protecting traffic from overload in an
environment where traditional tools would not be sufficient.

REFERENCES

[1] A. Kumbhar and I. Guvenc, “A Comparative Study of Land Mobile
Radio and LTE-based Public Safety Communications,” Apr. 2015.

[2] “Government Emergency Telecommunications Service (GETS),”
https://www.dhs.gov/government-emergency-telecommunications-
service-gets, Apr. 2013.

[3] “Wireless Priority Service (WPS),” https://www.dhs.gov/wireless-
priority-service-wps, Apr. 2013.

[4] “FirstNet,” https://www.firstnet.com, 2018.
[5] A. Ward, “FirstNet Momentum: More Than 2,500 Public Safety

Agencies Subscribed — First Responder Network Authority,”
https://firstnet.gov/news/firstnet-momentum-more-2500-public-safety-
agencies-subscribed, Aug. 2018.

[6] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A Declarative and Expressive Approach to
Control Forwarding Paths in Carrier-Grade Networks,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: ACM,
2015, pp. 15–28.

[7] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An Integrated Experimental
Environment for Distributed Systems and Networks,” in Proceedings of
the 5th Symposium on Operating Systems Design and Implementation,
ser. OSDI ’02. Boston, MA: USENIX Association, Dec. 2002, pp.
255–270.

[8] F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing restoration with
segment routing,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, Apr. 2016, pp.
1–9.

[9] S. Gay, R. Hartert, and S. Vissicchio, “Expect the unexpected: Sub-
second optimization for segment routing,” in IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, May 2017, pp. 1–9.

[10] K. Nichols, S. Blake, F. Baker, and D. L. Black, “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,”
https://tools.ietf.org/html/rfc2474, Dec. 1998.

[11] W. Darrell, “A Genetic Algorithm Tutorial,”
http://bipad.cmh.edu/ga tutorial1994.pdf, 1994.

[12] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary Algorithms Made Easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, Jul. 2012.

[13] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proceedings
of the 7th Python in Science Conference, Pasadena, CA USA, 2008.

[14] A. Shaikh and A. Greenberg, “OSPF Monitoring: Architecture, Design
and Deployment Experience,” p. 15.

[15] G. Balestra, S. Luciano, M. Pizzonia, and S. Vissicchio, “Leveraging
Router Programmability for Traffic Matrix Computation,” in Proceed-
ings of the Workshop on Programmable Routers for Extensible Services
of Tomorrow, ser. PRESTO ’10. New York, NY, USA: ACM, 2010,
pp. 11:1–11:6.

[16] A. Davy, D. Botvich, and B. Jennings, “An Efficient Process for
Estimation of Network Demand for Qos-aware IP Network Planning,” in
Proceedings of the 6th IEEE International Conference on IP Operations
and Management, ser. IPOM’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 120–131.

[17] K. Papagiannaki, N. Taft, and A. Lakhina, “A Distributed Approach to
Measure IP Traffic Matrices,” in Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’04. New York, NY,
USA: ACM, 2004, pp. 161–174.

[18] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True, “Deriving Traffic Demands for Operational IP Networks:
Methodology and Experience,” IEEE/ACM Trans. Netw., vol. 9, no. 3,
pp. 265–280, Jun. 2001.

[19] Cisco, “Introduction to Cisco IOS NetFlow - A Technical Overview,”
Cisco, pp. 1–16, May 2012.

[20] “Netflow iptables module for Linux kernel,” Apr. 2019.
[21] CERT/NetSA at Carnegie Mellon University, “SiLK (System for

Internet-Level Knowledge),” https://tools.netsa.cert.org/silk, 2019.
[22] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP

Topologies with Rocketfuel,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 2–16, Feb. 2004.

