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I. INTRODUCTION

Empirical performance measurements of computer systems
almost always exhibit variability and anomalies. Run-to-run
and server-to-server variations are common for CPU, memory,
disk, and network performance characteristics. In our previ-
ous work, we focused on taming performance variability for
memory, disk, and network [1] and established an interactive
analysis service at: https://confirm. fyi/ to help users
of the CloudLab testbed [2] better plan and conduct their
experiments. In this paper, we describe our analysis of CPU
variability based on over 1.3M performance measurements
from nearly 1,800 servers and present our initial findings.

The focus of this work is on capturing hardware variability,
which can make repeatable experiments more difficult and can
impact conclusions; it it this important for systems researchers
to understand. (We note that, though we do not study it in this
work, in the cloud, multi-tenancy and resource sharing [3]
can exacerbate the problem.) Variability also inevitably im-
pacts performance and operation of middleware and high-level
applications, contributing to the straggler problems in many
domains, including HPC, Big Data, and Machine Learning,
and on many types of cyberinfrastructures. We analyze the
data from the CloudLab servers allocated in an exclusive
fashion, with no virtualization. While our analysis focuses on
the testbed that aims to promote reproducible research, we
believe our approach and the findings can be of value to people
who manage, analyze, and utilize shared computing resources
in supercomputers, clouds, and datacenters.

II. PERFORMANCE DATA AND ANALYSIS

Starting on August 15, 2018, we have been measuring
CPU performance of CloudLab servers using NAS Parallel
Benchmarks [4]. We ran 9 microbenchmarks (BT, CG, EP, FT,
IS, LU, MG, SP, UA) on homogeneous pools of servers of 12
types, turning on/off dynamic voltage and frequency scaling
(DVES). We varied the number of running threads— tried one
and the number of cores per socket— and pinned the computa-
tions to each of the sockets (for two-socket servers). Each run
produced a record in the dataset with the runtime (in seconds)
accompanied by 38 metadata attributes, which include OS
version, kernel release, compiler version, etc. Data and code
used for our analyses are available at: https://gitlab.
flux.utah.edu/emulab/cloudlab-cpu-perf.

We begin our analysis by comparing the level of variability
in the CPU results with our findings for memory, disk, and
network tests from previous work [1]. We also investigate the
structure of this variability and identify contributing factors.
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Fig. 1. High Coefficients of Variance for c6320 CPU results. Each shown
point characterizes a sample with over 1,300 measurements.

We continue our analysis with comparisons of empirical dis-
tributions observed for sockets 0 and 1 in two-socket servers.
We discuss several cases where the differences are substantial.

A. Level and Structure of Variability

We use coefficients of variance (CoVs), the ratios of the
standard deviations to the means (expressed as percentages),
to assess the variability. Previously, CloudLab servers have
shown relatively high CoVs around 30% for network latency,
followed by some memory and HDD tests with CoVs in the
10-20% range [1]. In contrast, Figure 1 shows much larger
spread of CPU CoV estimates, which reach up to 150% for
c6320 hardware type. While this is the worst hardware type
in terms of variability among those studied, we notice here that
for the second and the third worst hardware types the highest
CoVs reach nearly 60% and 30%, respectively.

Knowledge about the structure of this high variability can
help inform experiment design for reliable results in research.
Thus, the coloring in the plots shown in Figure 1 reveals
information about the importance of the factors we controlled.
The plot on the left indicates that some MG tests lead to
the highest CoVs; according to the middle plot, we cannot
say that DVFS increases or decreases the variability, since
there is no clearly separable groups of points; and the plot
on the right affirms that the 28-thread tests show much more
variability than the single-thread tests in all studied cases. The
last statement is not surprising, but, interestingly, it does not
hold true for the m510 and m400 types. There, MG and EP
produce results with the highest CoVs.

B. Socket-to-Socket Comparisons

It is expected to obtain the same performance results
from identical CPUs placed in both sockets of two-socket
servers. While we do not know of a study with comprehensive
socket-to-socket comparisons, we have no reasons to suspect
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Fig. 2. Relative differences in socket O and socket 1 statistics.

otherwise. Our analysis of over 950K data points for 270
configurations (combinations of hardware and test parameters)
provide arguments for and against this intuition.

In Figure 2, we visualize these 270 configurations in terms
of the relative differences in per-socket statistics: medians and
standard deviations. A majority of the points gravitate towards
(0,0). We label seven points that stand out. These points trace
back to 4 hardware types (not only the worst case from earlier),
5 tests, single- and multi-threaded cases, with DVFS on and
off. A case with a relatively high median discrepancy and
the largest observed standard deviation difference is shown
in Figure 3. These scatter plots show all measurements we
collected for this configuration. Not only is the median higher
and the standard deviation lower for socket 1, socket 1 is
missing the higher performance mode (below 4.0s runtimes)
entirely. This gap between the modes in the socket 0’s bimodal
distribution, reaching up to 15%, needs to be considered in any
analysis that uses measurements from two sockets.

Another interesting scenario is found among the rest of
the labeled cases from Figure 2. However, rather than check-
ing them one by one, we take a different approach. We
create another 2-D visualization where relative differences
in the medians are replaced with relative differences in the
90th percentiles (the horizontal axis stays the same). Such
visualization helps to shift our attention from the common
performance levels to the performance in the “tails”, which
are critically important in the context of running applications
at scale [5]. It allows us to capture a subset of the seven
configurations we labeled already, as well as several new cases
with large discrepancies. For instance, Figure 4 illustrates one
such case where the empirical distributions have tails that are
substantially different: slow tests on socket O are much slower
than the slow tests on socket 1. The gap here between the slow
and the fast results is much larger than we saw previously,
reaching up to almost 5X. The fact that these tail values come
from a variety of servers rather than a single “bad” server (as
illustrated with different colors representing different servers),
speaks further for the significance of this discrepancy.

III. DISCUSSION AND FUTURE WORK

In many cases, it is difficult to point out exact root causes
of performance patterns and anomalies. Hardware capabilities
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Fig. 3. CPU results for configuration: (c220gl, IS, 1, no).
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Fig. 4. CPU results for configuration: (c6320, EP, 28, no).

and many levels of software interact in non-deterministic and
complex ways. Here, we do not set the goal of distilling
causes but rather identify areas where investigations—with
either additional tests or different modeling techniques—will
likely yield interesting insights. Additionally, configurations
with less variability and the ones that resemble each other
more than the others can be candidates in the search for
practical optimizations to reduce the number of tests being
run frequently. We plan to pursue this as future work.

It is worth noting that the analysis enabled by CON-
FIRM [1] helps estimate the number of measurements needed
to obtain tight confidence intervals for empirical statistics
and copes well with bimodal and long-tailed distributions,
such as the ones shown in Figures 3 and 4. In addition to
studying such estimates, we will use the collected data to
investigate the relationship between the CoV and the level
of performance, looking for the evidence for and against the
hypothesis suggesting that performance improvements come
at the expense of increased variability.
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