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Abstract
Kernel-resident malware remains a significant threat. An
effective way to detect such malware is to examine the kernel
memory of many similar (virtual) machines, as one might
find in an enterprise network or cloud, in search of anomalies:
i.e., the relatively rare infected hosts within a large population
of healthy hosts. It is challenging, however, to compare
the kernel memories of different hosts against each other.
Previous work has relied on knowledge of specific kernels—
e.g., the locations of important variables and the layouts of
key data structures—to cross the “semantic gap” and allow
kernels to be compared. As a result, those previous systems
work only with the kernels they were built for, and they make
assumptions about the malware being searched for.

We present a new approach to detecting kernel-resident
malware within a “herd” of similar virtual machines. Our
approach uses limited knowledge of the kernels under
examination—e.g., the location of the page global directory
and the processor’s instruction set—to concisely fingerprint
each kernel. It uses no kernel-specific semantics to compare
the fingerprints and find those that represent anomalous hosts.
We implement our method in a tool called Fluorescence and
demonstrate its ability to identify Linux and Windows hosts
infected with real-world, kernel-resident malware. Fluores-
cence can examine a herd of 200 virtual machines with Linux
guests in about an hour.

1 Introduction
Kernel-resident malware is stealthy. Once a kernel-resident
rootkit infects a machine, it will generally try to hide traces of
its intrusion, disable security software, and install persistent
backdoors for future unauthorized access [12, 22, 39, 40].
Despite recent advances in protecting kernel integrity, kernel
rootkits remain a significant threat: for example, at Black
Hat 2017, Bulygin et al. [7] demonstrated a successful kernel
rootkit attack against Windows 10, which has multiple kernel-
protection mechanisms enabled.

To persist and perform malicious activities, a kernel rootkit
must inject code into the kernel’s address space [21]. Thus, in
principle, an analyst can detect the presence of a kernel rootkit
by comparing a memory snapshot of a suspect host against
a memory snapshot of a clean, uninfected host running the
same kernel. Such a comparison is difficult in practice for
three reasons. First, the analyst must locate the baseline: a

host that is running the relevant kernel and that is guaranteed
to be uninfected. A clever way to solve this problem is to
leverage the fact that clouds commonly run many instances
of a single virtual-machine (VM) image [6]. Given a large
number of VMs running the same image and the assump-
tion that infections are rare, an analyst can assume that the
overwhelming majority of the VMs will be clean [3]. Sec-
ond, kernel memory snapshots are large. While it is possible
to transfer “raw” memory snapshots to a single point for
analysis [3], the network cost of this collection can be high
when many VMs are to be examined. Third and most signif-
icantly, the kernel-memory snapshots of two VMs that run
“the same kernel” can differ widely, for a large number of
reasons that do not indicate the presence of a rootkit infection.
Across two snapshots, the routine differences due to divergent
virtual-to-physical memory mappings, address-space layout
randomization (ASLR), paravirtualization-related patching,
and other factors can make it very challenging to identify the
differences that are indicators of kernel malware.

To distinguish between benign differences and potentially
important ones, previous work relies on knowledge of the ker-
nels being inspected. For example, the Blacksheep system [3]
uses knowledge of the Windows XP and 7 kernels—e.g., the
identities and layouts of important data, the locations of ker-
nel entry points, and the structure of Portable Executable (PE)
files—so that it can give special attention to differences in
Windows’ key components. Bridging the “semantic gap” in
this way is effective but has three practical weaknesses. First,
the analyzer becomes specialized: it works only on the ker-
nels for which it has special (and accurate) implementation
knowledge. Second, the analyzer becomes more complex: it
must include code to walk individual data structures, extract
specific kernel features, assign weights to the extracted fea-
tures, and so on. Third, by choosing to give special attention
to certain parts of the kernel, the analyzer inherently makes
assumptions about how malware will integrate with the ker-
nel. These assumptions may or may not be accurate, and as
malware evolves, the analyzer’s assumptions may become
less true over time.

In this paper, we present a new and alternative approach
to detecting kernel-resident malware within a large group of
similarly configured VMs (a “herd”). Our approach uses no
malware-specific knowledge, e.g., no signatures or assump-
tions about how malware attaches to the kernel, except for

https://www.raid-2019.org/


the assumption that the malware has code that resides in the
kernel. Our approach uses limited kernel-specific knowledge
to obtain, for each VM in the herd, a meaningful but concise
fingerprint of the code in that VM’s kernel. The knowledge
used in this process is low-level: e.g., the location of the page
global directory, allowing the rest of the kernel’s memory to
be located, and knowledge of the processor’s instruction set,
allowing the kernel’s code to be disassembled. Each finger-
print is a collection of hashes that summarize the (normalized)
contents of a kernel’s code pages: we use fuzzy hashing [20]
so that similar page contents map to similar hash values. The
fingerprints are generated on the physical machines that host
the VMs, and then they are sent to a central analysis server.
The server uses no kernel-specific knowledge to carry out its
task. It compares the fingerprints by first performing feature
alignment (identifying the elements that “line up” over all the
fingerprints); then putting the fingerprints into a space over
which distances can be computed; and finally, computing clus-
ters over the fingerprints. The fingerprints of most VMs form
a single cluster, representing the healthy members of the herd.
Fingerprints that fall outside the main cluster correspond to
VMs with anomalous, possibly malware-infected, kernels.

We have implemented our approach in a tool called Fluores-
cence and evaluated its ability to detect VMs that are infected
with real-world kernel rootkits. Fluorescence can examine
both Linux (3.13–4.15, x64) and Windows 7 (x64) kernels.
Because the kernel-specific knowledge needed for memory
acquisition and normalization is minimal and low-level, it
tends to be stable across many versions of a single kernel: in
particular, we report that Fluorescence’s single Linux-specific
agent works correctly across the range of Linux kernels we
have tested, 3.13.0–4.15.0. We also report on our experiments
using Fluorescence to detect the presence of kernel rootkits
within herds. Fluorescence was able to find all of the infected
hosts in the Linux- and Windows-based herds that we created;
in addition, when multiple types of malware were present,
Fluorescence was able to correctly cluster the infected hosts
by type. Finally, we report that the time taken by Fluorescence
is reasonable, even for herds containing a few hundred VMs.
In our experience, Fluorescence can analyze a 50-host herd
in less than ten minutes, and 200 hosts in ∼60–80 minutes.

Our contributions are threefold. First, we present a new
method for detecting kernel-resident malware within a group
of VMs that run the same kernel. Unlike previous methods
that require detailed knowledge of the kernel under exami-
nation, our method uses limited kernel-specific knowledge
to construct fingerprints and no kernel-specific knowledge to
analyze the fingerprints. Second, we describe the implemen-
tation of our method in Fluorescence. Our implementation
shows that our approach is general: Fluorescence works with
both Windows and Linux kernels, and a single Linux agent
suffices for a wide range of Linux kernel versions. Third, we
evaluate Fluorescence in terms of its detection abilities and
speed. In our experiments, Fluorescence was able to detect
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Figure 1: Fluorescence architecture.

all the real-world kernel rootkits in our VM herds. The time
required by Fluorescence is reasonable for regular (e.g., daily)
scanning of large herds, containing up to a few hundred VMs.

2 Design
Figure 1 illustrates the overall design of Fluorescence, our
system for detecting kernel-resident malware within a herd
of similarly configured VMs. Fluorescence implements a
three-step algorithm. First, it collects the current fingerprint
of every VM in the herd (§2.1). A fingerprint summarizes the
code pages within the kernel of a VM’s guest; fingerprints are
computed by agents that run on the physical machines that are
being monitored by Fluorescence, and these agents send the
fingerprints to a central node for analysis. Second, Fluores-
cence’s central node performs feature alignment (§2.2). Each
fingerprint is an unordered multiset that represents the content
of one VM’s kernel, and the feature-alignment step finds the
elements that best correspond to each other across the multi-
sets. The output of this step is a matrix. Each row encodes the
fingerprint of one VM, and each column represents a feature;
the elements of each fingerprint (row) are permuted so that
the best-corresponding elements across all fingerprints are
aligned (columns). Third, the central node performs anomaly
detection over the data in the matrix (§2.3). Fluorescence does
this in two steps: the first transforms the data in the matrix
so that one can compute “distances” between the fingerprints,
and the second uses machine learning—deep learning (§2.3.1)
and clustering (§2.3.2)—to find anomalies. The fingerprints
of most VMs form a single cluster. Given the assumption that
malware infections are rare [3], that cluster represents VMs
that are healthy. Outliers correspond to VMs with anomalous
kernel-memory code, e.g., malware infections. The clustering
pattern among the outliers can help an analyst determine if
the outlier VMs are infected by a single kind of malware (one
cluster) or different kinds (multiple clusters).

Fluorescence is designed to be general in two ways. First,
it relies on no malware-specific knowledge: no signatures
or assumptions about how malware works, except for the
assumption that it must have code in order to stay resident.
Second, it requires only very limited information about the
kernels that are being monitored. As Table 1 shows, the
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Analysis Step Kernel/Arch.-specific Knowledge
Fingerprinting

kernel page pinning (opt.) debug info used by pinning tool
VM pause/resume none
kernel page acquisition page global dir. (KPGD) location

x86 64 page table
Intel Extended Page Tables

normalization general ELF/PE loading layout
OS-dependent addr. space layout
x86 instruction set

hashing none
Feature alignment none
Anomaly detection none

Table 1: Kernel- and architecture-specific knowledge needed by
Fluorescence.

fingerprinting agents need some basic, low-level information
in order to locate a kernel’s pages (§2.1.1) and normalize their
contents (§2.1.2). Fluorescence’s central server, which does
feature alignment and anomaly detection, needs no kernel- or
architecture-specific knowledge at all.

2.1 Fingerprinting
Fluorescence’s agents, which are co-located with the VMs be-
ing monitored, produce a fingerprint for every VM in the herd.
Fluorescence’s feature-alignment and clustering steps operate
on these fingerprints, rather than kernel memory snapshots,
which greatly reduces the amount of data that is transferred
to the central server. The key goal of fingerprinting, therefore,
is to preserve the most important characteristics of a VM’s
guest kernel code memory while also being concise.

Creating a fingerprint involves four steps. First, the agent
pauses the target VM. Second, the agent uses virtual machine
introspection (VMI) to locate the VM guest’s kernel code
memory pages. It copies the pages and their metadata into
its own memory—a quick operation—and then resumes the
target VM.1 Third, the agent normalizes the contents of the
copied pages to reduce expected sources of “noise,” e.g., the
effects of address-space layout randomization (ASLR). The
agent has multiple ways to normalize the raw data, resulting
in multiple feature views of each page. Fourth, the agent uses
fuzzy hashing [20] to compute a hash for each feature view. A
fuzzy hash function produces similar hashes for similar inputs,
and is therefore a summarizer: the “distance” between the
hashes of pages A and B can be used to estimate the similarity
of the full contents of pages A and B.

The complete fingerprint of a VM guest’s kernel is a multi-
set, and each element of the multiset is a tuple that describes
one 4 KB-page of the kernel’s code memory. The first ele-
ment of the tuple is the hash for the first feature view of the
page, the second is the hash of the second feature view, and

1A future version of Fluorescence could use page sharing between the
target and agent VMs, in conjunction with copy-on-write, to reduce the pause
time for the target VM. We have not implemented this because the pause time
is already short, and reducing pause time is not the focus of our research.

so on. When it is complete, the agent sends the fingerprint to
Fluorescence’s central server for analysis.

2.1.1 Finding Kernel Code Pages

There are three main challenges that Fluorescence addresses
in obtaining the kernel code pages of a monitored VM. The
first is to ensure that all the code pages are in memory. Some
kernels, including the Windows 7 kernel, can swap their
own code pages to disk; on-disk pages cannot easily be read
through VMI, and unreadable pages would result in incom-
plete fingerprints. For such “swappable” kernels, our Fluores-
cence implementation simply invokes a tool inside the VM
guest to pin all of the kernel’s code pages, prior to Fluores-
cence starting the fingerprinting process (§3.1). The second
challenge lies in accessing the target VM’s memory. For this,
our implementation uses libVMI [31], a popular and open-
source library that implements virtual machine introspection.
The third challenge is to find all of the kernel code pages. To
do this, the Fluorescence agent starts from the kernel page
global directory (KPGD) and makes a breadth-first traversal
of the page table to collect and copy all of the kernel’s exe-
cutable pages. The location of the KPGD is kernel-specific,
but easily obtainable via libVMI (§3.1).

The x64 architecture supports multiple page sizes—4 KB,
2 MB and 1 GB—and kernels use pages of different sizes to
improve memory management. So that fingerprint generation
is not influenced by the use of huge pages (which changes over
time), Fluorescence uses a uniform 4 KB page size. When
the agent finds a huge kernel page, it divides that page into
multiple 4 KB pages within its own representation of the
kernel’s memory. As described next, each 4 KB page becomes
the basis of a feature in the kernel’s fingerprint.

2.1.2 Normalization

Consider a single page of code that is loaded into the guest
kernels of two VMs. One might assume that in the running
kernels, the contents of the two pages would be identical, but
this is often not the case. In particular, the kernel-loading
process may patch the loaded code to replace symbolic ref-
erences (e.g., to functions in other code) with actual (virtual)
addresses. The two kernels may patch different addresses into
the code for various reasons, including the use of ASLR, thus
causing the two copies of the code to be slightly different
across the two VMs. This difference is benign—expected,
and not indicative of an anomaly. Unless differences like
this are accounted for, however, they can make it difficult for
Fluorescence to identify differences that are anomalous.

To reduce the effects of benign differences, the Fluores-
cence agent performs normalization: it applies a set of func-
tions to reduce the “noise” introduced by factors such as
ASLR. A perfect normalization function would effectively
undo the benign changes, mapping every copy of “the same
code page” across all the monitored VMs onto a single value
that is similar to the originally loaded, unpatched code. With
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enough kernel information (e.g., debug symbols) such perfect
normalization is feasible, but our aim is for Fluorescence
to work with minimal knowledge of the kernels it monitors.
Our implemented normalization functions (§3.2) therefore
rely only on basic knowledge about ELF/PE loading and the
x86 ISA. As a consequence, they are approximate, but still
effective at reducing “noise.”

The Fluorescence agent applies normalization to each of
the 4 KB pages that it obtains from a monitored VM (§2.1.1).
The agent supports multiple normalization functions and ap-
plies each one individually, resulting in multiple translations
of each page. We refer to each of these translations as a
feature view. By convention, the identity function is always
one of the normalization functions: i.e., the “raw content” is
always one of the feature views.

2.1.3 Hashing

Finally, the agent hashes every feature view of every page that
the agent obtained from the monitored VM. Our implemen-
tation uses ssdeep [20], which is a fast fuzzy hash function.
For each page, the agent collects the hashes of the page’s
feature views into a tuple. It then collects the tuples into a
multiset, which is the completed fingerprint of the VM.

2.2 Feature Alignment
The fingerprints of all the monitored VMs are sent to Fluo-
rescence’s central server for analysis. The first step of the
analysis is feature alignment, which aims to find the best
correspondences—i.e., the best matches—of all of the pages
across all of the VMs. Imagine putting all of the fingerprints
into a 2D matrix, where each row contains the tuples from a
single fingerprint. The goal of feature alignment is to permute
each row so that the tuples in each matrix column represent
versions of “the same page” across all of the VMs.

Feature alignment has three phases. The first simplifies the
fingerprints by removing tuples that represent content present
in all of the VMs. The second computes a basis, which is a
vector that contains the most representative elements (tuples)
across all of the fingerprints. The third phase translates all
of the fingerprints into vectors, ordering the elements by
matching them against the basis.

2.2.1 Remove Tuples for Ubiquitous Content

Recall that our ultimate goal is to find anomalous VMs within
the herd. Pages that are identical across all of the VMs are
not useful for anomaly detection, so their tuples can simply
be removed from the fingerprints.

The algorithm for removing “ubiquitous tuples” considers
each normalization separately, starting from the identity func-
tion. Let i be the number of the current normalization, and
let F be the collection of n fingerprints. Let Fi be the “i-th
projection of F”: the fingerprints F , but replacing every tuple
with just its i-th element. Now compute H as the (multiset)
intersection of the members of Fi. The hashes in H represent

tuples that represent the same content (under normalization i)
across all of the fingerprints. Now we can remove those tu-
ples from the fingerprints. For each f in F , for each h in H,
remove the tuple whose i-th element is equal to h.2

The above process is repeated for each normalization func-
tion. By starting with the identity normalization, the algo-
rithm considers exact page-content matches first: their tuples
are matched and removed, allowing subsequent matching to
be more accurate. In practice, the above algorithm removes a
large fraction of the tuples from all of the fingerprints, greatly
speeding up all of the subsequent analysis steps.

2.2.2 Compute a Basis

The next step is to compute a basis: a vector that Fluorescence
can use to impose an order on the elements of all of the (sim-
plified) fingerprints. The order is arbitrary; its only purpose is
to allow similar pages across the VMs to be associated with
each other, so that the fingerprints can sensibly be compared,
and outliers identified.

Fluorescence creates the basis by selecting the most repre-
sentative elements from the actual fingerprints. We say that
an element of a fingerprint is representative if it is similar to
an element in every other fingerprint, where the similarity of
elements (i.e., tuples) is defined in terms of the hashes they
contain. Given two hashes, ssdeep can compute a similarity
score between 0 and 100: a high score means that the hashes
represent highly similar strings (i.e., normalized page content)
and a low score means that the hashes represent very dissim-
ilar strings. We define the similarity σ of two fingerprint
elements as the maximum similarity scores of their hashes
for every feature view:

σ(e1,e2) = max(sim1,sim2, . . .)

where e1 = 〈α1,α2, . . .〉, e2 = 〈β1,β2, . . .〉,
simi = ssdeep(αi,βi)

Fluorescence collects the most representative elements into
a basis, called Λ, by using the following algorithm. Initialize
Λ to be a zero-element vector. For every element e in every
fingerprint, find the element in every other fingerprint that is
most similar to e. Call that set neighborse, and let sime be the
sum of σ(e,n) for all n∈ neighborse. (If no element in a given
fingerprint has a positive similarity score when compared to
e, then that fingerprint contributes nothing to neighborse.)
Now, from all the elements in all of the fingerprints, choose
the element e that has the greatest sime: this is the most
representative element. Extend Λ by adding e, and remove
every element of neighborse from further consideration. Now
repeat: from the remaining eligible elements, choose the
element e with the greatest sime; extend Λ, and remove e’s
neighbors from further consideration. Repeat until there are
no more elements to consider.

2By construction, such a tuple is guaranteed to exist. If there is more than
one tuple whose i-th element is h, arbitrarily choose one to remove.
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In general, Λ may contain more elements than any of the
actual fingerprints. (It must be at least as long as the longest
fingerprint.) This is because Λ includes elements that repre-
sent all of the “rare” and unique elements that are present in
any fingerprint.

2.2.3 Compute the Fingerprint Vectors

After computing the basis Λ, it is straightforward to transform
the fingerprints into vectors that can be sensibly compared.
Fluorescence does this by computing a 2D matrix, called T
(for “tuples”), in which every row represents a fingerprint and
every column corresponds to an element of Λ. Fluorescence
fills each row from left to right, i.e., from the most representa-
tive to the least representative elements of the basis. Consider
the translation of a fingerprint f . To fill the leftmost cell of
f ’s row in the matrix, Fluorescence finds the element in f that
has the greatest similarity with the leftmost value of the basis.
(I.e., choose the element e from f that maximizes σ(Λ0,e).)
Store that element in the leftmost cell of f ’s row, and remove
the element from f . Repeat the selection process for the re-
maining cells, moving from left to right across the row. When
filling the cell at index j, if no remaining element of f has a
positive similarity score with Λ j, leave cell j empty.

2.3 Anomaly Detection
At its central server, Fluorescence performs two analyses to
detect anomalous VMs. The first (§2.3.1), based on deep
learning, detects anomalies by measuring a neural network’s
ability to reconstruct (encoded) fingerprints. The network
is able to reconstruct “typical” fingerprints more accurately
than it can reconstruct anomalous ones. The second (§2.3.2)
applies a clustering algorithm to distinguish between typi-
cal fingerprints (a large cluster, representing healthy VMs)
and atypical ones (small clusters, representing anomalous
VMs). The two algorithms have different strengths and weak-
nesses (§2.3.3) but generally agree in practice, so each serves
to validate the other’s results.

The versions of these algorithms that we use in Fluores-
cence operate on data points that are represented as vectors
of numbers. The matrix T that Fluorescence computed in
§2.2.3, however, has cells filled with tuples. To prepare for
anomaly detection, therefore, Fluorescence computes a new
matrix, called S (for “similarities”), in which the tuples of T
are replaced by similarity scores as follows:

Si j =

{
σ(Λ j,Ti j) if Ti j is not empty
−1 otherwise

That is, each tuple is represented by its similarity to the
corresponding element of the basis, and empty cells are repre-
sented by −1. This transformation is not distance-preserving
in principle,3 but it preserves the essential qualities of the

3If two fingerprints α and β have the same similarity to the basis in
dimension j, then σ(Λ j,Tα j) = σ(Λ j,Tβ j). Thus Sα j = Sβ j and in S, the
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Figure 2: Autoencoder architecture.

fingerprints in practice. If two fingerprints are “close to” the
basis in a particular dimension (column) in T , they remain
close to each other in that dimension in S. Similarly, finger-
prints with unique and/or rare contents (i.e., that have tuples
in columns of T where most fingerprints have none) continue
to be distinguished in S.

2.3.1 Deep Learning Approach

Fluorescence’s deep-learning approach to detecting anoma-
lous VMs is based on an autoencoder. The purpose of an
autoencoder is to learn, in an unsupervised manner, an ef-
ficient method for representing a dataset. As illustrated in
Figure 2, an autoencoder contains an encoder, which reduces
the number of dimensions in an input, and a decoder, which
attempts to reconstruct the original input from its reduced
representation. To minimize the error between the input and
output, an autoencoder must learn to preserve the maximum
information while encoding. The major patterns within the
input dataset are learned and preserved, and as a consequence,
the minor patterns—found in “outliers”—are lost.

Fluorescence leverages these properties to identify the rows
in S that represent anomalous VMs. It trains an autoencoder
over the rows of S. The encoder reduces the dimensionality
of each row vector to 1/30th of its original (with a minimum
of two encoded dimensions), and the decoder attempts to re-
construct the original vector. The learning goal is to minimize
the sum of mean square errors between all the corresponding
inputs and outputs, i.e., to minimize ∑

m
i=1 ∑

n
j=1(Si j− S ′i j)

2,
where m is the number of VMs (rows of S), n is the number of
features per VM (columns of S), and S ′i j is the “reconstructed
value” that corresponds to Si j.

After training the autoencoder, Fluorescence calculates the
error score of each VM as the squared error between its orig-
inal vector representation in S and the reconstructed vector
in S ′. The VMs that have significantly larger error scores are
identified as anomalies. To find such scores, Fluorescence
models the error score as a Gaussian distribution. The VMs

distance between the fingerprints in dimension j is zero. In general, however,
Tα j and Tβ j may not be identical.

5



that have error scores within an acceptable confidence interval
of this distribution are considered to be normal, and all others
are flagged as anomalous.

The encoder and decoder networks are 1-layer fully con-
nected neural networks having dimensions D×2 and 2×D,
respectively, where D is the input encoding dimension. For
optimization, we use ADADELTA [45] as the optimizer and
cross-entropy loss as the loss function. The autoencoder
model is trained on the entire input data for 50 epochs, with a
mini-batch size of 2.

2.3.2 Clustering Approach

Fluorescence’s clustering approach to identifying anomalous
VMs uses DBSCAN [11], a density-based algorithm. (Unlike
some other methods, such as k-means, density-based clus-
tering does not require prior knowledge of the number of
clusters to be formed.) The Euclidean distance d between two
vector rows of S, representing two VMs, is computed in the
usual way: d(α,β ) =

√
(Sα1−Sβ1)2 +(Sα2−Sβ2)2 + · · ·

DBSCAN requires two parameters: ε , which is a distance
threshold, and m, which is the minimum number of points
needed to form a cluster. DBSCAN builds a cluster by choos-
ing an unvisited data point, “expanding” toward all of the
neighboring points that are within ε of that point, and then
recursively expanding from each of those neighbors. A point
is marked as an outlier if it is not a member of a cluster that
contains at least m points.

Fluorescence’s goal is for all normal VMs to be contained
in one or more large (many-member) clusters and for anoma-
lous VMs to be either (1) contained in small clusters or
(2) classified as outliers. To do this, we need to choose appro-
priate values for ε and m.

To illustrate how we choose ε , we performed experiments
in which we deployed herds of similar VMs with some in-
stances infected with malware, measured the distance be-
tween every pair of VMs, and plotted the distances as a CDF.
Figure 3 summarizes six of these experiments: in each, we
deploy 95 normal VMs and five that are compromised with
one type of malware. Note the “plateau” in the CDF of each
experiment. The slope to the left of the plateau corresponds
to VM-pairs that are near each other and that we would like
to cluster together. The slope to the right corresponds to
VM-pairs where the VMs are far apart, and where we would
like the VMs not to be clustered together. Thus, the plateau
represents the difference between intra-cluster distances and
inter-cluster distances for a given dataset; a good choice of
ε is one that lies near the left edge of the plateau. Based on
our tuning experiments, we set ε to 100. Tuned in this way,
Fluorescence can collect normal VMs into a small number of
clusters—ideally, a single cluster—each with many members.

We set m to three so that DBSCAN will cluster even small
numbers of VMs. This allows Fluorescence to identify clus-
ters of anomalous VMs, e.g., VMs infected by the same
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Figure 3: CDFs of all inter-VM distances in six tuning experiments.
Each experiment involves 100 VMs, where five are infected with a
single kind of malware.

malware (§4.2.2). After clustering, Fluorescence reports all
outliers and all members of small clusters as anomalous.

2.3.3 Discussion

In cases where a small number of VMs are infected with mal-
ware, Fluorescence’s deep-learning and clustering techniques
are likely to identify the same VMs as anomalous, and thus
serve to validate each other. In other circumstances, however,
the two approaches have different strengths and weaknesses.

One advantage of the autoencoder-based approach is that it
does not require one to tune the algorithm by choosing cluster-
ing parameters: the autoencoder simply learns the dominant
patterns in the dataset and can identify the data points that are
most atypical. However, this comes at a cost in three ways.
First, in the common case where no VMs are infected, the
autoencoder may be overly sensitive. If the error scores of all
VMs are small, then the threshold for flagging anomalies is
also small. In these cases, the clusters and intra-VM distances
computed by the clustering method can be used as a sanity
check. Second, in the rare case that many VMs are infected,
the autoencoder may start to become insensitive: it may learn
the patterns of the infected VMs, even if those VMs are in the
minority (say, 10%). In comparison, the clustering method is
less sensitive, and can be accurate even when the number of
infected VMs is high, as long as the uninfected VMs consti-
tute the largest cluster. Third, while the autoencoder method
can detect anomalies, it cannot report which anomalies are
similar to each other. DBSCAN, of course, can compute
clusters among the anomalous VMs.

The main shortcoming of the clustering approach is that
the threshold for building clusters, ε , may be too “generous.”
If the data points for normal VMs are actually much closer to
each other than ε , then a poor choice of ε means that anoma-
lous VMs that are nevertheless “within ε” will be classified
as normal by DBSCAN. In contrast, in this situation, the au-
toencoder would essentially learn the threshold automatically.
Similarly, consider a situation in which there are two types of
VMs (e.g., two different kernels) that are similar, and the data
points of these two types form “overlapping” regions when
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measured in S. DBSCAN may group instances of these VMs
into a single cluster and thereby obscure small anomalies
in each type. Conversely, the autoencoder could potentially
differentiate between the types and identify anomalous VMs
at a finer grain.

3 Implementation
Fluorescence depends on its fingerprinting agents (§2.1) to
(1) “snapshot” the kernel code pages within all of the mon-
itored VMs and (2) perform normalization, so that benign
differences do not mask actual anomalies. This section pro-
vides implementation detail about how the agent performs
these tasks. The agent requires some kernel- and architecture-
specific knowledge to carry out these tasks; our implemen-
tation works with VM guests that run Linux (3.13–4.15) or
Windows 7 kernels for x64 within VMs managed by Xen 4.9.
The agent is implemented in C and uses libVMI [31] to man-
age and access the monitored VMs.

3.1 Walking the Page Table
To obtain all of the executable pages from the kernel of a
VM guest, the Fluorescence agent performs a breadth-first
traversal of a page table, starting from the KPGD. Since
hypervisors typically maintain a KPGD for each VM, the
KPGD can be easily accessed through VMI libraries. (The
kernel-specific knowledge about the location of the KPGD
is encapsulated within libVMI.) Using knowledge of x86 64
page tables, it is straightforward for Fluorescence to find all
of the kernel code pages.

In practice, ensuring that the kernel code pages are in mem-
ory is a concern. As previously described (§2.1.1), some ker-
nels can swap their own code pages to external storage, where
they are not easily accessible through VMI. In particular,
we found that Windows 7 swaps its own code pages aggres-
sively: if a page is not used for long time, Windows may
move the page to external storage or mark it as “in transition”
(another kind of invalid page table entry). If the Fluorescence
agent encounters such a page, the resulting fingerprint will be
incomplete, possibly leading to spurious anomaly reports.

To avoid problems caused by swapped-out pages, Fluo-
rescence invokes a tool on VMs running Windows, prior to
taking a fingerprint, that pins all of the guest kernel’s code
pages into memory. Fluorescence uses DRAKVUF [23] for
this purpose. DRAKVUF is a system, built atop libVMI, that
enables one to hijack a process to run an injected executable.
Fluorescence injects code into the winlogon process, which
is a privileged process present on every Windows machine,
that loads and runs a kernel module that pins the kernel’s
executable pages. The Fluorescence agent does this before
each fingerprint of a Windows guest, in order to catch any
pages that might have been injected since the VM was last
fingerprinted. We did not develop a similar page-pinning tool
for Linux guests, because none of the Linux kernels we used
ever swapped any of their code pages out.

3.2 Normalizing Code-Page Content

When a kernel is loaded into memory, the loader patches code
pages to replace symbolic references (to code or data) with
the actual addresses of the things being referenced. Due to
ASLR and other factors, when the same kernel is loaded into
two different VMs, the loaded copies of the kernel will be
patched with different addresses (§2.1.2).

Normalization aims to reduce these differences by replac-
ing patched addresses with constants, in a way that is consis-
tent across all of the VMs. One can think of this as undoing
the patching, replacing all resolved references with symbolic
ones. Consider an original (unloaded) code page P. In every
loaded copy of P, every patched reference to a function f
should be replaced with a constant that represents f —the
same constant in all copies of P. To preserve as much infor-
mation as possible in the normalized pages, a “mostly unique”
constant should be used for each referent: e.g., if a page refers
to two functions f and g, the constants chosen to represent
references to f and g should be different.

To perform this replacement, the Fluorescence agent must
solve two problems. It must determine the constants it will use
to replace patched references, and it must find the references.

Determine the constants. To find constants in a consistent
way across all of the protected VMs, Fluorescence leverages
the fact that a kernel image consists of many loaded “objects”
(i.e., object files). A single object generally defines many
functions and variables, and these things appear at different
offsets within the loaded object. ASLR may randomly arrange
the objects in the kernel’s memory, but it does not rearrange
the contents inside the objects. The offset of a function or
variable within its containing object is thus constant across all
of the kernels that have loaded that object. Fluorescence uses
these constants to normalize loaded pages: given a resolved
reference to a function or variable f , it replaces that reference
with the byte offset of f within the object that contains f .

More specifically, Fluorescence divides the address space
of a kernel into a number of 4 KB-page-aligned regions of
virtually contiguous memory. (Certain address ranges are
excluded, based on knowledge of how kernels use their ad-
dress spaces: e.g., the “direct mapping” region in Linux, and
the system cache region in Windows, are excluded.) Fluores-
cence makes regions that correspond to the kernel’s loaded
objects by searching for objects in the appropriate area of
the kernel’s address space. For Windows, the search is easy:
the Portable Executable (PE) header value “MZ” appears at
the start of each loaded object. For Linux, the search is also
straightforward. Although ELF headers are not present in
memory, loaded ELF objects follow a common pattern: a se-
ries of executable (code) pages, followed by some read-only
(data) pages, and then by some writable (data) pages. Using
these patterns, it is simple to create regions that correspond
to the kernel’s loaded objects.

After making regions for objects, Fluorescence creates re-
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gions that cover the remainder of the kernel’s address space
(with some exceptions as previously noted). Whenever a nor-
malization function wants to replace a resolved reference with
a constant, Fluorescence determines the region that the refer-
ence points into. It replaces the reference with the difference
between the referenced address and the region’s start.

Find the references. Our implemented Fluorescence
agent can provide up to three normalized versions, a.k.a. fea-
ture views (§2.1.2), of every kernel code page. The first is the
page content just as it appears in the VM, or the original view.
If a page is not modified at all by the kernel loader, than all
of the copies of that page will be identical in this view. The
second feature view, called sub-base, and the third, called
disassembly, both modify the original page content by heuris-
tically searching for resolved references and then replacing
those references with constants as described above. The sub-
base and disassembly views differ in how they attempt to find
resolved references within the code.

The sub-base view is simple, treating the input page as
an array of eight-byte elements. The sub-base normalization
function examines each element: if the value of an element
can be interpreted as an address that falls within a defined re-
gion, that element is replaced by a constant (i.e., the difference
between the element value and the referenced region’s start).
This heuristic is very fast, correctly transforms constructs like
jump tables that are eight-byte aligned, and “works” because
the 64-bit address space is sparsely filled. In general, however,
the sub-base method may overlook many resolved references
(e.g., those that are not eight-byte aligned) and may modify
values that are not actually addresses.

The disassembly view attempts to address the shortcomings
of the sub-base view. Given a code page, the disassembly
normalization function uses Capstone [33] to interpret the
code found on the page. It searches the disassembled code for
operands that appear to be (64-bit) absolute addresses and (32-
bit) PC-relative addresses. Whenever one of these appears
to point into a defined region, the normalization function re-
places the address with the appropriate constant as described
above. The disassembly view is often more precise than the
sub-base view, but it is still heuristic; in our experience, it is
still subject to false positives (incorrect modifications) and
false negatives (overlooked references). This is why Fluo-
rescence relies on multiple feature views of each code page:
when one view “fails,” another may succeed.

4 Evaluation
We evaluate our Fluorescence implementation by testing its
ability to identify VMs that are infected with kernel-resident
malware, picking those VMs out of a mostly healthy herd
of similarly configured VMs running Linux or Windows 7.
We focus on answering four questions. First, can Fluores-
cence correctly identify the VMs in the herd that are infected
with malware (§4.2)? In our experiments, the answer is yes:
Fluorescence accurately identified the infected VMs. We

discuss the performance of the autoencoder (§4.2.1) and clus-
tering (§4.2.2) detection methods. Second, is normalization
necessary and effective (§4.3)? We find that the answer is
yes: our implemented normalization process can drastically
reduce the number of features that need to be considered
during anomaly detection, and it allows different classes of
VMs to be clustered for identification. Third, what is the
run-time performance of fingerprint generation (§4.4)? In
our experiments, fingerprint generation takes 11–13 s, and the
monitored VM is paused for only 0.6 s. Fourth, how does
the run time of Fluorescence scale as the number of mon-
itored VMs increases (§4.5)? We find that the run time of
Fluorescence is acceptable even for moderately sized herds:
Fluorescence can process a herd of 200 VMs in about an hour.
Larger herds can be handled by treating them as multiple sub-
herds, each analyzed by a separate instance of Fluorescence.

4.1 Experiment Setup

We deploy herds containing various numbers of VMs running
Linux or Windows. We use Xen 4.9 as the hypervisor and
run Ubuntu 16.04 within dom0. Each Linux VM runs (64-bit)
Ubuntu 16.04 as the guest, with Linux kernel version 4.4.0.
Each Windows VM runs (64-bit) Windows 7. Each VM is
configured with one virtual CPU and 1 GB RAM. The VMs
are distributed over twenty “d430” physical machines within
the Utah Emulab network testbed [43].4 Each d430 has two
2.4 GHz Intel Xeon E5-2630v3 8-core CPUs and 64 GB RAM.
Each VM-hosting machine runs an instance of the Fluores-
cence agent in its dom0. Fluorescence’s central server, which
performs feature alignment and anomaly detection, is located
on a separate d430 (hosting no VMs) that runs Ubuntu 16.04.

We collected samples of kernel-resident malware to use
in our experiments. We focus on malware that persists in
the kernel by injecting or modifying kernel code, because
that is the type of malware that Fluorescence is designed to
detect. For Windows, we collected samples of Pitou, Rovnix
(a.k.a. Cidox), ZeroAccess (a.k.a Sirefef), Win32/Gapz, and
two variants of TDSS known as TDL3 and TDL4. Some of
these have recently been active in the wild [41]. For Linux,
we collected three rootkit samples: Diamorphine [26], Nu-
rupo [29], and Reptile [1].

For experiments with Linux VMs, we configured Fluores-
cence to compute all three feature views of every page (§3.2).
For experiments with Windows VMs, we configured Fluo-
rescence to compute only the original and sub-base views.
We did this because the Windows 7 kernel uses Position In-
dependent Executables (PIE); as a result, most code pages
are unpatched by the kernel-loading process and are already
identical across VMs. We leave sub-base enabled in our Win-
dows 7 experiments to handle the small number of code pages
that do vary across loaded Windows 7 kernels.

4We used Emulab’s “experiment firewall” feature to block traffic between
the VMs and the Internet.
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Fluorescence transfers VMs’ fingerprints to its central
server for analysis. For the VMs described above, we found
that that size of a Windows VM fingerprint was approxi-
mately 2.7 MB. A Linux VM fingerprint was approximately
1.8 MB. These numbers compare favorably to prior work [3]
that collects and analyzes physical memory dumps.

4.2 Malware Detection

We performed a set of experiments to test Fluorescence’s
ability to identify the VMs in a herd that are infected with
kernel-resident malware. For each test, we set up the herd
as follows. We created 50 VMs, running either Windows
or Linux. To perturb the collection, we randomly selected
ten VMs, logged into them, and performed some activities
manually. On Windows, we opened some files, played some
small games, and/or used a web browser to download some
files. On Linux, we ran Apache or nginx and then downloaded
random files from those servers. We then randomly installed
malware on some of the VMs. For Windows, we chose a
subset of our six samples to inject (1–6 samples); for each
sample, randomly chose the number of instances to inject
(1–4); randomly chose the set of VMs to be infected (one VM
per instance); and then injected the samples. For Linux, we
followed the same process, injecting 1–3 rootkit types, with
1–4 instances each.

After setting up the herd, we ran Fluorescence to test its
ability to discover the infected VMs. For each herd con-
figuration that we selected, we repeated the herd setup and
Fluorescence test five times to check for repeatability.

In every test we performed, Fluorescence identified the
infected VMs. The DBSCAN method always found the in-
fected VMs, without false positives or negatives, and properly
clustered the VMs that were infected with a common type
of malware. The autoencoder method was also accurate but
produced false positives at negatives when a large fraction of
the VMs were infected (as discussed below, §4.2.1).

Figure 4 explains this result. It visualizes S, the similarity
matrix (§2.3), for one of our tests involving all six of our
Windows malware samples. Each row represents a VM, and
each column represents a feature, i.e., a “matching page”
across the VMs. We sort the rows and columns for clarity
in the visualization. Each cell is colored according to its
value: light cells contain high values (i.e., are similar to
the corresponding basis value) and dark cells contain low
values (are dissimilar to the corresponding basis value). In
the visualization, it is clear that the infected VMs present
distinct patterns in S, and each type of malware has a different
signature. These are the patterns that Fluorescence detects.
The figure is annotated to show the different malware families.

Figure 8 presents a similar visualization for one of our
Linux tests, one involving all three of our Linux rootkits.
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Figure 4: Similarity matrix for an experiment involving 50 VMs
running Windows, many infected with malware. In this visualization,
higher similarity scores have lighter colors.
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Figure 5: Error scores from the autoencoder-based analysis of an
example herd of 100 VMs, three of which are infected with malware.
The scores of the infected VMs (upper right) are flagged because
they exceed a threshold, as determined by a confidence interval.

4.2.1 Anomaly Detection with Autoencoder

We conducted another set of experiments to better character-
ize the performance of Fluorescence’s autoencoder-based
method for detecting anomalies. Recall that the autoen-
coder method calculates an error score for each monitored
VM (§2.3.1). It models the error score as a Gaussian dis-
tribution; if the error score of a VM lies outside a chosen
confidence interval, Fluorescence flags the VM as anomalous.
Figure 5 illustrates this idea. To generate this example, we
created and processed a fingerprint set for 100 VMs, three of
which were infected with malware. We sorted the resulting
scores and plotted the results. The three points at the right
side of the figure, with scores above 0.20, correspond to the
infected VMs. For confidence interval choices between 90%
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Figure 6: Autoencoder performance, with 90% and 99.8% confidence intervals, for different types of Windows kernel malware and rates of
infection in a herd of 100 VMs. Points represent averages over twenty trials.

and 99.8%, all of these VMs are reported to be anomalous,
and there are no false positives or negatives.

To perform a large set of experiments similar to the one
described above, we reused the fingerprints of Windows VMs
that we collected during the experiments described in §4.2.
In each of these new experiments, we simulate a herd of
100 VMs by randomly selecting 100 fingerprints from our
set of previously generated fingerprints. Each experiment
involves one kind of Windows malware, and we vary the
number of infected VMs from zero to ten. (I.e., in each con-
figuration, we choose 0–10 fingerprints of VMs infected with
the chosen malware, and 90–100 fingerprints of clean VMs.)
We then perform anomaly detection over the assembled herd,
using the autoencoder method, and record the number of false
positives and false negatives reported at the 90% and 99.8%
confidence intervals. To account for randomness introduced
by the autoencoder—e.g., randomly initialized parameters—
we repeat the analysis of each herd twenty times. For each
herd, we compute and report the average false positive and
false negative rates over the twenty trials.

Figure 6 presents the results of these experiments. (Note
the varying ranges of the y-axes in the figure.) We make three
observations about this data. First, if the rate of anomalous
VMs was under 4%—a realistic threshold for large herds
in practice—the autoencoder detected all anomalies without
any false positives or false negatives. Second, when the rate
of anomalous VMs increases beyond 4%, the autoencoder
becomes less effective. Third, the higher confidence inter-
val leads to more false negatives, but also to possibly fewer
false positives. This suggests an incremental strategy to main-
taining a herd: fix reported VMs, thus lowering the rate of
infection, and then repeat analysis with Fluorescence. From
our experiments, we conclude that the autoencoder method
works well when few anomalies are present, which is likely
to be the case in practice. Despite its limitations, it is widely
applicable for detecting unknown anomalies.

4.2.2 Anomaly Detection with DBSCAN

We reuse the simulated herds described in §4.2.1 to test the
performance of Fluorescence’s clustering approach, utilizing
DBSCAN, for detecting anomalies. Recall that each herd is
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Figure 7: Visualization of clusters found by DBSCAN within a herd
of 100 Windows VMs. Using principal component analysis (PCA),
the data for each VM was reduced to a 2D coordinate.

represented by the fingerprints of 100 VMs with Windows 7
guests, where 0–10 of those guests have been infected by
one type of malware. In each of these tests, DBSCAN cor-
rectly partitioned the normal and infected VMs into separate
clusters, with no false positive or negatives.

To visualize the reason for DBSCAN’s success in our tests,
we simulated another herd of 100 Windows VMs. In this
herd, we included fingerprints of VMs infected with all of our
Windows malware samples: four instances of each malware
sample, for a total of 24 infected VMs. We analyzed this
herd with Fluorescence—again, all the VMs were properly
classified and clustered by family—and obtained the simi-
larity matrix S for the herd. We used principal component
analysis (PCA) to reduce the number of features for each VM
to just two. Finally, we used the two values for each VM to
plot the VMs on the X-Y plane.

Figure 7 shows the result. Each color/shape represents
one cluster identified by DBSCAN. The green-dot and blue-
star clusters are relatively close to each other, but they are
identified as separate clusters, as shown in a zoom-in view.
The blue-star cluster has the greatest number of VMs among
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Figure 9: Similarity matrix for the 50 VMs portrayed in Figure 8,
but with sub-base and disassembly normalization disabled. In this
visualization, lower similarity scores have lighter colors.

all clusters, so the VMs in this cluster are identified as normal
while the other, smaller clusters represent different kinds of
anomalies (i.e., VMs infected by different families of rootkits).
This analysis by DBSCAN matches the ground truth.

4.3 Impact of Normalization
Fluorescence performs normalization to reduce benign differ-
ences in the contents of acquired kernel pages. We performed
an experiment to assess the effectiveness of our implemented
normalization procedure.

Figure 8 visualizes the similarity matrix S for a herd of
50 Linux VMs, many of which are infected with malware. As
explained previously for Figure 4, each row represents a VM,
each column represents a feature, and cells are shaded accord-
ing to their values. We have sorted the rows and columns for

Step Windows 7 Linux
Pin kernel code pages 6.4 N/A
Copy kernel code pages 0.6 0.6
Compute kernel memory regions 0.6 0.6
Normalization 0.9 7.7
Hashing 2.7 4.2
Total 11.2 13.1

Table 2: Time (secs) to generate a fingerprint. The VM being
fingerprinted is paused only while pages are being copied (step 2).

clarity. The visualization makes the different groups of VMs
apparent; each has a pattern that Fluorescence detects.

We removed the sub-base and disassembly feature views
from the fingerprints of this herd—leaving only hashes for
the original page contents—and analyzed the resulting fin-
gerprints to produce another similarity matrix. Figure 9 visu-
alizes this result. (In Figure 9, low values are light and high
values are dark; this is the opposite of the convention used in
Figure 8.) Two things are immediately apparent. First, com-
pared to the original matrix, the number of features per VM
has increased by more than two orders of magnitude. This
happens because Fluorescence is no longer able to remove
content that is ubiquitous across the VMs; normalization is
necessary for finding such content and is very effective. Sec-
ond, the patterns that are so clear in Figure 8 are not apparent
in Figure 9. This suggests that Fluorescence would have a
difficult time finding the malware-infected VMs in this data.

4.4 Fingerprint Generation Time

We measured the time needed for the Fluorescence agent to
produce the fingerprint of a VM. We ran the fingerprinting
procedure for a Windows VM and a Linux VM and recorded
the elapsed time for each step of the process. We repeated the
procedure ten times for each VM and computed the average
elapsed times over the trials. Table 2 presents our results.

The VM being fingerprinted is paused only while Fluores-
cence copies its kernel code pages (§2.1). For both Windows 7
and Linux, the pause time is short, less than a second.

For Windows 7, the longest step is the one that uses
DRAKVUF to pin the kernel’s code pages into memory (§3.1).
(The pinning step is unnecessary for our Linux VMs because
the Linux kernel does not swap-out its code.) Although pin-
ning for Windows takes several seconds, the VM continues
to run during that time. The pinning procedure forces about
2,000 pages to be present in memory, or about 8 MB. Of
those, it is common for half to be marked as “in transition,”
meaning that the page contents are in memory but marked as
inaccessible; the kernel can quickly make those pages present
again. In this way, the pinning procedure imposes about a
4 MB overhead on the Windows kernel.

For Linux, the most time-consuming step is normalization.
For Windows 7, we configured Fluorescence not to compute
the disassembly feature view (§4.1). Fluorescence spends sev-
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Figure 10: Time required for Fluorescence’s central server to analyze
VM herds of varying sizes.

eral seconds performing this normalization on Linux kernel
pages, and in our experience, it is necessary in order to get
good anomaly detection results (§4.3).

4.5 Scalability

Because Fluorescence operates on herds of VMs, it is impor-
tant to understand the performance of Fluorescence on herds
of VM of various sizes. Again, we reused the fingerprints
of VMs that we collected in earlier experiments to simulate
herds of Windows and Linux VMs of varying sizes, from 10
to 200 VMs. For each herd, we measured the time required
for Fluorescence’s central node to analyze the collected fin-
gerprints, i.e., to perform both feature alignment and anomaly
detection. Anomaly detection is fast—less than a minute in
all of our tested configurations—so the majority of the time
is spent on feature alignment.

Figure 10 presents the results of these experiments. In
brief, Fluorescence required less than ten minutes to analyze
each 50-VM herd. It analyzed our herd of 200 Linux VMs in
approximately 63 minutes, and it analyzed our herd of 200
Windows VMs in approximately 80 minutes. We believe that
this performance is reasonable for periodically measuring
the health of a VM herd. Moreover, Fluorescence scales
horizontally. For monitoring a herd containing more than
a few hundred VMs, one can divide the herd into subherds,
each monitored by a separate instance of Fluorescence.

To put these results in context, we note that Bianchi et al.
reported [3] that their Blacksheep system, which looks for
kernel-level anomalies in herds of Windows machines, needs
ten minutes to compare two 1 GB memory dumps. In that
time, Fluorescence can search for kernel-level anomalies in
at least 50 VMs.

5 Security Analysis

Fluorescence aims to detect kernel-resident malware within
a large group of similarly configured VMs, and its design is
based on three main assumptions.

The first is that the malware to be detected within the VMs
cannot compromise the virtual machine monitors (VMMs) on
which those VMs run. In other words, Fluorescence assumes
that the VMMs are trustworthy. This assumption allows Flu-
orescence to fingerprint the monitored VMs efficiently by
running its agents on the same physical hosts as the mon-
itored VMs (§2, Figure 1); the agents use virtual machine
introspection to access the memory of the monitored VMs
and read their kernel code pages (§2.1). If malware is able to
compromise the VMMs, then the Fluorescence agents may
be disabled or otherwise compromised as well, and the fin-
gerprinting process may not be trustworthy. VMM integrity
continues to be an important area of concern [30], but it is not
the concern that Fluorescence is intended to address.

The second assumption is that the VMs being monitored
are similar to each other in terms of configuration. They boot
from a single “golden image,” which is a common practice
in cloud-based application deployments [6], and therefore
they have the same kernel patches applied and the same ker-
nel modules installed, at least at boot time. Like the VMM
integrity assumption, the VM similarity assumption helps
Fluorescence to be efficient: normalization accounts for antic-
ipated but benign differences (§2.1.2), and normalized pages
that are identical across all of the VMs can be removed from
fingerprints (§2.2.1), greatly speeding up subsequent analysis.
More significantly, the similarity assumption allows Fluo-
rescence to automatically identify anomalous VMs (§2.3),
because their fingerprints are most different from the basis
that Fluorescence computes (§2.2.2).

The third assumption is also related to automatic anomaly
detection. Fluorescence assumes that, in a large group of
initially healthy VMs, malware-infected VMs will be the ex-
ception, not the rule (§2.3). This assumption, which is also
made by prior work [3], allows Fluorescence to distinguish
“healthy” VMs (the majority) from “abnormal” ones (the mi-
nority) without kernel-specific knowledge.

The second and third assumptions introduce the risk of mis-
classification. Our experiments showed, for example, that at
infection rates above 4%, the autoencoder-based detector pro-
duced both false positives and false negatives (§4.2.1). While
our experiments with DBSCAN produced no false positives
or false negatives (§4.2.2), it is conceivable that an attacker
could design malware in a way that would cause Fluorescence
to overlook it. For example, an attacker could learn the distri-
bution of pages known to be very different across benign VMs
(e.g., ten pages in the Windows kernel) and figure out how to
inject code only in those pages. The code injected into each
VM would need to be unique to prevent Fluorescence from
clustering the infected VMs; just a few similar features are
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enough for Fluorescence to differentiate healthy VMs from
infected ones (Figure 4, Figure 8). We believe that hiding
kernel-resident malware from Fluorescence in this way would
require a great deal of sophistication and effort.

If healthy VMs are dissimilar from one another, then
Fluorescence would need reconfiguration—or additional
information—in order for it to automatically identify anoma-
lous VMs. Consider a herd of healthy VMs in which half
have a particular kernel module installed and half do not.
This might happen, for example, if the herd is in the middle
of an upgrade. Such a split is likely to (1) decrease the ef-
fectiveness of the autoencoder-based detector and (2) cause
the DBSCAN-based detector to divide the healthy VMs into
two clusters. A cloud administrator could deal with such a
split in two ways. The first way is to run two instances of
Fluorescence, one for each class of VM; the administrator
would migrate VMs from one instance to the other as the
VMs are upgraded. The second way is for the administrator
to manually label healthy clusters in some fashion, so that
Fluorescence would not need to assume that only the largest
cluster is healthy. (This would require a change to Fluores-
cence, and it would be a kind of kernel-specific knowledge
being added to the classifier.) In practice, the first approach
is likely to be preferable, because manual labeling would not
improve the performance of the autoencoder-based classifier.

The current implementation of Fluorescence does not con-
sider dynamically generated code (“JIT-compiled code”),
which can cause the kernel code pages of healthy VMs to
diverge. If a VM’s kernel contains JIT-compiled code, it will
likely be identified as an anomaly. Legitimately JIT-compiled
kernel code, such as that produced by eBPF, is typically veri-
fied before is it executed, and as such can generally be con-
sidered to be benign. Code pages created by eBPF can be
recognized by the magic code 0xeB9F [18], but it would be an
obvious security problem for Fluorescence to simply ignore
pages marked with this code. We leave the development of
appropriate normalization (§2.1.2) methods for JIT-compiled
kernel code as future work.

6 Related Work
We classify existing rootkit detectors into three general cat-
egories: baseline-based approaches, integrity-protection ap-
proaches, and comparative anomaly-detection approaches. By
contrasting Fluorescence’s herd anomaly-detection approach
to systems in these categories, and we show that Fluorescence
advances the state of the art.

Baseline approaches. Many rootkit detectors [2, 5, 9, 28,
34, 42] require the computation or collection of a baseline
prior to deployment, such as a sample of a known rootkit (a
negative baseline) or a sample of an uninfected operating sys-
tem (a positive baseline). Hancock [16] and Hamsa [24] gen-
erate signatures of rootkit samples; others [8, 19, 35, 36, 44]
learn from known rootkits’ behavior and generate patterns
to match future rootkit execution. These approaches are lim-

ited because they can only detect rootkits similar to known
signature or behavior patterns. Invariant-based detection
[10, 14, 25, 32] establishes a correct view of key kernel
structures or state, and detects anomalies when that state
invariant is violated. These techniques require comprehensive
knowledge of specific kernels and assume kernel source code
availability. In contrast, Fluorescence requires no baseline
and minimal kernel-specific knowledge, which enables it to
detect anomalies in both Windows and Linux VMs.

Integrity protection. Some systems periodically check
the integrity of kernel critical components, including code
and key data structures. Although not yet fully adopted by the
Linux kernel, Kernel Patch Protection [13] and Driver Signa-
ture Enforcement [17] have been applied to 64-bit Windows
and have raised the bar for kernel rootkit development [37].
However, if a rootkit evades these defenses, it can simply
disable the protection [7]. The pitou rootkit [41], which
affects Windows XP through Windows 10, infects the MBR,
and bypasses kernel-mode code signing to load a malicious
kernel driver. In contrast to integrity protection within a VM,
Fluorescence works outside the VM, and thus cannot be dis-
abled by a rootkit unless it escapes the VM and executes code
in the hypervisor; this is considerably more difficult.

Comparative approaches. Baseline-based tools may be
difficult to deploy, due to the difficulty of constructing an
appropriate baseline sample. Cross-view detection, applied
in tools like GMER [15] and RootkitRevealer [38], compares
multiple different views of the same system state to find
inconsistencies [4]. These approaches require significant
manual effort to identify the system state to be observed and
compared. Diffy [27] is a live cloud triage tool that provides
mechanisms for both baseline- and clustering-based anomaly
detection. It runs a special agent in each monitored VM
to collect OS-level information. In contrast, Fluorescence
detects anomalies without relying on in-VM software and
semantics.

Blacksheep [3] makes the assumption that infection begins
in a minority of a set of homogeneous machines. It detects
anomalies by collecting memory dumps from the machines,
extracting selected system information, and comparing pair-
wise to measure distance via clustering. Fluorescence starts
from the same assumption as Blacksheep, but is designed to
be less reliant on OS semantics and to detect code injection
and modification attacks.

Because Blacksheep makes heavy use of OS semantics
to exclude “benign differences” between VMs, its approach
is difficult to port to non-Windows systems. For example,
Blacksheep requires the PE header to handle load-time reloca-
tions, but object headers in Linux are removed during object
load. Furthermore, the Linux kernel performs additional load-
time code patching beyond object relocation and kASLR, e.g.,
in the .paravirtualization ELF section, and this noise
should also be considered benign. Instead, Fluorescence uses
very limited OS semantics, and its approach is viable on mul-
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tiple versions of both Windows and Linux. For each memory
dump, Blacksheep must transport gigabytes of files across a
network for analysis. In contrast, a Fluorescence fingerprint
is less than 3 MB. Blacksheep weaves its data summary and
comparison together while making use of a large amount of
OS semantics. Fluorescence decouples its data-summary and
VM-comparison processes: by comparing VM fingerprints,
rather than “raw” memory snapshots, Fluorescence enables
scalable monitoring and clustering.

7 Conclusion
Fluorescence is a novel tool that detects kernel-resident mal-
ware infections within a “herd” of similar virtual machines.
It uses virtual machine introspection-based observations to
identify anomalies, without the need for training over specific
anomalies. Previous work relied on knowledge of specific
kernels to cross the “semantic gap” and compare kernel state,
or made assumptions about the malware being searched for.
Fluorescence’s more general approach to anomaly detection
does not rely on information that is specific to a single target
kernel: the fingerprinting procedure needs some low-level
information to acquire and normalize kernel memory sam-
ples, but the anomaly-detection process needs no kernel- or
architecture-specific information at all. Fluorescence is scal-
able because the examination and summarization of VMs
happens in parallel across the VM hosts; the central server
receives and operates on fingerprints, not full memory snap-
shots; and the feature-alignment and analysis algorithms are
chosen and engineered to be fast. We report that Fluorescence
can analyze a herd of 200 VMs in ∼60–80 minutes. Large
herds can be divided into subherds for faster analysis.

Acknowledgments
We thank VirusTotal and VirusShare for making malware sam-
ples available to us, T. Roy from CodeMachine Inc. for shar-
ing his expertise about Windows rootkits, and Mingbo Zhang
at Rutgers University for helping us to debug our Windows
kernel-memory-pinning driver. We thank the anonymous
RAID reviewers and our shepherd, Andrea Lanzi, for their
valuable comments and help in improving this paper. This ma-
terial is based upon work supported by the National Science
Foundation under Grant Numbers 1314945 and 1642158.

References
[1] Ighor Augusto. Reptile rootkit. Commit b0a2d0f, April

2018. URL https://github.com/f0rb1dd3n/Reptile.

[2] Rishi Bhargava and David P. Reese, Jr. System
and method for passive threat detection using virtual
memory inspection, March 14, 2017. U.S. Patent
9,594,881 B2.

[3] Antonio Bianchi, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Blacksheep: Detecting

compromised hosts in homogeneous crowds. In Proc.
CCS, pages 341–352, October 2012. doi: 10.1145/
2382196.2382234.

[4] Bill Blunden. The Rootkit Arsenal: Escape and Evasion
in the Dark Corners of the System. Jones & Bartlett
Learning, 2009. ISBN 978–1598220612.

[5] Michael Boelen, John Horne, et al. The Rootkit Hunter
project. Release 1.4.6, February 2018. URL http://
rkhunter.sourceforge.net/.

[6] Ed Bukoski, Brian Moyles, and Mike McGarr. How we
build code at Netflix. Netflix Technology Blog, March 9,
2016. URL https://medium.com/netflix-techblog/how-
we-build-code-at-netflix-c5d9bd727f15.

[7] Yuriy Bulygin, Mikhail Gorobets, Andrew Furtak, and
Alex Bazhaniuk. Fractured Backbone: Breaking mod-
ern OS defenses with firmware attacks. Presentation
at Black Hat USA, July 2017. URL https://youtu.be/
ryKy9LvmSIs.

[8] Chen Chen, Darius Suciu, and Radu Sion. POSTER:
KXRay: Introspecting the kernel for rootkit timing foot-
prints. In Proc. CCS, pages 1781–1783, October 2016.
doi: 10.1145/2976749.2989053.

[9] Amit Dang, Preet Mohinder, and Vivek Srivastava. Sys-
tem and method for kernel rootkit protection in a hy-
pervisor environment, June 30, 2015. U.S. Patent
9,069,586 B2.

[10] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen
McCamant, Carlos Pacheco, Matthew S. Tschantz, and
Chen Xiao. The Daikon system for dynamic detection
of likely invariants. Science of Computer Programming,
69(1–3):35–45, December 2007. doi: 10.1016/j.scico.
2007.01.015.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xi-
aowei Xu. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In
Proc. KDD, pages 226–231, August 1996. URL http:
//www.aaai.org/Library/KDD/1996/kdd96-037.php.

[12] Nicolas Falliere, Liam O. Murchu, and Eric
Chien. W32.Stuxnet dossier. White paper, ver-
sion 1.4, Symantec Corporation, February 2011.
URL https://www.symantec.com/content/en/us/
enterprise/media/security response/whitepapers/
w32 stuxnet dossier.pdf.

[13] Scott Field. An introduction to kernel patch protection.
MSDN Blog, August 12, 2006. URL https://blogs.msdn.
microsoft.com/windowsvistasecurity/2006/08/12/an-
introduction-to-kernel-patch-protection/.

14

https://github.com/f0rb1dd3n/Reptile
http://rkhunter.sourceforge.net/
http://rkhunter.sourceforge.net/
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://medium.com/netflix-techblog/how-we-build-code-at-netflix-c5d9bd727f15
https://youtu.be/ryKy9LvmSIs
https://youtu.be/ryKy9LvmSIs
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/an-introduction-to-kernel-patch-protection/
https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/an-introduction-to-kernel-patch-protection/
https://blogs.msdn.microsoft.com/windowsvistasecurity/2006/08/12/an-introduction-to-kernel-patch-protection/


[14] Francesco Gadaleta, Nick Nikiforakis, Jan Tobias
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