
eZTrust: Network-Independent Zero-Trust 
Perimeterization for Microservices

�1

Presenter:	Zirak	Zaheer	(Facebook	/		University	of	Utah)	

Collaborators:	Hyunseok	Chang	(Nokia	Bell	Labs),	Sarit	Mukherjee	(Nokia	Bell	Labs),	
Jacobus	Van	der	Merwe	(University	of	Utah)



Evolution of Traffic Pattern 
in the Era of Microservices

• Data	centers	are	housing	more	
and	more	microservices	
• Monolithic	legacy	apps	are	broken	
into	and	deployed	as	multiple	
“interdependent”	microservices	
• East-west	traffic	accounts	for	
70-80%	of	traffic!	



Characteristics of Typical 
Microservices Environment

�3

• High	churn	rate	of	microservices	
✓ Frequent	updates	to	microservices	(CI/

CD	workflows)	
✓ Dynamic	autoscaling	

• Compared	to	legacy	apps,	#	of	
microservice	instances	is	much	higher	

• New	security	threats	exploit	cross-
service	dependencies	and	propagate	
laterally	via	east-west	traffic



Securing East-West Traffic using 
Traditional Ways 
 

�4

• Network-based	perimeterization	
✓ Access	control	rules	based	on	

network	endpoints	(IP/port)	

• Access	boundary	for	each	workload	
or	a	group	of	workloads	is	enforced	
with:	
✓ Security	group	rules	using	software	

switches	
✓ IPtable	rules



�5

Problem #1: Reliability

Only	IP1:port1	can	reach	IP2:port2Only	workload		“front-end”	can	
talk	to	workload	“back-end”

• Semantic	gap	between	high-level	policy	intents	and	ephemeral	
network	endpoints		

• Network	endpoints	are	not	binding	properties	of	microservices	
✓ Can	change	dynamically	due	to	microservice	reconfiguration	or	by	

middleboxes	(NAT/PAT)	as	part	of	network	operations	
✓ Can	be	spoofed	by	malicious	tenants	]	

Policy	Intent Implemented	Rule



�6

Problem #2: Scalability

• Highly	dynamic	communication	patterns	due	to	high	churn	rate	of	
microservices	(frequent	re-deployments	and	dynamic	autoscaling)	

• Policy	table	grow	with	the	number	of	communicating	microservice	
instances	and	network	attributes	relied	upon	

• Hard	to	update	and	manage	growing	policy	tables	in	a	timely	
fashion	



�7

Problem #3: Granularity

• Emerging	security	attacks	are	often	associated	with	newly	found	
software	vulnerabilities	(e.g.	OpenSSL	Heartbleed,	Shellshock)	

• Necessitates	fine-grained	perimeterization	and	flexibility	in	policy	
definitions	(e.g.	policies	based	on	application	identity	and	version,	
status	of	security	patches,	etc)



�8

Takeaway	

We	want	more	reliable,	scalable	and	granular	
perimeterization	for	microservices!



Ideas to solve these problems?

● Decouple	perimeterization	from	network	endpoints	

● Instead	of	IP/port	strongly	identify	microservices	with	a	set	of	authentic	
contexts	(derived	from	microservices)	

● Enable	fine-grained	and	granular	policies	on	a	per-packet	level	

● Policy	rule	tables	should	not	grow	as	the	number	of	microservice	
instances	grow.	

e.g:	“accept	traffic	only	if	it	originates	from	HAproxy	with	sslVersion	1.8,		
and	is	destined	to	an	nginx	server”

�9



�10

Threat Model

• We	trust	cloud	provider’s	server	OS/Kernel	and	central	
orchestrator	and	assume	its	free	of	vulnerabilities	

• We	trust	contexts	derived	from	deployed	microservices	if:	
✓ Their	contexts	are	traced	from	the	trusted	infrastructure	(OS	kernel)	

✓ Their	contexts	are	derived	from	untampered	software	packages	(e.g.	
binaries/libraries	from	official	Linux	repos,	digitally	signed	software)	

✓ Their	contexts	are	retrieved	from	the	trusted	orchestrator	(e.g.	
container	image	tag,	geographic	location)	



Fine-grained context-driven perimeterization.

�11

Sender	
Microservice

Receiver	
MicroservicePkt

Tag

Tag Tag

Tag

Pkt

❑ AppID	
❑ AppVersion	
❑ UserID	
❑ OpenSSL	

Version	
❑ Location	
			▪	▪	▪	▪	▪	▪

❑ AppID	
❑ AppVersion	
❑ UserID	
❑ OpenSSL	

Version	
❑ Location

❑ AppID	
❑ AppVersion	
❑ UserID	
❑ OpenSSL	

Version	
❑ Location	
			▪	▪	▪	▪	▪	▪

Context	
Encoding

Context	
Decoding

Policy	Decision

Detected	
Contexts

Our Approach: eZTrust



�12

Challenges (Sender-side)

• Contexts	of	each	microservice	must	be	correctly	determined	
without	significant	overhead	

• Packets	generated	by	each	microservice	must	be	correctly	
associated	with	the	microservice	in	the	dataplane	



�1313

	Sender-Side	Challenge	#1
• Reliably	determining	context	for	each	service

Microservice	

❑ AppID	
❑ AppVersion	
❑ UserID	
❑ OpenSSL	

Version	
❑ Location	
				▪	▪	▪	▪	▪	▪

Central	
Coordinator

Agent

Userspace

Kernel	
eTracer	
eTracer	
eTracer	

Context	Discovery	using	
trusted	eBPF	tracing	

programs	



● Packets	generated	by	each	microservice	must	be	correctly	associated	with	the	
microservice	context

�14

	Sender-Side	Challenge	#2

Microservice	

❑ AppID	
❑ AppVersion	
❑ UserID	
❑ OpenSSL	

Version	
❑ Location	
				▪	▪	▪	▪	▪	▪

Central	
Coordinator

Agent

Userspace

Kernel	

Pkt

Pkt

Pkt	
+Tag

eTagger



�15

Challenges (Sender-side)

• Contexts	of	each	microservice	must	be	correctly	determined	
without	significant	overhead	
• Packets	generated	by	each	microservice	must	be	correctly	
associated	with	the	microservice	

• Approach:	Leverage	the	eBPF	framework	
• Trace	context	events:	process	creation	events,	userspace	events	
(SSL	handshake,	MySQL	connection)	

• Trace	socket	events:	identify	which	packets	are	generated	by	which	
sockets	in	which	namespaces	



�16

Challenges (Receiver-side)

• Perform	context	decoding	when	tags	are	unknown	to	receiver	

• Perform	context	decoding	during	dynamic	context	changes	



• Context	decoding	when	tags	are	unknown	to	receiver.

Sender	
Microservice

Receiver	
Microservice

Tag

❑ AppID	
❑ AppVersion	
❑ UserID1		
❑ OpenSSL	

Version	
❑ Location	
				▪	▪	▪	▪	▪	▪

❑ AppID	
❑ AppVersion	
❑ UserID1	
❑ OpenSSL	

Version	
❑ Location

Central	
Coordinator

Agent
Userspace

Enable	Slow	Path	to	Handle	
Unknown	Tags

	Receiver-Side	Challenge	#1

Kernel
eVerifier



	Receiver-Side	Challenge	#2

• Context	decoding	during	dynamic	context	changes.

❑ AppID	
❑ AppVersion	
❑ UserID1					UserID2	
❑ OpenSSL	Version	
❑ Location	
									▪	▪	▪	▪	▪	▪

Sender	
Microservice

Receiver	
Microservice

Tag
❑ AppID	
❑ AppVersion	
❑ UserID1	
❑ OpenSSL	

Version	
❑ Location

Central	
Coordinator

Agent

Userspace
Kernel

Carry	Epoch	Number	to	Detect	
Context	Change

Epoch1

Epoch2



�19

Challenges (Receiver-side)

• Perform	context	decoding	when	tags	are	unknown	to	receiver	
• Perform	context	decoding	during	dynamic	context	changes	

• Approach:	
• Dual	path	packet	processing:	slow	path	to	resolve	unknown	tags	in	
userspace,	and	fast	path	to	process	cached	tags	in	kernel	

• Epoch	counter	in	the	tag:	epoch	counter	increment	to	detect	
context	change	and	invalidate	caching	on	fast	path		



�20

How eZTrust solves the problems highlighted

• Reliability:		eBPF-driven	real-time	tracing	of	authentic	
microservice	contexts	
• Scalability:		Ruleset	size	scales	only	with	#	of	distinct	contexts,	
regardless	of	#	of	network	endpoints	
• Granularity:	Policies	are	defined	based	on	an	extensible	list	of	
fine-grained	workload	contexts	

Perimeterization	policy	decisions	are	completely	decoupled	from	
underlying	networks	



Evaluations

● Implemented	proof-of-concept	prototype.	

● Evaluated	performance	and	correctness	of	the	system	(see	paper)	

● Compared	our	approach	to	other	related	works	(see	paper).	

● Tested	prototype	with	dynamic	context	changes	and	realisitic	
microservice	deployment.

�21



● Setup:	3	wget	containers,	1	Nginx	container	

● At	T1	insert	Policy		=>		allow	“nginx	server”	to	talk	to	“app=wget	with	
status=healthy”	

● At	T2,	T3,	T4	status	changes	to		
“compromised”	

○ 	eZTrust	drops	connections

�22

Dynamic Context Change



Realistic 
Microservice 
Deployment 
(on single host)

14	distinct	Microservices

�23

Source:	https://microservices-demo.github.io/



Latency Comparison

•Installed	policies	to	allow	
communication	between	
microservices		
•Generate	http	traffic	
•eZTrust	performs	slightly	better	to	
enforce	policy	5-15%	
•Performance	benefits	of	eBPF,	
encoding	and	decoding	is	lightweight

�24



�25

Discussion

• Tag	granularity:		trade-off	between	policy	granularity	and	slow	
path	overhead		(per-microservice,	per-process,	per-connection)	

• Tag	anonymization:	Can	be	avoided	if	raw	sockets	are	not	allowed	
in	the	infrastructure	

• Smart	NIC	offload:	transparent	eBPF	offload	is	available	with	
some	smart	NIC	(e.g.	Agilio)	to	partly	offload	eZTrust	processing	

• Platform	compatibility:	can	co-exist	with	network	endpoint	based	
perimeterization	by	extending	supported	contexts



Conclusion

● eZTrust,	a	network-independent	perimeterization	solution	for	
microservices,	where	we	shift	perimeterization	targets	from	network	
endpoints	to	fine-grained,	context-rich	microservice	identities.		

● We	tap	into	the	growing	wealth	of	tracing	data	of	microservices	made	
available	by	eBPF,	and	repurpose	them	for	perimeterization.		

● We	adopt	OVS-like	flow-based	packet	verification,	where	packets	are	
classified	into	flows	not	based	on	packet	header	fields,	but	based	on	
microservice	contexts.	

�26



�27

Questions?



�28



Per-packet CPU 
resource overhead 

• Captures	CPU	usage	incurred	by	
policy	enforcement	only	

• Two	containers	on	one	Server	
pinned	to	fixed	CPU	cores	

• 60	byte	UDP	packets	using	iperf	

• eZTrust		per	packet	overhead	is	
minimum	compared	to	similar	
approaches

�29



Slow Path vs Fast 
Path Latency

• Slow	path	latency	grows	as	the	
Policy	template	table	size	grows	

• Fast	Path	latency	is	unaffected	
by	the	Policy	Template	table	size

�30



Context Based Policy  
DPI vs eZTrust

•DPI	Policy:	Accept	traffic	if	it	
originates	from	OpenSSL	version	X.	

•eZTrust	enforces	similar	policy	with	
drastically	lower	CPU

�31


