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Evolution of Traffic Pattern

in the Era of Microservices i P2

e Data centers are housing more
and more microservices
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* Monolithic legacy apps are broken
into and deployed as multiple
“interdependent” microservices

e East-west traffic accounts for
70-80% of traffic!




Characteristics of Typical
Microservices Environment

* High churn rate of microservices
v Frequent updates to microservices (C
CD workflows)
v Dynamic autoscaling

 Compared to legacy apps, # of
microservice instances is much higher

* New security threats exploit cross-
service dependencies and propagate
laterally via east-west traffic




Securing East-West Traffic using gNetwork Security
Traditional Ways as barely evolveo

* Network-based perimeterization
v Access control rules based on

network endpoints (IP/port) he world still runs on iptables

atching IPs and ports:

* Access boundary for each workload

or a group of workloads is enforced tables -A INPUT -p tcp \
with: 15.15.15.3 --dport 80 \
nntrack --ctstate NEW

v Security group rules using software
switches
v IPtable rules




Problem #1: Reliability

Policy Intent Implemented Rule

Only workload “front-end” can q
talk to workload “back-end”

Only IP1:porti1 can reach IP2:port2

* Semantic gap between high-level policy intents and ephemeral
network endpoints

* Network endpoints are not binding properties of microservices
v Can change dynamically due to microservice reconfiguration or by
middleboxes (NAT/PAT) as part of network operations
v Can be spoofed by malicious tenants |




Problem #2: Scalability

* Highly dynamic communication patterns due to high churn rate of
microservices (frequent re-deployments and dynamic autoscaling)

* Policy table grow with the number of communicating microservice
instances and network attributes relied upon

* Hard to update and manage growing policy tables in a timely
fashion




Problem #3: Granularity

* Emerging security attacks are often associated with newly found
software vulnerabilities (e.g. OpenSSL Heartbleed, Shellshock)

* Necessitates fine-grained perimeterization and flexibility in policy
definitions (e.g. policies based on application identity and version,
status of security patches, etc)




Takeaway

We want more reliable, scalable and granular
perimeterization for microservices!



|deas to solve these problems?

e Decouple perimeterization from network endpoints
e Instead of IP/port strongly identify microservices with a set of
(derived from microservices)
® Enable fine-grained and granular policies on a per-packet level
® Policy rule tables should not grow as the number of microservice
Instances grow.
e.g: “accept traffic only if it originates from ,

and is destined to an nginx server”




Threat Model

* We trust cloud provider’s server OS/Kernel and central
orchestrator and assume its free of vulnerabilities

* We trust contexts derived from deployed microservices if:
v Their contexts are traced from the trusted infrastructure (OS kernel)

v Their contexts are derived from untampered software packages (e.g.
binaries/libraries from official Linux repos, digitally signed software)

v Their contexts are retrieved from the trusted orchestrator (e.g.
container image tag, geographic location)




Our Approach:

Fine-grained context-driven perimeterization.
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Challenges (Sender-side)

* Contexts of each microservice must be correctly determined
without significant overhead

* Packets generated by each microservice must be correctly
associated with the microservice in the dataplane




&
Q

4
4

4

ApplD
AppVersion
UserID

OpenSSL
Version
Location

Sender-Side Challenge #1
* Reliably determining context for each service
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Sender-Side Challenge #2

® Packets generated by each microservice must be correctly associated with the

microservice context
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Challenges (Sender-side)

* Contexts of each microservice must be correctly determined

without significant overhead
* Packets generated by each microservice must be correctly

associated with the microservice

* Approach: Leverage the eBPF framework
* Trace context events: process creation events, userspace events
(SSL handshake, MySQL connection)
* Trace socket events: identify which packets are generated by which
sockets in which namespaces




Challenges (Receiver-side)

* Perform context decoding when tags are unknown to receiver

* Perform context decoding during dynamic context changes




Receiver-Side Challenge #1
* Context decoding when tags are unknown to receiver.
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Receiver-Side Challenge #2

e Context decoding during dynamic context changes.
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Challenges (Receiver-side)

* Perform context decoding when tags are unknown to receiver
* Perform context decoding during dynamic context changes

* Approach:
* Dual path packet processing: slow path to resolve unknown tags in
userspace, and fast path to process cached tags in kernel

* Epoch counter in the tag: epoch counter increment to detect
context change and invalidate caching on fast path




How eZTrust solves the problems highlighted

* Reliability: eBPF-driven real-time tracing of authentic
microservice contexts

 Scalability: Ruleset size scales only with # of distinct contexts,
regardless of # of network endpoints

* Granularity: Policies are defined based on an extensible list of
fine-grained workload contexts

Perimeterization policy decisions are completely decoupled from
underlying networks




Evaluations

® Implemented proof-of-concept prototype.

® Evaluated performance and correctness of the system (see paper)

® Compared our approach to other related works (see paper).

® Tested prototype with dynamic context changes and realisitic
microservice deployment.




Dynamic Context Change

® Setup: 3 wget containers, 1 Nginx container

® At T1 insert Policy => allow “nginx server” to talk to “app
status=healthy”

® At T2, T3, T4 status changes to
“compromised”

..............
...............

Traffic Rate (Mbit/s)

o eZTrust drops connections

..........



Realistic
Microservice
Deployment

(on single host)

14 distinct Microservices Figure 7: Microservice control flow in Sock Shop.




Latency Comparison

*Installed policies to allow
communication between
microservices

*Generate http traffic

*eZTrust performs slightly better to
enforce policy 5-15%

*Performance benefits of eBPF,
encoding and decoding is lightweight
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Figure 8: End-to-end latencies of Sock Shop.




Discussion

* Tag granularity: trade-off between policy granularity and slow
path overhead (per-microservice, per-process, per-connection)

* Tag anonymization: Can be avoided if raw sockets are not allowed
in the infrastructure

* Smart NIC offload: transparent eBPF offload is available with
some smart NIC (e.g. Agilio) to partly offload eZTrust processing

* Platform compatibility: can co-exist with network endpoint based
perimeterization by extending supported contexts




Conclusion

® e/Trust, a network-independent perimeterization solution for
microservices, where we shift perimeterization targets from network
endpoints to fine-grained, context-rich microservice identities.

® Ve tap into the growing wealth of tracing data of microservices made
available by eBPF, and repurpose them for perimeterization.

® \We adopt OVS-like flow-based packet verification, where packets are
classified into flows not based on packet header fields, but based on
microservice contexts.




Questions?
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Figure 1: The eZTrust architecture.




# CPU Cycles per Packet

Per-packet CPU
resource overhead

Captures CPU usage incurred by
policy enforcement only

Two containers on one Server
pinned to fixed CPU cores

60 byte UDP packets using iperf

eZTrust per packet overhead is
minimum compared to similar
approaches




Slow Path vs Fast
Path Latency

* Slow path latency grows as the
Policy template table size grows

* Fast Path latency is unaffected
by the Policy Template table size
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Context Based Policy
DPI| vs e/Trust

*DPI Policy: Accept traffic if it
originates from OpenSSL version X.

*eZTrust enforces similar policy with
drastically lower CPU
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Figure 5: DPI-based perimeterization vs. eZTrust.




