
eZTrust: Network-Independent Zero-Trust
Perimeterization for Microservices

Zirak Zaheer† Hyunseok Chang∗ Sarit Mukherjee∗ Jacobus Van der Merwe†

University of Utah† Nokia Bell Labs∗

ABSTRACT
Emerging microservices-based workloads introduce new se-
curity risks in today’s data centers as attacks can propa-
gate laterally within the data center relatively easily by ex-
ploiting cross-service dependencies. As countermeasures
for such attacks, traditional perimeterization approaches,
such as network-endpoint-based access control, do not fare
well in highly dynamic microservices environments (espe-
cially considering the management complexity, scalability
and policy granularity of these earlier approaches). In this
paper, we propose eZTrust, a network-independent perime-
terization approach for microservices. eZTrust allows data
center tenants to express access control policies based on
fine-grained workload identities, and enables data center
operators to enforce such policies reliably and efficiently
in a purely network-independent fashion. To this end, we
leverage eBPF, the extended Berkeley Packet Filter, to trace
authentic workload identities and apply per-packet tagging
and verification. We demonstrate the feasibility of our ap-
proach through extensive evaluation of our proof-of-concept
prototype implementation. We find that, when comparable
policies are enforced, eZTrust incurs 2–5 times lower packet
latency and 1.5–2.5 times lower CPU overhead than tradi-
tional perimeterization schemes.

CCS CONCEPTS
• Networks→ Data center networks; Programmable net-
works; • Security and privacy → Access control;

KEYWORDS
Data center networks, Access control, Microservices, eBPF

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSR ’19, April 03–04, 2019, San Jose, CA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
As common network security measures, data centers are tra-
ditionally protected at their borders, under the assumption
that attacks originate externally via north-south traffic. This
assumption is proving incorrect as data centers start to house
more and more interdependent microservices [1], which in
turn leads to increasingly dominant intra-data center east-
west traffic (85% of total data center traffic [2]). This emerging
application deployment trend poses new security risks as
the infrastructure is not properly protected against its inter-
nal misbehavior, which allows threats from east-west traffic
to propagate laterally across any number of microservices
within data centers. In order to address the newly emerg-
ing security risks within data centers, the zero-trust secu-
rity model [3] has been postulated with a guiding principle
of “never trust, always verify” instead of the current oper-
ating model of “trust but verify.” Under this model, every
deployed tenant microservice must be secured with fine-
grained perimeterization policies that scrutinize the traffic in
and out of the microservice, as dictated by tenants.
In modern SDN centric data centers [4], where a cen-

tralized controller interconnects tenant microservices by
pushing appropriate forwarding rules at the programmable
software switches, a traditional way of realizing perimeteri-
zation is to define network-endpoint-based policy rules at
these switches [5, 6, 7]. In this network based perimeter-
ization, tenant policy intents, which are typically defined
based onworkload identities (e.g., only workload “X” can talk
to workload “Y”) need to be translated into corresponding
network-endpoint policies (e.g., only <IP1:port1> can reach
<IP2:port2>) to be enforced by data center operators at the
network level. However, this semantic gap between tenant’s
policy intents and operator’s policy enforcement infrastruc-
ture makes the resulting perimeterization potentially unre-
liable and error-prone. Network endpoint properties such
as IP addresses and port numbers are not the binding prop-
erties of tenant workloads, but rather ephemeral attributes
attached to them, which can dynamically be changed, either
by tenants from microservice reconfigurations, or by mid-
dleboxes as part of network operations (e.g., address/port
translation and load balancing), or even can be spoofed by
malicious attackers.

https://doi.org/10.1145/1122445.1122456


SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

Correctness aside, the network based perimeterization also
introduces scalability challenge in policy rule management.
First of all, the size of policy rule sets increases multiplica-
tively with the number of communicating microservices or
their security zones, as well as the number of endpoint prop-
erties relied upon by policies. In addition, every time com-
munication patterns change due to microservice creation,
termination and migration events, policy rules provisioned
for existing microservices need to be inspected and adjusted
in a timely fashion to fulfill tenant policy intents. Consider-
ing the large-scale, highly dynamic microservice deployment
nature of modern clouds [8], the task of maintaining and
updating policy rule sets in such environments incurs signifi-
cant resource overhead on the data center infrastructure [9].
Finally, the policy granularity of the network based ac-

cess control is restricted to network endpoint level. On the
other hand, emerging security risks increasingly necessitate
more fine-grained perimeterization, where access is regu-
lated based on detailed contexts associated with microservice
workloads (e.g., application/user identity, protocol version,
status of security patches). Such granular policies are use-
ful to contain potential damage from newly found software
vulnerabilities (e.g., POODLE attack against SSL, OpenSSL
Heartbleed, Shellshock). However, enriching network-endpoint
policies with granular contexts (e.g., SSL/OpenSSL/Bash ver-
sions) typically requires resource-heavy deep packet inspec-
tion (DPI) and intrusive guest introspection [10, 11].

In order to address these limitations of the existing network-
endpoint-based perimeterization, we propose in this paper
an alternative solution called eZTrust, where we shift perime-
terization targets from network endpoints to workload iden-
tities. In this approach, we exploit the fact that microservices
are typically packaged in lightweight containers. We are
also motivated by the ongoing efforts to monitor detailed
lifecycles of containerized microservice workloads [12, 13,
14]. Our approach is to repurpose the growing wealth of
such monitoring data gleaned from deployed workloads for
perimeterization. The key idea of eZTrust is as follows. Ev-
ery packet generated by a microservice is stamped with a
tag which encodes a fine-grained identity of the microser-
vice. The fine-grained identity is defined as a set of authentic
contexts tied to the microservice workload. Example contexts
include application-level identity (e.g., application name/ver-
sion), runtime environment-related signatures (e.g., kernel
version, dynamically loaded library version, user identity)
or deployment-specific metadata (e.g., geographic location,
filesystem image tag). Some of these contexts are detected
from the workloads themselves, while others are fetched
from the centralized microservice orchestrator. Once the
tagged packet is received, the receiver end extracts the tag, de-
codes it back to the sender-side contexts, and applies perime-
terization policies based on the sender-side contexts as well

as recipient’s contexts, as instructed by a receiver-side ten-
ant. In this manner, the whole perimeterization process is
completely decoupled from underlying networks.
To realize eZTrust, we leverage eBPF [15], the extended

Berkeley Packet Filter, which enables us to trace various
contexts associated with microservice workloads as well as
perform per-packet tagging and verification. Inspired by the
flow cache design of Open vSwitch (OVS) [16], we adopt dual-
path per-packet verification, where slow path via userspace
is triggered to handle packets with unknown contexts, while
fast path conducts eBPF-based in-kernel packet verification.
To ensure correct packet verification in the presence of con-
text changes, we leverage the notion of an epoch, which is
used to detect context changes and invalidate caching on
the fast path. We have prototyped eZTrust and conducted
detailed evaluations to show its efficacy. We find that, when
comparable policies are enforced, eZTrust incurs a factor
of 2–5 lower packet processing latency and a factor of 1.5–
2.5 lower per-packet CPU overhead than other state-of-the-
art perimeterization schemes. Using realistic perimeteriza-
tion scenarios such as OpenSSL Heartbleed vulnerability
containment and control flow protection for a real-world
e-commerce application, we demonstrate that eZTrust can
support context-rich perimeterization policies efficiently.
We make the following specific contributions in this pa-

per: (i) We design the eZTrust architecture which enables
fine-grained context based perimeterization without relying
on complex network-endpoint-based policies, nor requiring
compute-intensive DPI for detailed context discovery. (ii) We
implement a proof-of-concept prototype of the architecture
using eBPF, and demonstrate motivational scenarios enabled
by the prototype. (iii) We quantify the performance and re-
source overhead of the prototype, and compare it against
alternative approaches.

2 RELATEDWORKS
In the following, we discuss several alternative perimeteriza-
tion approaches and their limitations.

Transport-level perimeterization. The First Packet Au-
thentication [17] and Trireme [18] enforce perimeterization
policies at the TCP layer. In these proposals, a cryptographi-
cally signed identity token is carried in a TCP SYN packet,
and the rest of the TCP handshake proceeds only if access
is granted based on the identity. Compared to network-
endpoint-based approach, transport-level perimeterization
is more reliable as the identity of a microservice is not tied
to the underlying network, but cryptographically verified.
These approaches, however, have several drawbacks. First,
these TCP-specific schemes cannot be generalized to non-
TCP based connection-less traffic (e.g., QUIC [19] over UDP).



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

Properties Network-
endpoint-based Transport-level Label-based DPI-based API gateway eZTrust

Policy management complexity Bad Good Good Good Good Good
Reliability of policy attributes Bad Good Bad Good Good Good
End-server resource overhead Good Bad Good Bad Bad Good

Protocol/application dependency Good Bad Good Bad Bad Good
Policy granularity and dynamism Bad Bad Bad Good Bad Good

Table 1: Comparison of existing perimeterization approaches.

They also require heavy-duty cryptographic operations dur-
ing TCP handshake, resulting in high per-connection compu-
tation overhead. This is problematic with a large number of
short-lived TCP flows, which are common for microservices,
or denial-of-service SYN attacks. Finally, since access control
is only on a per-flow basis during initial TCP handshake,
they can be vulnerable to session hijacking attacks [20].

Label-based perimeterization.A label-based perimeter-
ization approach called Cilium [21] is similar to the previous
transport-level approach in that its policy enforcement is
based on the “network-independent” identity of microser-
vices. In Cilium, the microservice identity carried in net-
work packets is defined by a set of key-value pair labels (e.g.,
role=frontend, user=joe) that are specified by its tenant. Un-
like the transport-level approach, its policy enforcement is
protocol-agnostic. Besides label-based policies Cilium also
supports layer-7 API-aware policies. The problem of this
approach is that tenant-defined labels for microservices are
not their binding properties, thus not providing protection
across tenants. When a label is assigned to a microservice
by its tenant, other tenants blindly trust that label, which
makes it vulnerable to malicious tenants who attempt to
impersonate other microservices using their labels. Also, the
labels are defined statically at the microservice launch time.
Once associated, the labels remain with the microservice for
the rest of its lifetime. Such static labels are problematic in
dynamic policy environments.

DPI-based perimeterization. The aforementioned prob-
lems of the static label-based approach can be addressed by
more dynamic context-aware schemes [10, 22, 23]. In this
approach, individual end servers, where microservices are
hosted, operate a DPI engine to actively extract layer-7 con-
textual information (e.g., application/protocol types, version,
etc.) from packet payload, so that traffic can be filtered based
on contextual attributes. While this approach allows fine-
grained and genuine context based policies, the DPI pro-
cessing takes a heavy toll on CPU resources, and sacrifices
end-to-end packet delay. Besides, increasingly common en-
crypted traffic (e.g., HTTP/2) is not properly identified by
DPI, and thus can bypass contextual policy filters.

API gateway/proxy-based perimeterization. In a dis-
tributed microservice architecture, API gateways or sidecar
proxies [24, 25, 26] are often responsible for many critical

management services for deployed microservices. As dedi-
cated entry points to individual microservices, they can pro-
vide detailed API-level perimeterization using standard au-
thentication/authorization techniques (e.g., OpenID, OAuth).
However, this approach is only applicable to the cross-service
communication designed for API gateways/proxies, but can-
not properly regulate non-API traffic. Besides, it can be lever-
aged only for custom designed microservices with built-in
support for OpenID/OAuth-capable APIs, but is not a general
context-driven perimeterization solution. Many microser-
vices are realized with existing open-source software, which
is not originally developed for API gateways, and application-
integrated API security is not a viable option for them.

Table 1 summarizes the pros and cons of different perime-
terization approaches. eZTrust aims to address the limita-
tions of these approaches.

Other network-independent packet processing. Au-
thors of [27] propose a new type of policy routing that is
based on process-level identifiers. While similar to eZTrust,
this preliminary work does not provide detailed description
on required data/control plane processing, and the perfor-
mance of their prototype implementation is very limited.

3 ARCHITECTURE DESIGN
3.1 Threat Model
Before presenting the eZTrust architecture, we first describe
the assumed threat model which motivated our design.
eZTrust is a policy driven perimeterization access con-

trol system for a containerized microservices environment.
We assume that the infrastructure provider is trustworthy,
and that the provider’s infrastructure is free of vulnerabil-
ities. We assume that the eZTrust framework is securely
integrated with the provider’s infrastructure for context col-
lection, packet tagging and policy enforcement. This ensures
that policies and contexts are securely stored and distributed,
and that packets are tagged and verified without compro-
mise. Unlike the infrastructure, we assume that tenant mi-
croservices are not to be trusted. Therefore, we trust contexts
derived from microservices only if those contexts are col-
lected from the trusted infrastructure (e.g., operating system
kernel) or from untampered software packages (e.g., libraries
from official Linux repositories or digitally signed software).
We call these trusted contexts authentic contexts.



SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

We assume that a malicious tenant attacker can compro-
mise a microservice container by exploiting vulnerabilities in
the container and can attempt to move laterally and get unau-
thorized access to microservices of other tenants running in
the infrastructure. eZTrust’s goal is to contain the attacker
from moving laterally from one compromised workload or
application to another.

3.2 Key Idea and Design Requirements
Next, we present the key idea of eZTrust and discuss as-
sociated design requirements. For better understanding of
eZTrust, let’s consider the following illustrative example
scenario enabled by eZTrust, where two hypothetical mi-
croservices S1 (HAproxy load balancer) and S2 (nginx web
server) are operated. S1 carries three contexts: app=HAproxy,
appVersion=1.8, and location=US-West. The value “tag1” is
mapped to these contexts. Similarly, S2 contains three con-
texts: app=nginx, appVersion=1.2, and loc=US-East, and the
value “tag2” (, tag1) is resolved to these contexts. S2’s policy
is defined as “accept traffic only if it originates from HAproxy
with version 1.8, and is destined to an nginx server in the east
coast US.” Under the eZTrust architecture, every packet gen-
erated by HAproxy on S1 is stamped with tag1. When the
packet is received by S2, tag1 is converted to the sender-side
contexts (app=HAproxy, appVersion=1.8, and loc=US-West).
S2 then applies its defined policy based on the combination
of the sender-side and receiver-side contexts, and accepts
the packet. Tag2 is attached to the packets sent by S2 in a
reverse direction.
As is clear from the above example, there are several im-

portant requirements to meet in order for the proposed ar-
chitecture to become a reality.

• (R1) For each microservice, its associated contexts must
be correctly determined without significant overhead. To
make context discovery verifiable and lightweight, the
contexts must be directly derived from the microservices,
rather than arbitrarily assigned by a tenant like the static
label-based approach, or separately mined with a heavy
duty packet processing like the DPI-based approach.
• (R2) Somemicroservice (e.g., LAMP stack service or multi-

container pod in Kubernetes) may run more than one ap-
plications in it, in which case, there will bemultiple sets of
contexts defined in the microservice (for different applica-
tions). Thus, when network packets are generated within
a microservice (by any one of the applications running
inside), the packets must be tagged with a correct set of
application contexts.
• (R3) The mapping between a tag and a set of contexts
must be globally unique and available for any arbitrary
microservice to retrieve contexts from received packets
with tags.

Context
Manager

Policy 
Agent Microservice

1

eTracer
for

Context 1

Context Related Events

. . .

VIF1

User Space

Kernel Space

Central Microservice Coordinator

. . . . 

Local Context Map

eTagger and eVerifier P
IF

Global Context Map

Global Policy Map

Local Policy Map

eTracer
for

Context 2

eTracer
for

Context N

VIF2

End 
Server

Microservice
2

Trusted Untrusted 

harvester

Figure 1: The eZTrust architecture.

• (R4)Whenever any context is changed in any microser-
vice, the change must be reflected in the mapping and
subsequent policy enforcement in a timely fashion.
• (R5) The per-packet access control process must be light-
weight enough to handle line rate traffic.

The requirements (R1) and (R2) are relevant to egress
packet processing on the sender side, where packets are
tagged based on contexts, while the requirements (R3), (R4)
and (R5) are needed for ingress packet processing on the
receiver side, where received tags are resolved to sender-side
contexts, and packets are verified based on them. In the rest of
this section, we describe how we address these requirements
in the eZTrust architecture. The overall architecture diagram
of eZTrust, along with trust boundaries is shown in Fig. 1.

3.3 Egress Packet Processing
3.3.1 Context Discovery. To meet requirements (R1) and
(R2), we are motivated by the recent advance in the univer-
sal in-kernel virtual machine technology called eBPF [15].
As a mainline Linux kernel feature, eBPF allows user-defined
bytecode programs to be dynamically attached to kernel
hooks in order to trace and process various kernel events
without any expensive instrumentation or kernel customiza-
tion. Deployed in-kernel bytecode programs can process
and report captured kernel events to userspace, and access
allowed kernel memory regions (e.g., packet data or key-
value maps for stateful processing) via available eBPF helper
function APIs.
We leverage the eBPF-based tracing mechanism to mon-

itor various microservice-related events, which can reveal
authentic application contexts associated with deployed mi-
croservices (R1). For example, a currently running appli-
cation’s identity (e.g., name and version) can be reliably



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

determined by tracing process creation events and mapping
the created PIDs to corresponding application identity (e.g.,
appID and version).1 In case of multi-user applications like
remote desktop services, the identity of a logged-in user can
be found from the user ID of the detected login shell PIDs.
The SSL version enabled in an application can be identified
by tracing an SSL handshake library call and its arguments
(e.g., SSL_do_handshake() in OpenSSL). We collectively call
these eBPF programs deployed for tracing eTracers.

On top of the eTracer-driven event tracing, we rely on ac-
tive probing via harvester, which is a privileged monitoring
service tasked by the infrastructurewith collecting additional
runtime environment related contexts of microservices, ei-
ther by querying the centralized microservice orchestrator,
or by attaching itself to the namespaces of the target mi-
croservice. Example contexts so collected include geographic
location, filesystem image tag, signer’s identity for a digitally
signed image, container capabilities, kernel version, etc.
A dedicated userspace daemon called Context Manager

collects events and contexts from eTracers and the harvester,
and stores the discovered contexts in the context map in the
form of <tag, a set of contexts> tuples. A set of contexts
stored in each tuple is essentially a dictionary, containing a
list of key-value pairs (e.g., {context1:value1, context2:value2,
context3:value3,...}). A tag, which is the key to the context
map, is uniquely mapped to a set of contexts associated with
a particular application instance running in a microservice.
To ensure its global uniqueness, the tag is formed by concate-
nating a microservice ID (which is unique data center wide)
and an application PID. The centralized policy orchestrator
maintains the global context map for all deployed microser-
vices, and its size scales with the number of microservices
as the maximum number of contexts maintained for each
service is fixed. Each end-server operates a local context map,
which is a subset of the global context map for all locally run-
ning microservices, as well as some non-local microservices
as part of slow path processing (see Section 3.4.1).
In order to identify a correct set of application contexts

for each egress packet (R2), we keep track of which network
sockets are created by which PID in what network names-
pace. The port number information in network sockets can
provide a link between packets and corresponding applica-
tions, while network namespace information can be used to
disambiguate different microservices that happen to create
sockets with the same port number (e.g., HTTP port 80). We
trace the in-kernel socket binding events using eBPF, and
store the tracing result in the socket map in the form of <port
number, network namespace, PID> tuples.
1 We assume there is an infrastructure-managed trusted database that maps
the cryptographic hash of binary executables or interpreted application
bytecode to corresponding appID and version. More thorough application
integrity verification is possible [28], but is out of scope of this paper.

3.3.2 Per-Packet Tagging. In order to tag every egress packet
generated by a microservice, we attach a separate eBPF pro-
gram called eTagger to the microservice’s virtual network
interface (VIF). eTagger intercepts every egress packet in
the form of in-kernel packet data structure (e.g., sk_buff),
which carries raw packet data, as well as per-packet metadata
such as network namespace information. From the captured
packet data structure, source port number (from TCP header)
and namespace (from packet metadata) are extracted, and
using the socket map above, are mapped to a corresponding
PID. This PID can be used to construct a tag that represents
a correct set of application contexts for the packet. Once a
tag is ready, it can be added to the existing packet header
as part of an IPv4 option or a TCP option, or appended as
a trailer to an IPv4 packet to prevent the tag from being
modified accidentally by intermediate switches or middle-
boxes, or added as part of encapsulation protocol headers
(e.g., VxLAN, VLAN). In case of IPv6, the tag can be carried
in the 20-bit flow label field.

3.4 Ingress Packet Processing
In order to verify each ingress packet with respect to the
intended receiver’s policies, we attach a separate eBPF pro-
gram called eVerifier to the physical NIC interface. eVerifier
performs per-packet verification in four steps: (i) extract
a tag from an incoming packet, (ii) resolve the tag to the
sender’s contexts, (iii) look up the intended receiver’s con-
texts, and (iv) finally perform verification based on those
obtained contexts. As we will see, the design of eVerifier
is inspired by the multi-level flow caching in OVS, where
packets are processed using OpenFlow tables on slow path
and megaflow/microflow caches on fast path. The major dif-
ference in eZTrust is that packets are classified into flows
not based on packet header fields, but based on microservice
contexts. This makes eZTrust intrinsically more scalable than
network-endpoint-based perimeterization, as traffic from
distinct microservice instances carrying the same contexts
(e.g., due to auto-scaling) can be processed as a single flow.

3.4.1 Slow Path Processing. The step (ii) to resolve a tag to
a sender’s contexts requires that the local context map on
the receiver side be already populated with the extracted
tag (R3). However, the local context map is not expected to
contain tags for all existing microservices running in the data
center, due to scalability concerns and resource constraints.
Inspired by the flow cache design of OVS, we instead popu-
late the local context map on demand from the global context
map via slow path. During ingress packet processing, the
slow path is triggered when a tag extracted from an incoming
packet is missing in the local context map. On the slow path,
eVerifier punts the packet to the Policy Agent in userspace,



SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

which then fetches the contexts for the tag from the cen-
tral microservice coordinator. Once the obtained contexts
are populated into the local context map, the Policy Agent
re-inserts the packet to eVerifier for subsequent verification.
To prevent a burst of packets carrying the same missing tag
from entering the slow path during this time, we maintain
a simple in-kernel status table maintaining a list of tags for
which slow path processing is underway. Any packet that
carries the tag stored in the status table is simply dropped
without entering the slow path. In practice, communication
patterns among deployed microservices are well-defined,
and thus contexts are highly likely to be used repeatedly on
the same microservices during their already short lifetime,
thereby making slow path processing an uncommon event.
The step (iii) after tag resolution is to look up the in-

tended receiver’s contexts. For this, eVerifier looks up the
local socket map using the key constructed from the desti-
nation port number of the packet and network namespace
associated with the VIF, and finds out the recipient PID for
the packet. This PID is used to construct a receiver’s tag,
which in turn is mapped to the receiver’s contexts from the
local context map. Unlike the sender’s tag, the receiver’s tag
is guaranteed to exist in the local context map, and thus no
slow path processing is necessary.

3.4.2 Per-Packet Verification. The final step (iv) is to per-
form packet verification based on a set of sender’s contexts
as well as receiver’s contexts. For verification, we maintain
a policy map which holds the perimeterization policies for
individual microservices in the form of <microservice id,
sender’s contexts, receiver’s contexts, policy decision> tuples.
Any context field can be wildcarded in the policies, and pos-
sible policy decisions are “accept” or “drop”. Finding a match
for a packet based on a set of sender/receiver contexts in
the policy map is the classic packet classification problem.
The difference is that packets are classified, not based on
packet header fields, but based on a set of contexts. There
are many efficient algorithms for packet classification, and
we adopt a scheme similar to the tuple space search classi-
fier [29], commonly employed by popular software switches
(e.g., megaflow cache in OVS). It is simpler than the original
tuple space search as it does not need to handle the longest
prefix searching, but only exact match.
In this scheme, we define a policy template for each mi-

croservice, which is an array of <subset of sender’s context
keys, subset of receiver’s context keys> tuples. The policy
template of a microservice indicates which subsets of sender-
side/receiver-side contexts are used to define its policies. If a
tenant installs multiple policies for her microservice, each
based on distinct subsets of contexts, the policy template
of the microservice would contain more than one tuples.
For example, if two policies are defined for a microservice:

Algorithm 1 Procedure for generating a policy decision.
1: /∗ array of all available contexts ∗/
2: struct context_t {
3: uint32 context [MAX_CONTEXT]
4: }
5: /∗ each boolean field tells if a given context is considered in the policies ∗/
6: struct template_t {
7: bool srcContext [MAX_CONTEXT]
8: bool dstContext [MAX_CONTEXT]
9: }
10: procedure generate_policy_decision(src , dst , T )

input: context_t src , /∗ sender’s contexts ∗/
context_t dst , /∗ receiver’s contexts ∗/
template_t [] T /∗ array of receiver’s policy templates ∗/

output: ACCEPT or DROP
11: for each t in T do
12: uint32 key ← 0
13: /∗ generate a policy key from template t */
14: for i ← 0 to MAX_CONTEXT-1 do
15: if t .srcContext [i] then
16: key ← compute_hash (key, src .context [i])
17: end if
18: if t .dst [i] then
19: key ← compute_hash (key, dst .context [i])
20: end if
21: end for
22: /∗ look up policy map with the key ∗/
23: r esult ← lookup_policy_map (key)
24: if r esult = null then /∗ not found ∗/
25: return DROP

26: end if
27: return r esult /∗ ACCEPT or DROP ∗/
28: end for
29: end procedure

“accept traffic only if it originates from HAproxy and is des-
tined to nginx”, and “drop traffic if it is generated by an ap-
plication located in US-West”, its policy template would look
like: [<appIDsrc , appIDdst>, <Locationsrc>]. When eVer-
ifier looks up the policy table for an incoming packet, it
iterates over the policy template of the intended receiver,
forms all possible keys to the policy table, and performs pol-
icy table lookup. Upon finding the first successful lookup, it
stops the iteration, and returns the decision. In case policy
prioritization needs to be supported, eVerifier can complete
the full iteration and chooses the policy decision with the
highest priority among multiple matches. With no match,
a packet is processed based on a default action. The full
procedure for step (iv) is described in Algorithm 1.

3.4.3 Dynamic Context Handling. So far in these packet ver-
ification steps, it is assumed that contexts remain unchanged
both at the sender side and at the receiver side. However, con-
texts associated with a microservice can dynamically change
for various reasons. For example, a microservice can be mi-
grated geographically. Multi-user services such as remote
desktop services or HPC applications can be accessed by
different users at different time. In addition, mission critical
production environments often benefit from dynamic soft-
ware updates [30, 31], where any critical security patches or
software upgrade are applied live without incurring down-
time. This can affect the contexts (e.g., software version)
associated with any active microservices.



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

Extract 
tag from 
packet

Look up 
context map 

with tag

Sender’s 
contexts 
found?

Sender’s 
contexts 

up-to-
date?

Enter slow 
path to update 

context map

Invalidate 
entries in 

context map & 
decision map

Look up 
receiver’s 
contexts 

from packet

Look up 
policy 

decision from 
policy map

Cache policy 
decision in 

decision map

Accept or drop 
packet base on 
policy decision

No

Yes Policy  
decision 
found?

No No

Yes

End

Receive 
packet

Slow Path 
Under
Way?

Yes

No

Drop Packet

Yes

Figure 2: eVerifier’s packet verification procedure.

In order to detect and handle resulting potential context
changes during the packet verification steps, we introduce
the notion of an “epoch” in the contexts (R4), which indicates
the up-to-dateness of the detected contexts. An epoch is a
simple counter that is incremented andwraps aroundwhen it
reaches its maximum. The entries in the context map are now
expanded to include an epoch: <tag, a set of contexts, epoch>.
Whenever any context is changed in any microservice, the
corresponding entries in the context map have their epoch
incremented. In addition, each egress packet carries not only
a tag, but also its corresponding epoch. When a tag and its
associated epoch are received by the other end, the receiver
can detect whether the entry stored in the local context map
for the tag is outdated or not by comparing the epoch in the
entry against the received epoch. If the entry is detected as
outdated, it is evicted from the context map, and the receiver
goes through the slow path to re-populate the context map
for the tag against the latest epoch.

Note that the entire per-packet verification procedure de-
scribed so far requires multiple independent map lookups
(i.e., context map, socket map, and policy maps), even with-
out considering one-time slow path through userspace. As
an optimization to speed up the multi-step verification op-
eration (R5), we cache the final policy decision obtained
from the step (iv) in a separate table called decision map,
which stores the mapping <sender’s tag, receiver’s tag, policy
decision>. Subsequent packets with the same tags can be ver-
ified with a single lookup of the decision map. This design is
somewhat similar to microflow caching in OVS. Whenever
any sender-side context change is detected from the epoch
of the received tag, the corresponding entries in the decision
map are invalidated, and verification for the packet falls back
to the original multi-step procedure. Any receiver-side con-
text change also invalidates associated entries in the decision
map. The overall packet verification steps are summarized
as the flowchart in Fig. 2.

4 PROTOTYPE IMPLEMENTATION
We implement the eZTrust prototype in Python/C and inte-
grate it with Docker runtime environment. In this section
we highlight key implementation details of the prototype.

Context management. The userspace Context Manager
is implemented in Python (600 LoC), using bcc library [32]
to interact with eBPF-based eTracers, and Docker SDK [33]
to listen on container events. Context Manager collects con-
texts of deployed containers either by attaching eTracers to
kprobes and uprobes, or by invoking a harvesting routine
in a target container’s namespace. For example, eTracers at-
tached to sys_clone() and sys_execve() derive the identity of an
application process from the md5sum of its binary executable
(for compiled applications) or its application bytecode (for
interpreted applications such as Java/Python apps). The asso-
ciation between network sockets and application processes
is found by tracing inet_csk_accept() and tcp_v4_connect() for
TCP INET sockets. See Table 2 for a list of collected contexts.
The obtained information is written as container identities to
local eBPF maps (socket/context maps), as well as distributed
to the global context map realized with Redis [34].

Policy enforcement. Its implementation is split between
(1) the userspace Policy Agent written in Python (350 LoC)
and (2) two in-kernel eBPF programs written in C; eTagger
(70 LoC) and eVerifier (370 LoC). eTagger is attached to the
ingress TC classifier [35] of each container’s VIF for outgo-
ing packet tagging, while eVerifier is added to the egress
TC classifier of a physical NIC interface to verify incom-
ing packets. For this prototype, we make use of the 12-bit
VID field in VLAN header to carry per-packet tags (10 bits)
and epoch (2 bits). eTagger and eVerifier use bpf_skb_vlan_-
push() and bpf_skb_vlan_pop() eBPF APIs to add or remove
a VLAN header. Other types of encapsulation protocols (e.g.,
VxLAN, Geneve) are possible with eBPF [36] to support real-
istic large-scale deployments. The Policy Agent is responsible
for slow path handling, receiving raw packets from eVeri-
fier via perf-event interface, and re-inserting them via a
tap interface, to which eVerifier is also attached. In eVeri-
fier, which implements Algorithm 1 in iteration loops, we



SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

Collector Context Method

eTracers

AppID, App version Trace sys_clone() and sys_execve() using kprobes.
Operating system userID Use bpf_get_current_uid_gid() in the process context captured above.

TCP socket Trace inet_csk_accept(), tcp_v4_connect() and tcp_v6_connect() using kprobes.
SSL version Trace SSL_do_handshake() and its arguments using uprobes.
MySQL user Trace connection start() and its arguments using uprobes.

Harvester

Microservice ID, geographic location, filesystem image tag and
signer’s identity (for a digitally signed image), capabilities Query the microservice orchestrator.

Kernel version Probe the host operating system with sys_uname().
OpenSSL version Search for SSLEAY_VERSION string in the OpenSSL library.

Table 2: Microservice context collection.

leverage eBPF tail calls to get around eBPF’s 4K bytecode
size limit, which helps increase maximum template count
from 20 to 200.

Slowpathprocessing.During slow path, the PolicyAgent
interacts with the global context map to retrieve up-to-date
contexts of a remote container. However, this northbound
interaction is complicated by potential race conditions. Sup-
pose a remote containerCr emote is newly launched, immedi-
ately opening a TCP connection to a local container Clocal .
Then by the timeClocal initiates slow path processing for the
first SYN packet fromCr emote , the global context mapmay or
may not have been populated with the contexts of Cr emote .
In the latter case, the first SYN packet would be rejected,
causing TCP timeout and significantly delaying TCP connec-
tion establishment. A similar race condition can occur when
Cr emote changes its context; by the time Clocal sees epoch
change from Cr emote , the global map may or may not have
updated new contexts for Cr emote . In the latter case, Clocal
would fail to detect context change in Cr emote . To avoid the
first race condition (due to traffic from a new container), we
perform global map lookup upto N times in case of lookup
failure. We observe that global map lookup most often suc-
ceeds with N = 2 for new containers. To avoid the second
race condition (due to traffic with epoch change), we perform
staged epoch update on the sender-side as follows. When-
ever a context change is detected on the sender, we update
the global context map with the new context, but without
incrementing the epoch at this point. Only after the new
context is successfully committed to the global map, do we
increment the epoch. That way, a receiver will be guaranteed
to obtain the updated context with an epoch change.

5 MOTIVATIONAL USE CASES
In this section, we describe a few practical use case scenarios
that can be enabled by the eZTrust prototype.

Vulnerability-driven perimeterization. Although un-
patched software vulnerabilities are a common source of
security breaches, software patches are often neglected due
to other pressing tasks or postponed for integrity testing [37,
38]. Official software patches may not even be available at
the time of zero-day attacks. To minimize potential damage

while critical software patches are phased in, a data center
operator can use eZTrust to quickly deploy data center wide
contingency policies, where traffic to vulnerable application
binaries is either blocked or alerted depending on tenant re-
quirements. Note that alternative container image scanning
approaches (e.g., Clair [39]) are not only time-consuming
but also insufficient due to live container updates [40].

Control flow integrity. In a distributed microservice ar-
chitecture, interdependencies of microservices can be highly
complex (see a sock shop example in Fig. 8). On top of
that, each microservice can scale in and out independently.
This makes the network-endpoint-based regulation of cross-
service interaction extremely challenging. On the other hand,
eZTrust makes it easy to express policies for acceptable con-
trol flows solely based on microservice identities. As the
identities are derived from the fingerprint of application
executables or bytecode (e.g., JAR), such policies remain un-
changed with microservice auto-scaling.

User identity based firewall. Consider a remote desk-
top service deployment, where multiple users log in to the
same remote desktop frontend service, and from there access
different backend services (e.g., read documents hosted in a
remote file storage service, or open a remote SSH terminal).
In such an environment, eZTrust can enable user identity
base perimeterization, where remote desktop traffic gener-
ated by different users’ login shells is tagged differently, so
that the traffic is selectively allowed or blocked at different
backend services. This network-independent approach does
not require complex user-to-IP address mapping like other
commercial firewall solutions [10].

6 EVALUATION
In this section, we evaluate the eZTrust prototype implemen-
tation to answer the following key questions.
• What is the overhead of eZTrust’s packet processing
on slow path and fast path, and what is the impact of
policy complexity on the overhead?
• Howdoes eZTrust compare against alternative schemes
in terms of performance and overhead?
• Does eZTrust work correctly as expected in dynamic
environments?



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

Our testbed is set up on CloudLab [41], and encompasses
two machines with dual Intel Xeon E5-2640 v4 processors
(10 cores at 2.40GHz) and 64GB DDR4 memory. The two
machines are back-to-back connected via 10G NIC interface
(Mellanox ConnectX-4 LX), each running on Ubuntu 18.04.1
LTS, kernel 4.15.0, with eBPF JIT flag enabled.

6.1 Packet Latency
Slow path vs. fast path. eZTrust adopts dual-path (slow/-
fast path) ingress packet processing to speed up packet veri-
fication in a resource efficient fashion (Section 3.4.1). In the
first experiment, we evaluate the implication of this design as
the complexity of policies varies. We deploy two containers
across two back-to-back connected servers, install appID-
based perimeterization policies for each container, and mea-
sure network latency between them in two separate experi-
ments. In one experiment, we measure round trip delay by
launching a dummy container, which opens a one-time TCP
connection to the other container and reports connection
establishment delay incurred from TCP SYN/ACK exchange.
The initial TCP SYN/ACK packets go through slow path as
the local context map on either server is not yet populated for
the other remote container. We launch the dummy container
multiple times to obtain average connection establishment
latency. In the other experiment, we deploy netperf (in
TCP_RR mode) on both containers, which reports average
round trip latency by generating multiple request/response
transactions over a single long-lived TCP connection. The
netperf traffic in this case is handled via fast path.
Fig. 3 shows the packet latencies of slow path and fast

path as we adjust the number of installed policy templates,
which represents the complexity of policies. A higher num-
ber of templates imply that more diverse policies (based on
different contexts) are installed. In case of slow path, packet
latency increases with the number of policy templates be-
cause more iterations are required for policy map lookup (see
Algorithm 1). Note that multiple polices based on the same
template still do not increase slow path delay due to constant
time policy map lookup. In case of fast path, packet latency is
not affected by policy templates as the policy decision for an
initial packet is cached in the decision map, and subsequent
packets carrying the same contexts can be verified with a
single decision map lookup.

Fast path packet latency. Next, we evaluate the packet
latency of eZTrust on fast path. Using the same netperf-
based deployment as previously explained, we measure av-
erage round trip latency, with and without perimeterization
policy. As suggested in the previous experiment, the over-
head of ingress packet processing on fast path in eZTrust
does not depend on the number of policy templates nor the

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0  20  40  60  80  100  120  140  160  180

A
ve

ra
ge

 L
at

en
cy

 (m
se

c)

Number of Installed Policy Templates

Slow Path
Fast Path

Figure 3: Latency: slow path vs. fast path.

 0

 10

 20

 30

 40

 50

Baseline ZT- ZT OVS Bridge Cilium

Minimum
Mean
90th Percentile

La
te

nc
y 

(u
se

c)
Figure 4: Fast path packet latency. “Baseline” indicates
server-to-server latency. “ZT” and “ZT-” refer to eZTrust
with and without policy rules, respectively.

number of policies installed for each template. For perime-
terization, we set up a simple application-aware policy (i.e.,
accept traffic if appIDsrc=ID_NETPERF and appIDdst= ID_-

NETPERF). In case of no policy, we disable tagging and verifi-
cation in eZTrust, and let it forward traffic using the eBPF’s
packet redirection capability. We compare policy-enabled
eZTrust against other alternative schemes: (1) OVS (v2.10.0)
with flow rules, (2) Linux bridge with iptables rules, and
(3) Cilium (v1.2.4 in native routing mode2) with label-based
rules. In OVS deployment, we prepend a flow table at the
ingress pipeline, in which we add flow rules allowing only
netperf traffic between the two containers. In Linux bridge
setup, we use the physdev extension of iptables to define
similar filtering rules on individual ports of the bridge. In Cil-
ium deployment, we configure policies based on two labels
(e.g, accept traffic if labelsrc=“joe” and labeldst=“alice”).

From Fig. 4, we make two observations. First, eZTrust’s
end-to-end rule processing adds only marginal latency over-
head to the baseline forwarding (comparing second/third
bars). In fact, we observe similar latency overhead in the
rule enforcement of the other alternative schemes (not plot-
ted here). This means that eZTrust’s per-packet tagging and
fast path verification are not any more heavy duty than
other schemes. When baseline server-to-server latency is
discounted from end-to-end latency, eZTrust incurs a factor
2Cilium’s container network plugin interconnects containers acrossmultiple
servers via either native routing or VxLAN overlay. Native routing is chosen
for fair comparison.



SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

 0

 5000

 10000

 15000

 20000

 25000

 30000

Bridge OVS Cilium eZTrust# 
C

P
U

 C
yc

le
s 

pe
r P

ac
ke

t

Figure 5: Per-packet CPU usage for policy processing.

of 2–5 lower latency on fast path than the other schemes. We
believe that this latency advantage mainly comes from eBPF-
based packet forwarding, which was also reported in [42].3

6.2 CPU Resource Usage
Per-packet CPU resource overhead. Next, we shift focus
to the CPU overhead. Here we are interested in the per-packet
CPU overhead of perimeterization, which captures the CPU
usage incurred by policy enforcement only, but discounts
packet forwarding overhead. For this, we measure the differ-
ence in CPU usage of eZTrust with and without policies. In
this experiment, we deploy two containers on one server, pin
them to fixed CPU cores, and generate 60-byte UDP packets
between them bidirectionally using iperf, in a fixed packet-
per-second rate (R) for a fixed time period (T ). During T ,
we count the total number of CPU cycles (C) incurred on the
server using perf-stat. For each scheme (eZTrust, Linux
bridge, OVS, Cilium), we repeat this experiment with and
without perimeterization policies, and obtain two counters
(C1 and C2), respectively. The average per-packet CPU over-
head for perimeterization (CP ) is obtained from C1−C2

R·T
. We

use the same perimeterization policies used in the previ-
ous experiment except that netperf is replaced with iperf.
Fig. 5 compares CP for different schemes with T being 1 min.
It shows that Linux bridge with iptables rules exhibits the
lowest CPU overhead. However, iptables-based perime-
terization is already well known for its inability to support
a large number of rules due to sequential processing [43].
Barring Linux bridge, the other schemes do not suffer from
this problem as they rely on hash table lookups for perime-
terization. eZTrust is the most CPU-efficient among them
(by a factor of 1.5–2.5).

DPI-based vs. eZTrust.Next, we compare eZTrust against
DPI-based context-aware perimeterization in terms of CPU
efficiency. In this experiment, we consider a perimeterization
policy that protects against the Heartbleed vulnerability [44],
which targets particular versions of the OpenSSL crypto-
graphic library. We run two containers, one nginx/https
server, and the other curl client, deployed across two hosts.

3Compared to [42], we achieve further speedup in eBPF-based forwarding
by avoiding packet cloning.

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8  9  10

C
P

U
 C

or
e 

U
til

iz
at

io
n 

(%
)

Traffic Rate (Gbit/sec)

Inline DPI
eZTrust

Figure 6: Protection against Heartbleed vulnerability:
DPI-based vs. eZTrust.

As DPI-based perimeterization, we set up between them in-
line mode Snort [45] with the officially vetted Heartbleed
Snort signature [46] as the only rule loaded. In case of eZTrust,
we configure on both ends policies based on four contexts <
appIDsrc , openSSLVersionsrc , appIDdst , openSSLVersiondst
>, which are detected as described in Table 2. We install mul-
tiple rules allowing traffic between nginx and curl with
Heartbleed-safe OpenSSL versions only (e.g., 1.0.1g through
1.1.2). Fig. 6 plots the CPU utilization of two approaches as a
function of injected traffic rate. We measure CPU utilization
on the host where nginx is running. In case of DPI approach,
Snort is deployed on this host as well. The reported CPU uti-
lization ony-axis is the host-wide CPU usage minus the CPU
load attributed to nginx processes, thus capturing perime-
terization overhead only. The figure shows that compared
to DPI-based approach, eZTrust can achieve OpenSSL-based
policy control with a factor of 8 to 10 smaller CPU over-
head. This experiment illustrates the high CPU efficiency of
eZTrust to support context-aware policies.

6.3 Dynamic Policies and Contexts
The evaluations thus far focus on static environments where
policies and contexts remain fixed. In the next experiment,
we consider dynamic deployment environments where poli-
cies or contexts change over time, and demonstrate that
eZTrust can handle such dynamic environments correctly.
In scenario #1, contexts remain fixed while policies are up-
dated by tenants. In scenarios #2 and #2b, policies remain
unchanged while contexts are altered at runtime. For lat-
ter scenarios, we define a hypothetical context called sta-
tus (maintained by the data center operator) to indicate the
health of a microservice. Table 3 describes the timeline of
events we introduce in these scenarios.
Fig. 7 shows timing diagrams indicating how the total

transfer rate or HTTP response delay changes as a result
of these events. The T2/T3 events in scenario #1 introduce
policy changes on nginx servers. This in turn instructs the
policy agent to update the local policy map and invalidate the
decision map, so that subsequent packets can be re-inspected
according to the updated policy map. This has the effect of



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

Scenario #1: dynamic policies for nginx container Scenario #2: dynamic contexts for wget container Scenario #2b: dynamic contexts for web client
T1: Install policies allowing traffic from wget &
curl with OpenSSL version X.

T1: Install policies allowing traffic from wget

with status HEALTHY.
T1: Install policies allowing traffic from client
with status HEALTHY or PATCHED.

T2: Remove the curl policy. T2: Change the status of wget container 1 to
COMPROMISED.

T2: Change the status of client from HEALTHY to
PATCHED.

T3: Change the wget policy to allow traffic from
wget with OpenSSL version Y.

T3: Change the status of wget container 2 to
COMPROMISED.

T3: Change the status of client from PATCHED to
HEALTHY.

T4: Remove the wget policy. T4: Change the status of wget container 3 to
COMPROMISED.

Table 3: Timeline of experimental scenarios. In scenario #1, two wget clients and one curl client on host1 download
files from three nginx/https servers on host2 with 1MByte/sec rate limit respectively. In scenario #2, three wget clients on
host1 download files from three nginx/https server on host2 with 1MByte/sec rate limit respectively. In scenario #2b, a web
client on host1 fetches index.html from nginx server on host2 periodically for a delay measurement purpose.

 0

 10

 20

 30

 40

 50

 0  50  100  150  200  250  300

T1 T2 T3 T4

Tr
af

fic
 R

at
e 

(M
bi

t/s
)

Time

(a) Scenario #1

 0

 10

 20

 30

 40

 50

 0  50  100  150  200

T1 T2 T3 T4
Tr

af
fic

 R
at

e 
(M

bi
t/s

)

Time

(b) Scenario #2

 0

 0.5

 1

 1.5

 2

 0  10  20  30  40  50  60  70

T2 T3

H
TT

P
 R

ep
on

se
 D

el
ay

 
 (m

se
c)

Time

(c) Scenario #2b
Figure 7: eZTrust in action in dynamic environments.

blocking further traffic to curl clients due to bidirectional
nature of TCP. The T2/T3/T4 events in scenario #2 indicate
the change in status context in wget clients one by one, which
causes the monitoring agent on wget clients to increment the
epoch for wget’s contexts accordingly. These epoch updates
are then detected by eVerifier on nginx servers, which in
turn invalidates the local context map as well as decision
map for wget clients, and triggers slow path. As slow path
is completed for each wget client, context/decision maps for
nginx server side get fully populated, eventually blocking
further traffic to the corresponding wget client. Finally, the
slow path triggered at T2/T3 in the scenario #2b affects user-
perceived HTTP response delay. The observed increase in
delay is consistent with slow path latency shown in Table 3.
The number of policy templates used in this setup is 60.

6.4 Real-World Application: Sock Shop
In the final experiment, we deploy a real-word microservices-
based application on eZTrust. We choose the Sock Shop [47],
a distributed e-commerce demo application composed of
14 different microservices. The control flow among these
microservices is visualized in Fig. 8. In eZTrust, we set up
microservice-aware policies based on this control flow. As
a comparison, we also deploy the Sock Shop application
in OVS-based and Cilium-based perimeterization environ-
ments, with equivalent flow-rule-based and label-based poli-
cies, respectively. Using Locust-base load generator, we
inject identical workloads (e.g., retrieving product pages,

FRONT-END

ORDERS

CARTS

CATALOGUE

EDGE-ROUTER
USER

PAYMENT

ORDERS-DB

SHIPPING

CARTS-DB

CATALOGUE-DB

USER-DB

RABBITMQ QUEUE-MASTER

Figure 8: Microservice control flow in Sock Shop.

 0  5  10  15

GET /

GET /basket.html

DELETE /cart

POST /cart

GET /catalogue

OVS

Cilium

eZTrust

Median Latency (msec)

 

 
 

 

Figure 9: End-to-end latencies of Sock Shop.

posting orders, accessing shopping cart, etc.) in three de-
ployments, and compare user-perceived end-to-end laten-
cies. Fig. 9 plots end-to-end latencies for several Sock Shop
APIs. Compared to OVS and Cilium, eZTrust reduces the
latencies by 3–6% and 5–15%, respectively. These reduced
end-to-end latencies in eZTrust are attributed to its lower
packet processing latency previously shown in Fig. 4.



SOSR ’19, April 03–04, 2019, San Jose, CA Z. Zaheer, H. Chang, S. Mukherjee, and J. Van der Merwe

7 DISCUSSION
In this section, we discuss possible extensions of eZTrust.

Tag granularity. In the current design, per-packet tags
are instantiated at the process granularity (i.e., distinct tags
per process). Alternatively, tags could be defined at coarser
(microservice/app-level) or finer (transport connection-level)
granularities. The implication of varying tag granularities
is two fold. On one hand, coarser-grained tags would not
support fine grained policies based on detailed contexts. For
example, per-microservice/per-app tags would not support
policies that regulate remote desktop traffic generated by
different login shells. On the other hand, finer-grained tags
would incur more frequent slow path processing. For exam-
ple, with connection-level tags, which can carry session-level
contexts (e.g., user context per database session), every sin-
gle connection opened by a process would now trigger slow
path processing on the receive end. In a sense, the epoch
adopted by eZTrust can be considered a way to encode finer-
grained contexts than process-level attributes at the cost of
additional slow path processing.
Given this inherent trade-off in tag granularity, an alter-

native way to improve policy granularity while minimizing
slow path handling is to introduce prefix matching in the
context map lookup. With prefix matching, tag space is no
longer flat but hierarchically defined (e.g,. delineated into
microservice ID, process ID and port number fields), and
the context map will contain wildcarded tags as keys. Then
depending on the granularity of contexts that is needed for
policy enforcement, the Context Manager can push appro-
priately wildcarded tags into context map during slow path
processing, so that any subsequent traffic from the same
microservice can avoid the slow path. Prefix match for eBPF
maps is already supported (BPF_MAP_TYPE_LPM_TRIE).
Tag anonymization. We assume that a generated tag is

placed in a well-known packet header field as plaintext. This
can be justified if tenant microservices communicate with
one another only through the end servers’ network stack,
which is controlled by the infrastructure, and is not compro-
mised according to our threat model. In other words, tenant
microservices cannot artificially inject or modify the tags in
their traffic (e.g., by using raw sockets to bypass the network
stack). One way to prevent such tag forgery or imperson-
ation is to deny tenant microservices access to raw sockets
as an infrastructure-wide policy. This is in fact one of the
standard microservice security practices recommended to
prevent packet spoofing [48]. If such restriction is not an
option for any reason, one can anonymize the tags using
traditional approaches such as shared secret based symmet-
ric encryption [49]. Note that in this case, not the entire
packet payload, but only the small tag needs to be encrypted.
Such tag encryption/decryption can be done efficiently with

modern SIMD instruction sets (e.g., SSE/SSE2, AVX/AVX2).
Secrets can be shared with the existing orchestrators’ secret
management and distribution interfaces [50, 51].

Smart NIC offload. In order to minimize performance
overhead introduced by per-packet operations for tagging/ver-
ification and possible encryption/decryption, one can lever-
age smart NICs. As eBPF is embraced as a mainline kernel
feature, next-generation smart NICs (e.g., Netronome Ag-
ilio [52]) have already started to support eBPF offload, al-
lowing unmodified eBPF programs along with maps to be
transparently offloaded to the NICs [53]. As of this writing,
however, eBPF offload is still experimental, supporting only
ingress packet processing and a limited set of eBPF helper
APIs. For example, slow path handling via perf-event in-
terface cannot be offloaded. We plan to explore full potential
of eBPF offload as the support improves.

Platform compatibility. The network-independent ap-
proach taken by eZTrust does not necessarily make it incom-
patible with the existing network-endpoint-based perime-
terization. The extension of eZTrust to support network-
endpoint-based polices is straightforward by treating packet
header fields as additional application contexts and enabling
prefix match in policy map lookup. Alternatively, if context-
based and network-endpoint-based policies are not inter-
twined with complex priorities, one can separate out these
two policy sets, and deploy a hybrid solution, where eZTrust
co-exists with network-endpoint-based perimeterization, and
the former is only responsible for context-aware policies at
the first ingress point in a bump-in-the-wire fashion. Similar
hybrid solutions are also possible with other complementary
approaches. For example, eZTrust can be deployed in tandem
with API gateways for additional API-level access control.

8 CONCLUSION
In this paper, we present eZTrust, a network-independent
perimeterization solution for microservices, where we shift
perimeterization targets from network endpoints to fine-
grained, context-rich microservice identities. To this end, we
tap into the growing wealth of tracing data of microservices
made available by eBPF, and repurpose them for perime-
terization. While doing so, we adopt OVS-like flow-based
packet verification, where packets are classified into flows
not based on packet header fields, but based on microservice
contexts. As such, we believe that eZTrust can further benefit
from advances in microservice tracing technologies as well
as ongoing software switch development efforts.
Acknowledgements. We would like to thank the anony-
mous SOSR reviewers, Robert Ricci and our shepherd, Eric
Keller, for their feedback on earlier versions of this paper.
This work is supported in part by the National Science Foun-
dation under grant number 1642158.



eZTrust: Network-Independent Zero-Trust Perimeterization for Microservices SOSR ’19, April 03–04, 2019, San Jose, CA

REFERENCES
[1] Sam Newman. 2015. Building Microservices: Designing Fine-Grained

Systems. O’Reilly Media, Inc.
[2] 2018. Cisco Global Cloud Index: Forecast and Methodology 2016–

2021. White Paper. Cisco Systems, Inc. (2018).
[3] Doug Barth and Evan Gilman. 2017. Zero Trust Networks. O’Reilly

Media, Inc.
[4] Justin Pettit, Jesse Gross, Ben Pfaff, Martin Casado, and Simon

Crosby. 2010. Virtual Switching in an Era of Advanced Edges. In
Proc. DC CAVES Workshop.

[5] 2018. VMware NSX. http://www.vmware.com/products/nsx.html.
(2018).

[6] 2018. OVSDB:Security Groups - OpenDaylight Project. https://wiki.
opendaylight.org/view/OVSDB:Security_Groups. (2018).

[7] Cheng Jin, Abhinav Srivastava, and Zhi-Li Zhang. 2016. Under-
standing Security Group Usage in a Public IaaS Cloud. In Proc. IEEE
INFOCOM.

[8] Bingwei Liu, Yinan Lin, and Yu Chen. 2016. Quantitative Workload
Analysis and Prediction using Google Cluster Traces. In Proc. IEEE
INFOCOM Workshop on Big Data Sciences, Technologies and Applica-
tions.

[9] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govin-
dan. 2013. Scalable RuleManagement for Data Centers. In Proc. USENIX
NSDI.

[10] Stijn Vanveerdeghem. 2018. VMware NSX - Context-Aware Micro-
segmentation. https://blogs.vmware.com/networkvirtualization/
2018/02/context-aware-micro-segmentation-innovative-approach-
application-user-identity-firewall.html. (2018).

[11] Roie Ben Haim. 2016. NSX Identity Firewall - Deep Dive. http :
//www.routetocloud.com/2016/11/nsx- identity-firewall- deep-
dive/. (2016).

[12] 2018. Sysdig. https://sysdig.com. (2018).
[13] 2018. Prometheus. https://prometheus.io. (2018).
[14] 2018. Lumogon. https://github.com/puppetlabs/lumogon. (2018).
[15] 2017. A thorough introduction to eBPF. https://lwn.net/Articles/

740157/. (2017).
[16] Ben Pfaff et al. 2015. The Design and Implementation of Open

vSwitch. In Proc. USENIX NSDI.
[17] Casimer DeCusatis, Piradon Liengtiraphan, Anthony Sager, and

Mark Pinelli. 2016. Implementing Zero Trust Cloud Networks with
Transport Access Control and First Packet Authentication. In Proc. IEEE
International Conference on Smart Cloud.

[18] 2018. Trireme. https://github.com/aporeto-inc/trireme-lib. (2018).
[19] Adam Langley et al. 2017. The QUIC Transport Protocol: Design

and Internet-Scale Deployment. In Proc. ACM SIGCOMM.
[20] Oliver Zheng, Jason Poon, and Konstantin Beznosov. 2009. Application-

based TCP hijacking. In Proc. ACM European Workshop on System
Security.

[21] 2018. Cilium. https://cilium.io. (2018).
[22] 2018. vArmour DSS Distributed Security System. https : / /www.

varmour.com/pdf/data- sheet/vArmour- DSS-Data- Sheet .pdf.
(2018).

[23] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and T.V.
Lakshman. 2014. Application-aware Data Plane Processing in SDN.
In Proc. ACM HotSDN.

[24] Chris Richardson and Floyd Smith. 2016. Microservices: From De-
sign to Deployment. Nginx, Inc. (2016).

[25] 2018. Istio. https://istio.io. (2018).
[26] 2018. Consul. https://www.consul.io. (2018).

[27] Oliver Michel and Eric Keller. 2016. Policy Routing using Process-
Level Identifiers. In Proc. IEEE International Symposium on Software
Defined Systems.

[28] Luigi Catuogno and Clemente Galdi. 2015. Ensuring Application
Integrity: A Survey on Techniques and Tools. In Proc. International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing.

[29] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999.
Packet Classification using Tuple Space Search. In Proc. ACM SIG-
COMM.

[30] Christopher M. Hayden, Karla Saur, Edward K. Smith, Michael
Hicks, and Jeffrey S. Foster. 2014. Kitsune: Efficient, General-Purpose
Dynamic Software Updating for C. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 36, 4.

[31] Sanidhya Kashyap, Changwoo Min, Byoungyoung Lee, and Tae-
soo Kim. 2016. Instant OS Updates via Userspace Checkpoint-and-
Restart. In Proc. USENIX ATC.

[32] 2015. IO visor bcc. https://github.com/iovisor/bcc. (2015).
[33] 2018. Docker-SDK. https://docker-py.readthedocs.io/en/stable/.

(2018).
[34] 2018. Redis. https://redis.io. (2018).
[35] Daniel Borkmann. 2016. On getting tc classifier fully programmable

with cls bpf. In Proc. NetDev 1.1.
[36] Daniel Borkmann. 2016. Advanced programmability and recent

updates with tc’s cls bpf. In Proc. NetDev 1.2.
[37] Eric Rescorla. 2003. Security holes... Who cares? In Proc. USENIX

Security Symposium.
[38] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris

Wright, and Adam Shostack. 2002. Timing the Application of Secu-
rity Patches for Optimal Uptime. In Proc. USENIX LISA.

[39] 2018. Clair: Vulnerability Static Analysis for Containers. https :
//github.com/coreos/clair/. (2018).

[40] Byungchul Tak, Canturk Isci, Sastry Duri, Nilton Bila, Shripad Nad-
gowda, and JamesDoran. 2017. Understanding Security Implications
of Using Containers in the Cloud. In Proc. USENIX ATC.

[41] 2018. CloudLab. https://cloudlab.us. (2018).
[42] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. 2018.

InKeV: In-Kernel Distributed Network Virtualization for DCN. ACM
SIGCOMM Computer Communication Review, 46, 3.

[43] Thomas Graf. 2018. Why is the Kernel Community Replacing Ipt-
ables with BPF? https://cilium.io/blog/2018/04/17/why- is- the-
kernel-community-replacing-iptables/. (2018).

[44] 2017. The Heartbleed Bug. http://heartbleed.com. (2017).
[45] 2018. Snort. https://snort.org. (2018).
[46] 2014. FBI Snort Signatures (Heartbleed). https://ics-cert.us-cert.

gov/UPDATE-FBI-Snort-Signatures-Heartbleed-April-2014. (2014).
[47] 2017. Sock Shop – A Microservices Demo Application. https : / /

microservices-demo.github.io. (2017).
[48] 2018. Docker Security. https://docs.docker.com/engine/security/

security/. (2018).
[49] Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky

Mouha. 2017. Report on Lightweight Cryptography. https://doi.org/
10.6028/NIST.IR.8114. NIST. (2017).

[50] Ying Li. 2017. Introducing Docker Secrets Management. https://
blog.docker.com/2017/02/docker-secrets-management/. (2017).

[51] 2018. Distribute Credentials Securely Using Secrets. https://kubernetes.
io / docs / tasks / inject - data - application /distribute - credentials -
secure/. (2018).

[52] 2018. Netronome Agilio CX. https://www.netronome.com/products/
agilio-cx/. (2018).

[53] Jakub Kicinski and Nicolaas Viljoen. 2016. eBPF Hardware Offload
to SmartNICs: cls bpf and XDP. In Proc. NetDev 1.2.

http://www.vmware.com/products/nsx.html
https://wiki.opendaylight.org/view/OVSDB:Security_Groups
https://wiki.opendaylight.org/view/OVSDB:Security_Groups
https://blogs.vmware.com/networkvirtualization/2018/02/context-aware-micro-segmentation-innovative-approach-application-user-identity-firewall.html
https://blogs.vmware.com/networkvirtualization/2018/02/context-aware-micro-segmentation-innovative-approach-application-user-identity-firewall.html
https://blogs.vmware.com/networkvirtualization/2018/02/context-aware-micro-segmentation-innovative-approach-application-user-identity-firewall.html
http://www.routetocloud.com/2016/11/nsx-identity-firewall-deep-dive/
http://www.routetocloud.com/2016/11/nsx-identity-firewall-deep-dive/
http://www.routetocloud.com/2016/11/nsx-identity-firewall-deep-dive/
https://sysdig.com
https://prometheus.io
https://github.com/puppetlabs/lumogon
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/aporeto-inc/trireme-lib
https://cilium.io
https://www.varmour.com/pdf/data-sheet/vArmour-DSS-Data-Sheet.pdf
https://www.varmour.com/pdf/data-sheet/vArmour-DSS-Data-Sheet.pdf
https://istio.io
https://www.consul.io
https://github.com/iovisor/bcc
https://docker-py.readthedocs.io/en/stable/
https://redis.io
https://github.com/coreos/clair/
https://github.com/coreos/clair/
https://cloudlab.us
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
https://cilium.io/blog/2018/04/17/why-is-the-kernel-community-replacing-iptables/
http://heartbleed.com
https://snort.org
https://ics-cert.us-cert.gov/UPDATE-FBI-Snort-Signatures-Heartbleed-April-2014
https://ics-cert.us-cert.gov/UPDATE-FBI-Snort-Signatures-Heartbleed-April-2014
https://microservices-demo.github.io
https://microservices-demo.github.io
https://docs.docker.com/engine/security/security/
https://docs.docker.com/engine/security/security/
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.6028/NIST.IR.8114
https://blog.docker.com/2017/02/docker-secrets-management/
https://blog.docker.com/2017/02/docker-secrets-management/
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/
https://kubernetes.io/docs/tasks/inject-data-application/distribute-credentials-secure/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/

	Abstract
	1 Introduction
	2 Related Works
	3 Architecture Design
	3.1 Threat Model
	3.2 Key Idea and Design Requirements
	3.3 Egress Packet Processing
	3.4 Ingress Packet Processing

	4 Prototype Implementation
	5 Motivational Use Cases
	6 Evaluation
	6.1 Packet Latency
	6.2 CPU Resource Usage
	6.3 Dynamic Policies and Contexts
	6.4 Real-World Application: Sock Shop

	7 Discussion
	8 Conclusion

