>
\5, AT&T THE
UNIVERSITY
or UTAH

DEPO: A Platform for Safe DEployment of POlicy
in a Software Defined Infrastructure

Aisha Syed (University of Utah) Bilal Anwer (AT&T Research)
Vijay Gopalakrishnan (AT&T Research) Jacobus Van der Merwe (University of Utah)

ntellectual Property. , Gl I and DIRECTV are registered trademarks and service marks of
Intellectual Property and/or AT&T affiliated companies. All other marks are the property of their respective owners.

AT&T In b b
Presented at ACM Symposium on SDN Research (SOSR), April 3-4, 2019, San Jose, CA, USA

Motivation

With SDN and in-network clouds enabling NFV, we see trend towards a
(mobile) software-defined infrastructure (SDI)

o being embraced by telcos, network service providers, equipment vendors

-
—r

arer

Motivation

With SDN and in-network clouds enabling NFV, we see trend towards a
(mobile) software-defined infrastructure (SDI)

o being embraced by telcos, network service providers, equipment vendors

Software Defined Core Infrastructure

NFV |

(e-’\‘,’\
Compute/
NFV/BBU

%

Cloud Platfor

Motivation

With SDN and in-network clouds enabling NFV, we see trend towards a
(mobile) software-defined infrastructure (SDI)

o being embraced by telcos, network service providers, equipment vendors

Radio Access Network

RAN u Mobile Device wu Base Station

Cloud Platfor

Motivation

 With SDN and in-network clouds enabling NFV, we see trend towards a
(mobile) software-defined infrastructure (SDI)

o being embraced by telcos, network service providers, equipment vendors

Radio Access Network

RAN u Mobile Device wu Base Station

Software Defined Radio

Cloud RAN

Cloud Platfor

Motivation

Softv

With BDIN dunstriy aret woardl eoiadoaraard b i) Nédh ivel sdaetfoenastowards a

(mehile) spthwrrecdgfingd infrastructure (SDI)
8 ReWmRTPRRASHPN $eloRte TERURTIatRIY ISR PHRNIfEnfEHtiPMent vendors

Radio Access Network Software Defined Core Infrastructure

RAN u Mobile Device wu Base Station

Compute/
NFV/BBU .

%%

Cloud Platfor

Software Defined Radio

Cloud RAN

(g-’\‘,’\
Compute/
NFV/BBU

0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Cloud Platfor

Motivation

Push in industry and academia towards SDI control platforms

o ONAP, OpenNFV, CORD, etc.

o Automate network service instantiation and management

Software Defined Infrastructure (SDI)

SDI Control
Platform

-
—r

arer

Motivation

Push in industry and academia towards SDI control platforms

o ONAP, OpenNFV, CORD, etc.

o Automate network service instantiation and management

Automation expected to be done through policies (condition = action)

o Unintended consequences

o Performance degradation, SLA violations

Software Defined Infrastructure (SDI)

SDI Control
Platform

-
—r

arer

Motivation

Push in industry and academia towards SDI control platforms

o ONAP, OpenNFV, CORD, etc.

o Automate network service instantiation and management

Automation expected to be done through policies (condition = action)

o Unintended consequences

o Performance degradation, SLA violations

Software Defined Infrastructure (SDI)

SDI Control
Platform

<4--- Policy

-
—r

arer

Motivation

Push in industry and academia towards SDI control platforms

o ONAP, OpenNFV, CORD, etc.

o Automate network service instantiation and management

Automation expected to be done through policies (condition = action)

o Unintended consequences

o Performance degradation, SLA violations

Software Defined Infrastructure (SDI)

SDI Control
Platform

10

<4--- Policy

-
—r

arer

11

Motivation

Need to ensure safe policy deployment by determining impact
o Earlier efforts focus on low-level ACL or routing policies (e.g., BGP, SDN rules)

o SDI enables orchestration and service level policies

= Dynamic scaling, load balancing, orchestration and placement, migrations, edge
cloud offloading, etc.

o Static offline checks — not enough

o Simulation — model may be incorrect or incomplete

STl |

12

Motivation

Thus, there is a need for
o an automated tool coupled with SDI control platforms

o so policies can be tested for runtime impact before being deployed in production

» Required properties:
= Able to test SDI policies for runtime impact in varying environments
= E.g., varying traffic profiles, resource and service configurations, etc.
= Coupled with SDI control platform

= Automated

STl |

13

DEPO: A Platform for Safe DEployment of POlicy

e Captures runtime impact of SDI policies using an iterative emulations based approach

* Required properties and corresponding DEPO design principles

Ability to test SDI policies for runtime impact in varying environments

 emulations — realism with control

* continuous impact learning — improves over time

Coupled with SDI control platform

 part of policy deployment workflow — comes after static testing, before production deployment
Automated

 knowledge based modeling

— automates reasoning for test environment generation

— automates ML model creation / statistical data analysis for learning impact

DEPO Context

Software Defined
Infrastructure (SDI)

Control
Platform

<4--- Policies

Services and
Managed Infrastructure

-
—r

14

arer

DEPO Context

Templates

Software Defined
Infrastructure (SDI)

Control Platform

@D_)

Orchestrator

-
—r

15

arer

Policies
DEPO Context :
Control Platform é
Policy Engine
i \§ l
1 | Templates —
ﬁ% ' Orchestrator

Software Defined
Infrastructure (SDI)

-
—r

16

arer

DEPO Context

Policies

|
|
|
Control Platform ;

Policy Engine
I s v

| | Templates
P -
#%_D g M Orchestrator

Software Defined @
Infrastructure (SDI)

v
N—?
=

arer

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

—_——— e e —

|

|

|

|

|

|

|

|

|

|

i

|

: >
| —}
i @_D M Orchestrator
|

|

|

|

|

|

|

|

|

|

|

|

|

|

Policies

|
Control Platform ;

Policy Engine

v

(oo 222

S —

18

—>

Sandbox SDI m

(Emulation Environment)

u
\J
\-\ﬁ

arer

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

—_——— e e —

|

|

|

|

|

|

|

|

|

|

i

|

: >
| —}
i @_D M Orchestrator
|

|

|

|

|

|

|

|

|

|

|

|

|

|

Control Platform

Policy Engine

v

(oo 222

Sandbox SDI m

S —

Policies

|
|
|
|

\ 4

19

—>

(Emulation Environment)

u
\J
\-\ﬁ

arer

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

—_——— e e —

|

|

|

|

|

|

|

|

|

|

i

|

: >
| —}
i #g—m M Orchestrator
|

|

|

|

|

|

|

|

|

|

|

|

|

|

Control Platform

Policy Engine

v

(oo 222

Policies
I
|
|
A 4
i Emulate Learn Impact
] \ S -

Sandbox SDI m

20

Policy Stager

—>

(Emulation Environment)

>
S war S

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

— — — —— — ——— —————————— —— — —— — — —

I
I
I
I
I -1
I
— |
#g—m — M Orchestrator |
I
I
I l
I
I
I

21

Control Platform

Policy Engine

v

(oo 222

(Emulation Environment)

Policies

I

|

|

\ 4
/ N

Emulate Learn Impact

\ S -

Policy Stager f

I Knowledge Base

Knowledge Graph

ML Models

L
STy U

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

— — — —— — ——— —————————— —— — —— — — —

I
I
I
I
I ‘
I
— |
{% . M Orchestrator |
I
I
I l
I
I
I

22

Control Platform

Policy Engine

v

(oo 222

(Emulation Environment)

Policies Domain Experts
: :
| |
| |
A 4 A 4
/ N
Emulate Learn Impact
\ S -

Policy Stager f

I Knowledge Base

Knowledge Graph | ML Models

L
STy U

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

— — — —— — ——— —————————— —— — —— — — —

I
I
I
I
I ‘
I
— |
{% . M Orchestrator |
I
I
I l
I
I
I

23

Control Platform

Policy Engine

v

(oo 222

(Emulation Environment)

Policies Domain Experts
: :
| |
| |
A 4 A 4
/ N
Emulate Learn Impact
\ S -

Policy Stager f

I Knowledge Base

Knowledge Graph | ML Models

L
STy U

DEPO Context

1 | Templates

Software Defined
Infrastructure (SDI)

— — — —— — ——— —————————— —— — —— — — —

Control Platform

Policy Engine

v

|
|
|
—
N — :
e m UL : Policy Stager
|
| |
|
|
|

Knowledge Base
Knowledge Graph | ML Models

(Emulation Environment)

Policies

[
[
[
[

\ 4

24

Domain Experts

i

L J
STy U

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

N

:[%::% eNodeB i
| UE | <= |
5 eNodeB

IP Substrate

\-J
N—?
=

25

arer

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

| 1P Substrate)

eNodeB

[
1

~

eNodeB

=
—~

26

arer UJ

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

Radio Access Network

[oe

Core Mobile Network

eNodeB

eNodeB

MME
IP Substrate 4
SGW

PGW

27

Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)

m

Low-latency
App
Edge Cloud at MTSO

eNodeB

eNodeB

MME

\

SGW

PGW

-
—r

arer

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

Radio Access Network

[oe

eNodeB

eNodeB

I IP Substrate

i

Core Mobile Network

MME

4

SGW

PGW

28

Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)

Low-latency
App
Edge Cloud at MTSO

eNodeB

eNodeB

MME

SGW

PGW

-
—r

arer

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

Radio Access Network

[oe

Core Mobile Network

eNodeB

MME

eNodeB

IP Substrate 4
SGW

PGW

29

Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)

Low-latency
App

Edge Cloud at MTSO

eNodeB

Regular traffic

L J
STy U

SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service

Radio Access Network

[%::% eNodeB
UE ~ =~
eNodeB

MME
IP Substrate 4
SGW

Core Mobile Network

PGW

30

Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)

Low-latency
App

Edge Clou§j at MTSO

__—w» Offloaded traffic

MME

SGW

PGW

-
—r

arer

31

DEPO Component: Knowledge Graph (KG)

 Unit of data storage is a fact

o 3-tuple of the form: nodel relationship node2

EPC isA Service

Service hasComponent NF

EPC hasComponent NF

EPC1 hasType EPC

EPC2 hasType EPC

VNF isA NF

MME isA VNF

MME1 hasType MME

EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF

Server1 isA Server

Server2 hosts MMET
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Example KG

@ relationship

SGW hasNaghbor@

Example Query

= atar U

DEPO Component: Knowledge Graph (KG)

Unit of data storage is a fact

@)

3-tuple of the form: nodel relationship node2

EPC isA Service

Service hasComponent NF

EPC hasComponent NF

EPC1 hasType EPC

EPC2 hasType EPC

VNF isA NF

MME isA VNF

MME1 hasType MME

EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF

Server1 isA Server

Server2 hosts MMET
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Example KG

@ relationship

SGW 1 hostedOn

“ostedO“

Example Query

32

DEPO: Modeling Knowledge

Service

Virtual

Physical

SDI Layers

hasObjectRelationship
(e.g. hasComponent, hosts)

T ISA
Compute

A Node

= NsA

Goed >

33

DEPO: Impact Learning Approach

e Variables

o configurable: num CPU, location, IP address, num of SGW, status
o observed: usage (CPU, mem), throughput, response time
o workload: rate of requests to SMORE VNF, UE attaches, traffic types

o emulation environment parameters: subset of configurable/workload

* Mechanisms

o potentially cause some change: start, stop, update, migrate

* Policies

o higher level mechanism (if-then)

o Policy 2 mechanism - variable

34

Template k

Variables
Mechanisms (lifecycle)
Policies

Topology spec
Orchestration recipes
Implementation artifacts

Policy impact (statistically significant change — not categorized as good/bad)

STl |

35

DEPO: Impact Learning Approach

Policy
l (specific, var-level)
[impact Mechanisms relationships . .
J1 I~
Workload . . o o i
b - Configurable variables vars vars
Observed variables ‘ - —
Obj1 ObjN Obj1 > ObjN
(high-level, object-level)
relationship

Defining impact systematically

* Policy writers may already know high-level impact — object-level relationships
* But non trivial to quantify impact at finer granularities — variable-level relationships

STy U

DEPO: Impact Learning Approach

1)

2)

Run emulation

Generating emulation environment suitable for
testing a policy in sandbox SDI

Running emulation by running traffic through it
and collecting logs

Learning impact

Analyze logs and annotate knowledge models

(2)

Learn
impact

—

New policy ---»| Parse policy
Retrieve
/ knowledge
Annotate l
knowledge Generate
models .
emulation
T parameters
Analyze l
emulation

36

()

Run
emulation

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

=
—~

37

arer UJ

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

New policy ---%| Parse policy
Retrieve
/ knowledge
| Annotate l
(2) knowledge Generate
models)
Learn = emulation
impact T parameters
Analyze l
\ Run
emulation

=
—~

38

(1)

Run
emulation

p—

arer

39

DEPO: Impact Learning Approach

Learning impact of policies

e Affected variables learned for SGW scale up policy New policy

—

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () | Annotate l
.SCalLe
P (2) know(ljetl:lge Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
\ Run
emulation .

STl |

40

DEPO: Impact Learning Approach

Learning impact of policies

e Affected variables learned for SGW scale up policy New policy

—

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () ~ | Annotate l
.SCale
— P (2) know(ljetl:lge Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
emulation .

STl |

41

DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUp () | Annotate
.SCale
— P (2) know(ljetl:lge Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
Analyze l
emulation

a
S war S

42

DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() ~ | Annotate
.SCale
—_— P (2) know:le(;ige Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
emulation | |
e |s this a component of a service?
e |s this hosted on compute
>
v & AT8T

43

DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() ~ | Annotate
.SCale
E— P (2) knowéet;lge Generate (1)
Learn moTes emulation T Run
impact parameters emulation
‘ Analyze l
emulation | |
e Does it have neighbors?
>

e Topological, protocol peers

44

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

New policy =--»

Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
\ Run
emulation | |

hosts

Serve & ATST U

—~

45

DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate (1)
Learn mode’s emulation T Run
impact T parameters emulation
Analyze l
\ Run
emulation

hosts

refine this subgraph

Observing impact results from emulation run later will

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scalelUp()

//THRESH

70%

hosts

New policy =--»

| Annotate
(2) knowledge
_ models
Learn T
impact
‘ Analyze

Parse policy

!

Retrieve
knowledge

Generate

emulation
parameters

TS~

Run
emulation

46

(1)

Run
emulation

a
S war S

Variable examples from our prototype SDI

Server VM Switch/Link VNF Service

location location location location topologyVars
status status status status numENB
rateStatusChange [rateStatusChange |ifaceVariables type numSGW
totalMem totalMem rateStatusChange |totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU [type totalMem cpuUsage latency, throughput
cpuOversubscription [cpuUsage numCPU memUsage
numAllocatedVM [memUsage version throughput |Workload
numRunningVM migrationVars type latency numUE

version, memUsage [numNeighborVM |cpuUsage topologyVars |rateOfRequests
cpuUsage, type osImage memUsage migrationVars|interarrivalTime
ifaceVars ifaceVars cacheVars num/rateOfMobility

propagationDelay

concurrentVNF/Service

48

DEPO: Impact Learning Approach

Learning impact of policies

: : N licy ---» i
« Affected variables learned for SGW scale up policy S PO ParselpO"cy
when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate (1)
Learn moTe > emulation T Run
impact parameters emulation
Analyze
 If no prior knowledge about impact is available - \
Run
emulation .

a
S war S

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

New policy =--»

Parse policy

!

49

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then: e LeUn() Annotate
.scale
A LLE P (2) knowlleclige Generate (1)
Learn mode’s emulation ™ Run
impact T parameters emulation
] - - - Analyze
* If no prior knowledge about impact is available - \
Run
. Randomly pick a small set of emulation parameter emulation

values

. If prior knowledge about impact is available then greedily
vary emulation parameters that cause the most (good/bad)
impact for this policy

50

DEPO: Impact Learning Approach

Learning impact of policies

New policy ---%| Parse policy

 Affected variables learned for SGW scale up policy l
when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () | Annotate l
.sScaleup k led

(2) nr(rjm\évdeelsge Genera?te (1)
Learn emulation T Run
impact T parameters emulation

Analyze
Run
emulation

a
S war S

51

DEPO: Impact Learning Approach

New policy ---%| Parse policy

I Control Platform | Retrieve
: : e / knowledge

Policy Engi Emulate Learn Impact _ ’
: bt :4‘ - P Annotate l
I Templates . | 2 knowledge G t
B e e N @) | || o] | (1)
| | y >tager - Learn T emulation Run
| I I y ledge B impact parameters emulation
I |———p , Knowledge Base Analyze '
| Software Defined]/_g [I — =
| Infrastructure (SDI) e : Knowledge Graph | ML Models
I :
————————————— emulation

Sandbox SDI m -

52

DEPO: Impact Learning Approach

New policy ---%| Parse policy

I Control Platform | Retrieve
:) : e / knowledge

Policy Engi Emulate Learn Impact _ ’
: bt :4‘ - P Annotate l
I Templates —— | (2) knowledge Generate (1)
| I y Stager 1 Learn T emulation Run
| I I y ledge B impact parameters emulation
I |———p , Knowledge Base Analyze '
| Software Defined]/_g - I — —
| Infrastructure (SDI) - : Knowledge Graph | ML Models
I :
————————————— emulation

Sandbox SDI m -

* Traffic generator parameters
o Can be set based on past domain expertise

o Or let DEPO consider these part of emulation parameters

DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

New policy =--»

Parse policy

’

Retrieve
knowledge
— | Annotate l
(2) knowledge Generate
models i
Learn emulation
impact parameters
I
Run
emulation

53

(1)

Run
emulation

STl |

(3) Learn Impact

 Logs collected include
o Traces of policy executions

o Configurable and observed variable logs for object instances — state changes in time

* Learn impact using
1. Generating ML models

2. Change analysis

\-J
\J
=

54

arer

55
3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

policy execution

Time in emulation >
TBEFORE TAFTER

STl |

56
3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

STl |

57
3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

= Kolmogorov-Smirnov 2-sample goodness of fit test

= Generic test that works across variable types (makes no assumptions about distribution
of data — worked well in our evaluations

= Alternate specialized mechanisms can be plugged in here
= Very parallelizable — large number of instance logs can be processed in parallel

= Qutput the list of impacted object instances

3) Learn Impact

58

Impact knowledge graph facts

PolicyAction:scaleUpSGW
Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
EPC:
epc_numSGW
SGW :
sgw_status
sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking
sgw_cpuUsage
sgw_memUsage
MME:
mme_numSGW
mme_sgwNumConnections
mme_sgwPercent0fConnectionsWorking

> Alternate representation (partial for demo)

Policy Action
scaleUp
impacts \\
sgwPerc
Connections
cpulsage Working
hasProperty
VM MME

3) Learn Impact

2) Generating ML models

Auto-generate ML models

Multiple linear regression
SVM
Random Forest

Easier to auto generate as part of workflow
Capture both linear and non-linear relationships
Model for each impacted variable

Compute accuracy using training/test division of logs
Kfold cross validation for computing accuracy
Grid search for tuning on the model parameters

Emulation Logs

Training

Test

59

80%

20%

STl |

3) Learn Impact

2) Generating ML models

scaleUpMechanism——

___— CpuUsage requestRate
NUMVM —— memUsage
0.157 numNeighborVMs
oSSt
0.289 v o
oversub > responseTime «— cpuUsage
0.254
Server VNF vm

Quantified variable-level impact

e Continuous learning from emulations improves impact knowledge over time

— Leads to knowledge correction over time

Evaluations

e Sandbox SDI created in PhantomNet
mobility testbed

o Emulated RAN and core with multiple
locations

o Different servers and VM configs

e Extended SDI orchestrator and
templates available in the community

o Exposed more variables/mechanisms for
EPC and SMORE services

o Created SDI policies (Drools)

UE

UE

Emulated RAN with edge
compute in multiple locations

10
Hjun

eNodeB

[0
Hju|n

eNodeB

[0
oo

\DD

eNodeB

61

00
/ 00

PR, (S

|00
SON - —1A0

LI

Core compute in
multiple locations

Example policies

Listing 1: Update server

when:
Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 2: Oversubscribe

when:
Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%
then:
Server.setCPU_Oversub(oversubPerc =
THRESH2) //THRESH2 = 50%

Listing 3: Scaling SGW

Listing 4: Scaling SMORE

when:
SGW. cpuUsage >= THRESH
//THRESH = 70%

then:
EPC.scaleUpSGW()

when:
SMORE_Webserver.cpuUsage_5minAvg
>= THRESH //THRESH = 70%
then:
SMORE . scaleUpWebserver ()

Listing 5: SMORE caching Listing 6: SMORE offload

when:
SMORE . subscriberLatency_bminAvg >=
THRESH
//THRESH = 30ms
then:
SMORE . setCaching()

when:
EPC.subscriberLatency_10minAvg >=
THRESH
//THRESH = 30ms
then:
EPC.augmentSMORE (subscriberList)

62

= atar U

Evaluations

2) Generating ML models

scaleUpMechanism——

___— CpuUsage requestRate
NUMVM —— memUsage
0.157 numNeighborVMs
oSSt
0.289 v o
oversub > responseTime «— cpuUsage
0.254
Server VNF vm

Quantified variable-level impact

e Continuous learning from emulations improves impact knowledge over time

— Leads to knowledge correction over time

Evaluations

64

Impact knowledge graph facts

PolicyAction:scaleUpSGW
Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
EPC:
epc_numSGW
SGW :
sgw_status
sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking
sgw_cpuUsage
sgw_memUsage
MME:
mme_numSGW
mme_sgwNumConnections
mme_sgwPercent0fConnectionsWorking

> Alternate representation (partial for demo)

Policy Action
scaleUpSGW
impacts \\
sgwPerc
Connections
cpulsage Working
hasProperty
VM MME

Evaluations

Example policies

Listing 1: Update server

when:
Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 2: Oversubscribe

when:
Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%
then:
Server.setCPU_Oversub(oversubPerc =
THRESH2) //THRESH2 = 50%

Listing 3: Scaling SGW

Listing 4: Scaling SMORE

when:
SGW. cpuUsage >= THRESH
//THRESH = 70%

then:
EPC.scaleUpSGW()

when:
SMORE_Webserver.cpuUsage_5minAvg
>= THRESH //THRESH = 70%
then:
SMORE . scaleUpWebserver ()

Listing 5: SMORE caching Listing 6: SMORE offload

when:
SMORE . subscriberLatency_bminAvg >=
THRESH
//THRESH = 30ms
then:
SMORE . setCaching()

when:
EPC.subscriberLatency_10minAvg >=
THRESH
//THRESH = 30ms
then:
EPC.augmentSMORE (subscriberList)

65

= atar U

Evaluations

Impact knowledge graph facts

PolicyAction:setCaching
SMORE :

smore_cachingStatus
smore_latency
SMORE_Loadbalancer:
smore_loadbalancer_cachingStatus
smore_loadbalancer_availableCacheSize
smore_loadbalancer_usedCacheSize
smore_loadbalancer_resourcefFrequencyOfAccess
SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

=
—~

66

arer

Evaluations

Impact knowledge graph facts

PolicyAction:update

Server.[status, version, numVM,
memUsage, cpuUsage,
percentFailedMigrations],

VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.migrateVM

Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.sendVM

Server.[numVM, memUsage,
cpuUsage], VM. [status, memUsage,
cpuUsage], VNEF.[status, memUsage,
cpuUsage], Service.[smoreLatency]

Server.receiveVM

Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNEF . [status, memUsage, cpuUsage],
Service.[smoreLatency]

VM.stop

Server.[memUsage, cpuUsage],

VM. [status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.installUpdate

Server.[status,
version, memUsage, cpuUsage]

Server.reboot

Server.[status, memUsage,
cpuUsage]

VM.start

Server.[memUsage, cpuUsage],
VM. [status, memUsage, cpuUsage]

VNE:.start

Server.[memUsage, cpuUsage],
VM.[memUsage, cpuUsage],
VNEF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

67

Evaluations

Impact knowledge graph facts

PolicyAction:augmentSMORE
Server:

server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

VM:
vim_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
SMORE :

smore_latency

SMORE_Loadbalancer:
smore_loadbalancer_webserverNumConnections
smore_loadbalancer_webserverPercentOfConnectionsWorking
smore_loadbalancer_resourceFrequencyOfAccess

SMORE_Switch:
smore_switch_status
smore_switch_routeConfig

SMORE _Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

68

Evaluations

Variable examples from our prototype SDI

Server VM Switch/Link VNF Service

location location location location topologyVars
status status status status numENB
rateStatusChange [rateStatusChange |ifaceVariables type numSGW
totalMem totalMem rateStatusChange |totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU [type totalMem cpuUsage latency, throughput
cpuOversubscription |[cpuUsage numCPU memUsage
numAllocatedVM |memUsage version throughput |Workload
numRunningVM migrationVars type latency numUE

version, memUsage [numNeighborVM |cpuUsage topologyVars |rateOfRequests
cpuUsage, type osImage memUsage migrationVars|interarrivalTime
ifaceVars ifaceVars cacheVars num/rateOfMobility

propagationDelay

concurrentVNF/Service

Evaluations

12
_ Bad
L
v 8
£
o Moderate
(7p]
5
o 4
(7p]
&

Good
0
0 1 2 3 4
Parameter

(e.g. amount of CPU oversubscription)

Evaluations

Determining environment variables that are major impact contributors

* Knowing this helps in greedily varying env variables that show policy’s worst impact
* For impact of server CPU oversubscription policy on service response time:

Variables Relative Importance
VM.cpuUsage 0.254
VM.numNeighborVMs 0.002

Server.cpuUsage(aggregate) | 0.298

Server.cpuOvsersubscription | 0.289

Service.requestRate 0.157

Evaluations

Improved learning over time from emulations using iterative approach
* Decreasing average RMSE over emulation iterations

* Averaged from models for service response time for the 6 policy examples

Normalized RMSE
o

-2 I I
0 8 16
Emulation Iteration #

)
N—

72

arer

Evaluations

Performance and scalability

73

e Parallelizable and scalable DEPO process — reasonable bottleneck of emulation environment orchestration

ceseeN =50
40 + 10 T
z 7 —~
(7]
g 20 + \0;30 __/
= - e =
0o+-—+r———m——+—+——+—+ | |
0 500 1000 20 ' '
20 70 120

100 500 900
Concurrent queries

Policy size (# objects/actions)

component orchestrations

Policy parsing Emulation parameter generation Emulation orchestration

30 T

_ — 10

20T o 5

€., L S

= 10

a = 0 |
0 i I

0 400 800
logs analyzed (in thousands)

Data analysis after emulation

0 500 1000
Concurrent insertions

KG insertion (updating knowledge) \S:,JAT&T U

74

Conclusion

* We presented DEPO

 given SDI orchestration and service-level policies,

* allows us to determine and quantify their impact on objects in an SDI.

e DEPO uses a systematic approach to modeling domain knowledge
 Enables more informed policy writing and policy impact checking

* Further annotate / verify initial model by incorporating knowledge learnt using emulations

 DEPO uses statistical analysis and machine learning to enable knowledge-based
inference and reasoning

 Describes how a given SDI policy affects the SDI objects

* We prototyped DEPO and evaluated it on a testbed with policies from realistic usecase
services in a sandbox SDI -
& war QY

