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Motivation

Push in industry and academia towards SDI control platforms

o ONAP, OpenNFV, CORD, etc.

o Automate network service instantiation and management
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Motivation

Need to ensure safe policy deployment by determining impact
o Earlier efforts focus on low-level ACL or routing policies (e.g., BGP, SDN rules)

o SDI enables orchestration and service level policies

= Dynamic scaling, load balancing, orchestration and placement, migrations, edge
cloud offloading, etc.

o Static offline checks — not enough

o Simulation — model may be incorrect or incomplete

STl |
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Motivation

Thus, there is a need for
o an automated tool coupled with SDI control platforms

o so policies can be tested for runtime impact before being deployed in production

» Required properties:
= Able to test SDI policies for runtime impact in varying environments
= E.g., varying traffic profiles, resource and service configurations, etc.
=  Coupled with SDI control platform

=  Automated

STl |
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DEPO: A Platform for Safe DEployment of POlicy

e Captures runtime impact of SDI policies using an iterative emulations based approach

* Required properties and corresponding DEPO design principles

Ability to test SDI policies for runtime impact in varying environments

 emulations — realism with control

* continuous impact learning — improves over time

Coupled with SDI control platform

 part of policy deployment workflow — comes after static testing, before production deployment
Automated

 knowledge based modeling

— automates reasoning for test environment generation

— automates ML model creation / statistical data analysis for learning impact
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SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service
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SDI Use-Case Services

Use-case 1: Standard 4G LTE/EPC broadband service
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Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)
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Use-case 2: 4G LTE/EPC service with edge cloud offloading (SMORE by Cho et al. ATC’14)
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DEPO Component: Knowledge Graph (KG)

 Unit of data storage is a fact

o 3-tuple of the form: nodel relationship node2

EPC isA Service

Service hasComponent NF

EPC hasComponent NF

EPC1 hasType EPC

EPC2 hasType EPC

VNF isA NF

MME isA VNF

MME1 hasType MME

EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF

Server1 isA Server

Server2 hosts MMET
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Example KG

@ relationship

SGW hasNaghbor@

Example Query

= atar U



DEPO Component: Knowledge Graph (KG)

Unit of data storage is a fact

@)

3-tuple of the form: nodel relationship node2

EPC isA Service

Service hasComponent NF

EPC hasComponent NF

EPC1 hasType EPC

EPC2 hasType EPC

VNF isA NF

MME isA VNF

MME1 hasType MME

EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF

Server1 isA Server

Server2 hosts MMET
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Example KG

@ relationship

SGW 1 hostedOn

“ostedO“

Example Query
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DEPO: Modeling Knowledge

Service

Virtual

Physical

SDI Layers

hasObjectRelationship
(e.g. hasComponent, hosts)
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A Node

= NsA

Goed >

33



DEPO: Impact Learning Approach

e Variables

o configurable: num CPU, location, IP address, num of SGW, status
o observed: usage (CPU, mem), throughput, response time
o workload: rate of requests to SMORE VNF, UE attaches, traffic types

o emulation environment parameters: subset of configurable/workload

*  Mechanisms

o potentially cause some change: start, stop, update, migrate

* Policies

o higher level mechanism (if-then)

o Policy 2 mechanism - variable

34

Template k

Variables
Mechanisms (lifecycle)
Policies

Topology spec
Orchestration recipes
Implementation artifacts

Policy impact (statistically significant change — not categorized as good/bad)

STl |
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DEPO: Impact Learning Approach

Policy
l (specific, var-level)
[impact  Mechanisms relationships . .
J1 I~
Workload . . o o i
b - Configurable variables vars vars
Observed variables ‘ - —
Obj1 ObjN Obj1 > ObjN
(high-level, object-level)
relationship

Defining impact systematically

* Policy writers may already know high-level impact — object-level relationships
* But non trivial to quantify impact at finer granularities — variable-level relationships

STy U



DEPO: Impact Learning Approach

1)

2)

Run emulation

Generating emulation environment suitable for
testing a policy in sandbox SDI

Running emulation by running traffic through it
and collecting logs

Learning impact

Analyze logs and annotate knowledge models

(2)

Learn
impact

—

New policy ---»| Parse policy
Retrieve
/ knowledge
Annotate l
knowledge Generate
models .
emulation
T parameters
Analyze l
emulation

36

()

Run
emulation




DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

=
—~
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DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

New policy ---%| Parse policy
Retrieve
/ knowledge
| Annotate l
(2) knowledge Generate
models )
Learn = emulation
impact T parameters
Analyze l
\ Run
emulation

=
—~
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DEPO: Impact Learning Approach

Learning impact of policies

e  Affected variables learned for SGW scale up policy New policy

—

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () | Annotate l
.SCalLe
P (2) know(ljetl:lge Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
\ Run
emulation .

STl |



40

DEPO: Impact Learning Approach

Learning impact of policies

e  Affected variables learned for SGW scale up policy New policy

—

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () ~ | Annotate l
.SCale
— P (2) know(ljetl:lge Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
emulation .

STl |
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DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUp () | Annotate
.SCale
— P (2) know(ljetl:lge Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
Analyze l
emulation

a
S war S
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DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() ~ | Annotate
.SCale
—_— P (2) know:le(;ige Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
emulation | |
e |s this a component of a service?
e |s this hosted on compute
>
v & AT8T
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DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() ~ | Annotate
.SCale
E— P (2) knowéet;lge Generate ( 1)
Learn moTes emulation T Run
impact parameters emulation
‘ Analyze l
emulation | |
e Does it have neighbors?
>

e Topological, protocol peers
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DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

New policy =--»

Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
| Analyze l
\ Run
emulation | |

hosts

Serve & ATST U
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DEPO: Impact Learning Approach

Learning impact of policies
 Affected variables learned for SGW scale up policy

New policy ---%| Parse policy

when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate ( 1)
Learn mode’s emulation T Run
impact T parameters emulation
Analyze l
\ Run
emulation

hosts

refine this subgraph

Observing impact results from emulation run later will



DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scalelUp()

//THRESH

70%

hosts

New policy =--»

| Annotate
(2) knowledge
_ models
Learn T
impact
‘ Analyze

Parse policy

!

Retrieve
knowledge

Generate

emulation
parameters

TS~

Run
emulation
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Variable examples from our prototype SDI

Server VM Switch/Link VNF Service

location location location location topologyVars
status status status status numENB
rateStatusChange  [rateStatusChange |ifaceVariables type numSGW
totalMem totalMem rateStatusChange |totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU [type totalMem cpuUsage latency, throughput
cpuOversubscription [cpuUsage numCPU memUsage
numAllocatedVM  [memUsage version throughput |Workload
numRunningVM migrationVars type latency numUE

version, memUsage [numNeighborVM |cpuUsage topologyVars |rateOfRequests
cpuUsage, type osImage memUsage migrationVars|interarrivalTime
ifaceVars ifaceVars cacheVars num/rateOfMobility

propagationDelay

concurrentVNF/Service
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DEPO: Impact Learning Approach

Learning impact of policies

: : N licy ---» i
«  Affected variables learned for SGW scale up policy S PO ParselpO"cy
when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUn() | Annotate
.SCale
—_— P (2) know:le(;ige Generate ( 1)
Learn moTe > emulation T Run
impact parameters emulation
Analyze
 If no prior knowledge about impact is available - \
Run
emulation .

a
S war S



DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

New policy =--»

Parse policy

!

49

when: Retrieve
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then: e LeUn() Annotate
.scale
A LLE P (2) knowlleclige Generate ( 1)
Learn mode’s emulation ™ Run
impact T parameters emulation
] - - - Analyze
* If no prior knowledge about impact is available - \
Run
. Randomly pick a small set of emulation parameter emulation

values

. If prior knowledge about impact is available then greedily
vary emulation parameters that cause the most (good/bad)
impact for this policy
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DEPO: Impact Learning Approach

Learning impact of policies

New policy ---%| Parse policy

 Affected variables learned for SGW scale up policy l
when: Retrieve n
SGW.usage >= THRESH //THRESH = 70% ___—"| knowledge
then:SGW LeUp () | Annotate l
.sScaleup k led

(2) nr(rjm\évdeelsge Genera?te (1)
Learn emulation T Run
impact T parameters emulation

Analyze
Run
emulation

a
S war S
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DEPO: Impact Learning Approach

New policy ---%| Parse policy

I Control Platform | Retrieve
: : e / knowledge

Policy Engi Emulate Learn Impact _ ’
: bt :4‘ - P Annotate l
I Templates . | 2 knowledge G t
B e e N @) | || o] | (1)
| | y >tager - Learn T emulation Run
| I I y ledge B impact parameters emulation
I |———p , Knowledge Base Analyze '
| Software Defined ]/_g [ I — =
| Infrastructure (SDI) e : Knowledge Graph | ML Models
I :
————————————— emulation

Sandbox SDI m -
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DEPO: Impact Learning Approach

New policy ---%| Parse policy

I Control Platform | Retrieve
: ) : e / knowledge

Policy Engi Emulate Learn Impact _ ’
: bt :4‘ - P Annotate l
I Templates —— | ( 2 ) knowledge Generate ( 1 )
| I y Stager 1 Learn T emulation Run
| I I y ledge B impact parameters emulation
I |———p , Knowledge Base Analyze '
| Software Defined ]/_g - I — —
| Infrastructure (SDI) - : Knowledge Graph | ML Models
I :
————————————— emulation

Sandbox SDI m -

* Traffic generator parameters
o Can be set based on past domain expertise

o Or let DEPO consider these part of emulation parameters



DEPO: Impact Learning Approach

Learning impact of policies

Affected variables learned for SGW scale up policy

when:

then:

SGW.usage >= THRESH

SGW.scaleUp()

//THRESH

70%

New policy =--»

Parse policy

’

Retrieve
knowledge
— | Annotate l
(2) knowledge Generate
models i
Learn emulation
impact parameters
I
Run
emulation

53

(1)

Run
emulation
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(3) Learn Impact

 Logs collected include
o Traces of policy executions

o Configurable and observed variable logs for object instances — state changes in time

* Learn impact using
1. Generating ML models

2. Change analysis

\-J
\J
=
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3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

policy execution

Time in emulation >
TBEFORE TAFTER

STl |
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3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

STl |
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3) Learn Impact

1) Change analysis
= Perform before — after change analysis for each variable to get course-grained impact info

= Note statistically significant difference (e.g., 95% confidence) by comparing CDFs collected from
before, and after policy triggerings

=  Kolmogorov-Smirnov 2-sample goodness of fit test

= Generic test that works across variable types (makes no assumptions about distribution
of data — worked well in our evaluations

= Alternate specialized mechanisms can be plugged in here
= Very parallelizable — large number of instance logs can be processed in parallel

=  Qutput the list of impacted object instances



3) Learn Impact

58

Impact knowledge graph facts

PolicyAction:scaleUpSGW
Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
EPC:
epc_numSGW
SGW :
sgw_status
sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking
sgw_cpuUsage
sgw_memUsage
MME:
mme_numSGW
mme_sgwNumConnections
mme_sgwPercent0fConnectionsWorking

> Alternate representation (partial for demo)

Policy Action
scaleUp
impacts \\
sgwPerc
Connections
cpulsage Working
hasProperty
VM MME




3) Learn Impact

2) Generating ML models

Auto-generate ML models

Multiple linear regression
SVM
Random Forest

Easier to auto generate as part of workflow
Capture both linear and non-linear relationships
Model for each impacted variable

Compute accuracy using training/test division of logs
Kfold cross validation for computing accuracy
Grid search for tuning on the model parameters

Emulation Logs

Training

Test

59

80%

20%

STl |



3) Learn Impact

2) Generating ML models

scaleUpMechanism——

___— CpuUsage requestRate
NUMVM —— memUsage
0.157 numNeighborVMs
oSSt
0.289 v o
oversub > responseTime «— cpuUsage
0.254
Server VNF vm

Quantified variable-level impact

e Continuous learning from emulations improves impact knowledge over time

— Leads to knowledge correction over time



Evaluations

e Sandbox SDI created in PhantomNet
mobility testbed

o Emulated RAN and core with multiple
locations

o Different servers and VM configs

e Extended SDI orchestrator and
templates available in the community

o Exposed more variables/mechanisms for
EPC and SMORE services

o Created SDI policies (Drools)

UE

UE

Emulated RAN with edge
compute in multiple locations

10
Hjun

eNodeB

[0
Hju|n

eNodeB

[0
oo

\DD

eNodeB

61
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Example policies

Listing 1: Update server

when:
Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 2: Oversubscribe

when:
Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%
then:
Server.setCPU_Oversub(oversubPerc =
THRESH2) //THRESH2 = 50%

Listing 3: Scaling SGW

Listing 4: Scaling SMORE

when:
SGW. cpuUsage >= THRESH
//THRESH = 70%

then:
EPC.scaleUpSGW()

when:
SMORE_Webserver.cpuUsage_5minAvg
>= THRESH //THRESH = 70%
then:
SMORE . scaleUpWebserver ()

Listing 5: SMORE caching Listing 6: SMORE offload

when:
SMORE . subscriberLatency_bminAvg >=
THRESH
//THRESH = 30ms
then:
SMORE . setCaching()

when:
EPC.subscriberLatency_10minAvg >=
THRESH
//THRESH = 30ms
then:
EPC.augmentSMORE (subscriberList)
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Evaluations

2) Generating ML models

scaleUpMechanism——

___— CpuUsage requestRate
NUMVM —— memUsage
0.157 numNeighborVMs
oSSt
0.289 v o
oversub > responseTime «— cpuUsage
0.254
Server VNF vm

Quantified variable-level impact

e Continuous learning from emulations improves impact knowledge over time

— Leads to knowledge correction over time



Evaluations
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Impact knowledge graph facts

PolicyAction:scaleUpSGW
Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
EPC:
epc_numSGW
SGW :
sgw_status
sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking
sgw_cpuUsage
sgw_memUsage
MME:
mme_numSGW
mme_sgwNumConnections
mme_sgwPercent0fConnectionsWorking

> Alternate representation (partial for demo)

Policy Action
scaleUpSGW
impacts \\
sgwPerc
Connections
cpulsage Working
hasProperty
VM MME




Evaluations

Example policies

Listing 1: Update server

when:
Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 2: Oversubscribe

when:
Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%
then:
Server.setCPU_Oversub(oversubPerc =
THRESH2) //THRESH2 = 50%

Listing 3: Scaling SGW

Listing 4: Scaling SMORE

when:
SGW. cpuUsage >= THRESH
//THRESH = 70%

then:
EPC.scaleUpSGW()

when:
SMORE_Webserver.cpuUsage_5minAvg
>= THRESH //THRESH = 70%
then:
SMORE . scaleUpWebserver ()

Listing 5: SMORE caching Listing 6: SMORE offload

when:
SMORE . subscriberLatency_bminAvg >=
THRESH
//THRESH = 30ms
then:
SMORE . setCaching()

when:
EPC.subscriberLatency_10minAvg >=
THRESH
//THRESH = 30ms
then:
EPC.augmentSMORE (subscriberList)
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Evaluations

Impact knowledge graph facts

PolicyAction:setCaching
SMORE :

smore_cachingStatus
smore_latency
SMORE_Loadbalancer:
smore_loadbalancer_cachingStatus
smore_loadbalancer_availableCacheSize
smore_loadbalancer_usedCacheSize
smore_loadbalancer_resourcefFrequencyOfAccess
SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

=
—~

66

arer



Evaluations

Impact knowledge graph facts

PolicyAction:update

Server.[status, version, numVM,
memUsage, cpuUsage,
percentFailedMigrations],

VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.migrateVM

Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.sendVM

Server.[numVM, memUsage,
cpuUsage], VM. [status, memUsage,
cpuUsage], VNEF.[status, memUsage,
cpuUsage], Service.[smoreLatency]

Server.receiveVM

Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNEF . [status, memUsage, cpuUsage],
Service.[smoreLatency]

VM.stop

Server.[memUsage, cpuUsage],

VM. [status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.installUpdate

Server.[status,
version, memUsage, cpuUsage]

Server.reboot

Server.[status, memUsage,
cpuUsage]

VM.start

Server.[memUsage, cpuUsage],
VM. [status, memUsage, cpuUsage]

VNE:.start

Server.[memUsage, cpuUsage],
VM.[memUsage, cpuUsage],
VNEF.[status, memUsage, cpuUsage],
Service.[smoreLatency]
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Evaluations

Impact knowledge graph facts

PolicyAction:augmentSMORE
Server:

server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

VM:
vim_status
vm_networkConfig
vm_cpuUsage
vm_memUsage
SMORE :

smore_latency

SMORE_Loadbalancer:
smore_loadbalancer_webserverNumConnections
smore_loadbalancer_webserverPercentOfConnectionsWorking
smore_loadbalancer_resourceFrequencyOfAccess

SMORE_Switch:
smore_switch_status
smore_switch_routeConfig

SMORE _Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess
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Evaluations

Variable examples from our prototype SDI

Server VM Switch/Link VNF Service

location location location location topologyVars
status status status status numENB
rateStatusChange  [rateStatusChange |ifaceVariables type numSGW
totalMem totalMem rateStatusChange |totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU [type totalMem cpuUsage latency, throughput
cpuOversubscription |[cpuUsage numCPU memUsage
numAllocatedVM  |memUsage version throughput |Workload
numRunningVM migrationVars type latency numUE

version, memUsage [numNeighborVM |cpuUsage topologyVars |rateOfRequests
cpuUsage, type osImage memUsage migrationVars|interarrivalTime
ifaceVars ifaceVars cacheVars num/rateOfMobility

propagationDelay

concurrentVNF/Service




Evaluations
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Evaluations

Determining environment variables that are major impact contributors

* Knowing this helps in greedily varying env variables that show policy’s worst impact
* For impact of server CPU oversubscription policy on service response time:

Variables Relative Importance
VM.cpuUsage 0.254
VM.numNeighborVMs 0.002

Server.cpuUsage(aggregate) | 0.298

Server.cpuOvsersubscription | 0.289

Service.requestRate 0.157




Evaluations

Improved learning over time from emulations using iterative approach
* Decreasing average RMSE over emulation iterations

* Averaged from models for service response time for the 6 policy examples

Normalized RMSE
o

-2 I I
0 8 16
Emulation Iteration #

)
N—
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Evaluations

Performance and scalability
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e Parallelizable and scalable DEPO process — reasonable bottleneck of emulation environment orchestration

ceseeN =50
40 + 10 T
z 7 —~
(7]
g 20 + \0;30 __/
= - e =
0o+-—+r———m——+—+——+—+ | |
0 500 1000 20 ' '
20 70 120

100 500 900
# Concurrent queries

Policy size (# objects/actions)

# component orchestrations

Policy parsing Emulation parameter generation Emulation orchestration

30 T

_ — 10

20T o 5

€., L S

= 10

a = 0 |
0 i I

0 400 800
# logs analyzed (in thousands)

Data analysis after emulation

0 500 1000
# Concurrent insertions

KG insertion (updating knowledge) \S:,JAT&T U
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Conclusion

* We presented DEPO

 given SDI orchestration and service-level policies,

* allows us to determine and quantify their impact on objects in an SDI.

e DEPO uses a systematic approach to modeling domain knowledge
 Enables more informed policy writing and policy impact checking

* Further annotate / verify initial model by incorporating knowledge learnt using emulations

 DEPO uses statistical analysis and machine learning to enable knowledge-based
inference and reasoning

 Describes how a given SDI policy affects the SDI objects

* We prototyped DEPO and evaluated it on a testbed with policies from realistic usecase
services in a sandbox SDI -
& war QY



