DEPO: A Platform for Safe DEployment of POlicy
in a Software Defined Infrastructure

Aisha Syed

University of Utah
aisha.syed @utah.edu

Vijay Gopalakrishnan
AT&T Research

ABSTRACT

The emergence of network functions virtualization (NFV) and
software defined networking (SDN) has resulted in networks
being realized as software defined infrastructures (SDIs). The
dynamicity and flexibility offered by SDIs introduces new
challenges in ensuring that policy changes do not result in
unintended consequences. These can range from the break-
down of basic network invariants to degradation of network
performance. We present the DEpo framework that enables
automated discovery and quantification of the potential im-
pact of new orchestration and service level SDI policies. Our
approach uses a combination of knowledge modeling, data
analysis, machine learning, and emulation techniques in a
sandbox SDI. We demonstrate our approach by evaluating it
over a testbed SDI with a 4G LTE/EPC broadband service.

CCS CONCEPTS

* Networks — Network management; Programmable net-
works.

1 INTRODUCTION

Emerging software defined infrastructures (SDIs), consist-
ing of software defined networking (SDN), network func-
tions virtualization (NFV), cloud computing, etc. are being
embraced by network service providers and equipment ven-
dors [5, 32, 44, 48]. The inherent flexibility and agility of an
SDI environment is enabling better resource management [25],
rapid service composition [46, 65] with virtualized network
functions (VNF) [4, 16, 39, 47], dynamic service deployment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SOSR 19, April 3—4, 2019, San Jose, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6710-3/19/04. .. $15.00
https://doi.org/10.1145/3314148.3314358

98

Bilal Anwer
AT&T Research
bilal @research.att.com

Jacobus Van der Merwe
University of Utah

and evolution [21, 61], custom data planes [10, 13, 26, 49],
and control plane modifications [8, 63]. SDIs are anticipated
to be key enablers for future mobile network architectures and
related services being developed for 5G [2, 3, 43, 44, 51, 56].

There is immense push in the industry and academia to-
wards closed-loop, policy-driven control platforms for the
SDI ecosystem [1, 5, 14, 16, 17, 38, 46, 58, 61, 64]. The SDI
control platforms being proposed consist of controllers and
orchestrators (with an associated policy engine) that utilize
network and service templates (specifications) to automate the
workflows used for managing the physical and virtual infras-
tructure that creates the SDI, and for the composition, instanti-
ation, evolution, and lifecycle management of the services that
run on top of it. The way automation is expected to be done and
change enacted in this ecosystem, is through policies deployed
via the policy engine. Policies are essentially rules, conditions,
requirements, constraints, attributes, or needs that must be
provided, maintained, and/or enforced. At a lower level, policy
involves machine-readable rules enabling actions to be taken
based on triggers or requests. Policies often consider specific
conditions or events, i.e., triggering specific policies when
conditions are met, and/or selecting specific outcomes of the
evaluated policies appropriate to current conditions [46]. This
benefit of policies in allowing rapid modification and updating
of behavior without rewriting software code fits very well in
the complex and dynamic SDI environment.

Earlier policy related efforts mostly focused on low-level
configuration and networking policies (e.g., BGP or SDN
rules), with work being done on controlling and verifying their
impact[19, 27,28, 38,42, 68]. The SDI environment, however,
has a need for abstractions that allow writing orchestration and
service level policies in addition to the traditional low-level
networking policies and configuration updates. Since SDI con-
trol platforms are being designed to be templates-based, the
domain experts can thus write policies in high-level abstrac-
tions using references to mechanisms specified through these
SDI object templates [61, 64] (possibly created by different
domain experts and vendors). Moreover, the SDI is inherently
layered (physical infrastructure, virtual infrastructure or VNFs,
and the service layers), with complex horizontal and vertical

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

Annotate models Generate suitable emulation ><---Policy
Y Eigr e
e Ny

Domain knowledge models

Impact
Learning

Policy
Emulation

Analyze logs Collect logs

Figure 1: Dero: Continuous learning

interactions between objects at the various layers, controlled
by policies from potentially independent actors. This cross
layer interaction and presence of multiple actors coupled with
the dynamism due to capabilities from NFV/SDN (scaling,
live migrations, live topological updates or insertion of new
functionality [21, 61]) makes it non-trivial and impractical for
humans to manually trace the impact of their policies.

Thus, there is a need for an automated tool to be coupled
with the SDI such that SDI policies can be tested for impact
before being deployed in production. To this end, we present
Depo. DEpo is an end-to-end framework for checking the im-
pact of policies in an SDI environment. As shown in Figure 1,
Depo represents a continuous learning approach whereby a
knowledge based model captures the relationships between
objects in the SDI as well as the impact of policies on them.
The DEpo learning process involves emulations under varying
conditions, monitoring and data collection of the emulated
environment, statistical and machine learning based analysis
of the data to enable discovery and quantification of impact
relationships between policies and SDI objects. This continu-
ous learning approach enables DEpo to continuously annotate
the knowledge base as data is collected through emulations in
varying environments, and the confidence level in the learnt
impact relationships increases. DEpo uses a greedy approach
of testing the policy in emulation environments that show po-
tential for resulting in more information gain, as determined
from data analysis from past emulation runs. The knowledge-
based approach allows inferencing so that Depo can find not
only the SDI objects that were significantly impacted by the
given policy, but can also infer how the affected objects are
related to the object on which the policy was deployed. This
capability helps in determining both cross-layer and within-
same-layer relationships where the policy writer may not have
knowledge about how their policy impacted other SDI objects.

We make the following main contributions.

e We propose the Depo framework which, given SDI orches-
tration and service-level policies, allows us to determine and
quantify the impact of such policies on objects in the SDI.

e We present a systematic approach to structuring domain
knowledge in a model to enable more informed policy writing
and policy impact checking. We further annotate and verify the
initial domain knowledge model by incorporating knowledge
learnt through SDI emulations.

e We use statistical analysis and machine learning (ML) to
enable knowledge-based inference and reasoning to further
describe how a given SDI policy affects the SDI objects.

99

A.Syed et al.

e We present a prototype implementation of Depo and its eval-
uation using example policies in a testbed SDI environment.
We show DEpo is capable of capturing the impact of policies
and can reuse and revise learnt knowledge across emulations.

2 RELATED WORK

Traditional approaches to enacting network change include
multiple stages during which network changes can be checked
and validated before deployment, e.g., manual planning, static
or online verification and validation [18, 27-29, 35, 52, 59],
simulation and emulations [34], phased rollout or first field
application (FFA) [37], and canaries [69]. The focus of these
efforts has either been on low-level configuration updates re-
lated to the network and routing layers, or has enabled limited
automation and required the presence of domain experts for
designing the test environment needed for policy or update
checking. With Depo, we consider the virtual and service lay-
ers made possible by the SDI and perform knowledge-based
modeling to capture cross-layer interactions as well as auto-
mate the process of suitable test environment generation.

More related to our work are dependency checking and
analysis [11, 36, 37], statistical and ML based analysis ap-
proaches [15, 22, 42, 62]. These earlier efforts create siloed
models for specific use-cases, services, or network objects. In
contrast, DEpo’s modeling approach makes it service-agnostic
so that policies for any SDI services can be tested. Depo also
has an analysis process that systematically bootstraps its knowl-
edge base using service and network object specifications that
have been presented and tested by the community for use in the
SDI [61, 64]. Further, Depo performs automated emulation
generations and tests the policies in various configurations, us-
ing a learning process that is continuous, i.e., learning across
emulation iterations and improving learnt knowledge about
policy impact over time. Finally, DEpo’s modeling and learn-
ing approach also allows learning cross-layer interactions and
relationships which arise in the SDI ecosystem.

Our work is aligned with industry and academic efforts
on policy-driven SDI systems that consider the definition of
policies to be more than traditional networking and routing
policies [1, 5, 14, 16, 17, 46, 61]. However, to the best of our
knowledge, our work is the first to present SDI service and
orchestration policies and develop a generic testing framework
for learning their impact in the SDI ecosystem. Depo thus
serves as a practical first step towards exploring the challenges
and opportunities in this space through prototyping an end-to-
end impact discovery/checking system.

There is ongoing research in the ML community for build-
ing tools that can help humans interpret ML models [6, 30, 31,
33, 54, 55]. This is complementary to our work since one of
our goals is to encode the learnt policy impact so that it is both
machine and human interpretable, i.e., actionable knowledge

DEPO: A Platform for Safe DEployment of POlicy

that the machine can utilize in the continuous learning pro-
cess, and humans can utilize in understanding their policies’
impacts. However, in contrast to Depo, these efforts output
model interpretations that are still at a lower level.

3 CONTEXT AND CHALLENGES

3.1 Dero Context and Use-Cases

SDI Services. We take the standard 4G LTE/EPC broadband
[45] as our first use-case service. Figure 2a shows the high
level EPC architecture consisting of the Radio Access Net-
work (RAN) and the Evolved Packet Core (EPC). eNodeBs
(base stations) are part of the RAN and wirelessly connect
to the user equipment (UE) i.e., mobile devices. We assume
a software-defined core and RAN [51]. The EPC core has
three main components. The MME (Mobility Management
Entity) is a control plane entity and handles UE authentica-
tion, registeration, and mobility. The SGW (Serving Gateway)
is a datapath element and forwards user traffic coming from
the RAN to the PGW (Packet Data Network Gateway) which
serves as the gateway to external networks. The S/PGW and
eNodeB also handle control plane functions.

Figure 2b shows an EPC variant with selective edge cloud
traffic offloading functionality. An implementation of this
architecture is SMORE [12] and we take it as our second
use-case SDI service. We use webservers as the example low-
latency apps in the edge cloud.

Terminology. Here we define terminology used in the paper.

In the SDI ecosystem, parameterizable femplates [61, 64]
serve as the specification or ‘object type’ for SDI components
and services. Instantiating them through an SDI orchestrator
causes instances or objects of them to be created in the SDI.
This is similar to classes and objects (instances) in an object
oriented programming language. Templates can be ‘container’-
type templates such that they describe a type composed of one
or more other SDI object types. E.g., a service template, such
as, EPC, can be composed of component templates, such as,
MME, SGW, PGW, eNodeB. Similarly, a SMORE service tem-
plate can be composed of components, such as, the Webserver
in the edge cloud, any load balancer or cache components, etc.

Templates contain variables, lifecycle and management
mechanisms, and policies. Mechanisms can be related to rout-
ing (push/remove/update flows), scaling, load balancing, mi-
gration, performance tuning, etc. For example, init, start, stop,
migrate, scaleUp, update, configureIPv4, are some typical
mechanisms available in SDI component or service templates.

Table 1 shows example variables in the templates of vari-
ous SDI object types we considered. For space reasons, some
of the related variables are shown as grouped together, e.g.,
Server.ifaceVars and VNF.migrationVars represent variables
related to Server interface configuration (e.g., [Pv4Addr, MAC-
Addr) and VNF migrations (e.g., numMigrationsPastSMin, or

100

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

¢ Software Defined
Cellular Network Core }
H
PGW i
i
i
i
i

.......................

Low
Latency

....................

Software Defined
Network
Traffic

{ i (X 1
| [eNodes eNodeB| RANE ; eNode | | eNodeB| |enodes| RAN |
! } L

(a) (b)
Figure 2: (a) EPC, (b) EPC with edge cloud offload

Re\gu lar
Traffic

numPFailedMigrations). Also, variables from different VNFs
(e.g., S/PGW, SMORE_Webserver or SMORE_Cache), and
Services (e.g., EPC, SMORE) are shown grouped together
under the VNF and Service headers.

For systematic impact analysis, we categorize variables as:
(1) configuration/configurable, (2) observed, and (3) work-
load variables. In addition, the domain expert or policy writer
can tag certain configuration and workload variables to be
(4) emulation environment parameters. We assume a domain
expert annotates them as such in the templates.

Configuration variables are template variables that can be
modified (or configured) directly using template mechanisms,
e.g., IP address, location (configurable using e.g., VNF migra-
tions), num of VMs, cpuOversubscription, num of CPUs, etc.
In addition, we also consider configurable emulation environ-
ment parameters to be part of this category. E.g., Server’s num
of CPUs is considered a configurable variable since it can be
varied across emulation runs by picking Server types that have
varying number of CPUs. We define observed variables or
(performance) metrics as those that cannot be directly con-
figured using mechanisms or emulation parameter selection.
E.g., CPU usage, average latency seen by subscribers in a loca-
tion, percentage of failed UE handoffs, etc. Finally, workload
variables represent features of service workloads e.g., num
of UEs, request rates, etc. Values for these are encoded by
the domain expert or policy writer running the emulations.
E.g., their values can come from realistic traffic datasets, or
the policy writer may want to also use values that have not
been seen in realistic datasets. These can also be tagged as
emulation environment parameters in which case they are
used to control workload generation during emulation runs for

Table 1: Example variables in the SDI

Server VM Switch/Link VNF Service
location location location location topology Vars
status status status status numENB
rateStatusChange rateStatusChange |ifaceVariables type numSGW
totalMem totalMem rateStatusChange |totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU |type totalMem cpuUsage latency, throughput
cpuOversubscription |cpuUsage numCPU memUsage .
numAllocatedVM |memUsage version throughput |Workload
numRunningVM migrationVars type latency numUE
version, memUsage |numNeighborVM |cpuUsage topologyVars |rateOfRequests
cpuUsage, type osImage memUsage migrationVars|interarrival Time
ifaceVars ifaceVars propagationDelay | cacheVars num/rateOfMobility
concurrentVNF/Service

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

policy impact checking under various workload conditions.
Since these are not relevant to template instantiation they are
typically not captured as part the of SDI templates. However,
we extend the templates to add them.

The goal of DEpo is determining the impact of policies;
we define ‘impact’ systematically as follows. Policies when
activated, invoke object mechanisms, which in turn affect
or impact configuration variables (i.e., modify their values),
which in turn affect the observed variables (or performance
metrics), in the presence of workload variables (e.g., request
rates). We capture this entire trace, from policy, down to the
configuration and observed variables impacted. This is be-
cause both configuration and observed variable impacts can
be due to unintended consequences which were not part of
the policy writer’s intent. We consider a statistically signif-
icant change in the value of a variable as an impact on that
variable. Significance level is a tunable parameter (e.g., 95%
confidence using p-values with alpha set to 0.05). When a pol-
icy is tested, the correlated changes at the given significance
level, on object variables in the context of an object template
are output as impact.

Policy examples. Listings 1 to 6 show the pseudocode for
example policies used in the paper, written for our SDI envi-
ronment with the two services introduced earlier: EPC, and
a variation of EPC with edge cloud offloading (referred to
as SMORE in the paper). We consider if-then style policies
that are written in the context of mechanisms and variables
exposed by SDI object templates.

The policies are self-explanatory. Listing 1 shows a Server
update policy which applies available updates on all servers
in the edge cloud location. Listing 2 shows a Server policy
that enables CPU oversubscription by some threshold if the
CPU usage has been high i.e., it causes the SDI orchestrator
to pack more VMs on the Server instances by oversubscribing
the CPU resource. Listing 3 shows an EPC service policy for
SGW scale up. Listing 4 shows an SMORE service policy
for scale up of its webserver component. Listing 5 shows a
SMORE policy that enables caching for the webservers if
SMORE service’s subscribers are seeing a higher latency.
Finally, Listing 6 shows a cross-service policy where if some
EPC service’s subscribers are seeing a higher latency to an
Internet webserver, then the SMORE service is dynamically
enabled for specific subscriber UEs, i.e., selective edge cloud
offloading is enabled for this EPC instance for subscribers
mentioned in the subscriber list. This would include the SDI
orchestrator instantiating SMORE service components (e.g.,
webserver in the edge cloud), and configuring networking
(e.g., SDN rules) so that EPC traffic for specific subscribers
is diverted to the webserver in the edge cloud.

As seen from the listings, we allow the policy writer to
specify policy variables, such as, threshold variables, and the
associated range of values they can take. E.g., for Listing 2,

101

A.Syed et al.

the writer can specify the range taken by THRESH2 to be [10,
50, 100] to test only few oversubscription percentages, or [1 ..
100] to test percentage values ranging from 1 to 100. Since
the SDI is a very dynamic environment, hardcoding threshold
values does not always result in intended consequences. Thus,
during emulations, DEepo iterates on the given policy variables
(through a ‘knob turning’ process described later) and can
output the learnt impact seen for them.

Listing 1: Update server Listing 2: Oversubscribe

when:
Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%
then:
Server.setCPU_Oversub(oversubPerc =
THRESH2) //THRESH2 = 50%

when:
Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 3: Scaling SGW Listing 4: Scaling SMORE

when:
SMORE_Webserver. cpuUsage_5minAvg
>= THRESH //THRESH = 70%

when:
SGW. cpuUsage >= THRESH
//THRESH = 70%

then:
EPC. scaleUpSGW()

then:
SMORE . scaleUpWebserver ()

Listing 5: SMORE caching

Listing 6: SMORE offload

when:
SMORE . subscriberLatency_5minAvg >=
THRESH
//THRESH = 30ms
then:
SMORE . setCaching()

when:
EPC.subscriberLatency_10minAvg >=
THRESH
//THRESH = 30ms
then:
EPC.augmentSMORE (subscriberList)

3.2 Challenges and Solutions Overview

o Large number of knobs. There is typically a large number
of knobs or test environment variables that need to be varied
when testing a policy for impact. These include e.g., emula-
tion parameters and workload variables, as well as threshold
variables specified in the policy. A large number of knobs
can make the policy impact checking costly and it is also
non-trivial to manually set up test environments and perform
impact checking. In Depo, we deal with this by automating the
test environment generation using emulations, and perform
systematic impact checking using a greedy approach of knob
turning which first varies and explores knobs that result in
more information/knowledge gain in terms of their impact on
observed variables or performance metrics of interest.

e Dynamic environment and stale knowledge. SDI reduces
the time to market for introducing new (or updated) services
and/or components which makes it imperative to automate
the continuous learning of policies’ impacts. Traditional ap-
proaches and related work in policy impact learning that manu-
ally create siloed models and enable one-time learning cannot
work in this dynamic environment. Dero deals with this by
systematically modeling domain knowledge coupled with us-
ing templates that together allow automation of emulation
environment generations for testing the impact of policies.
DEepo continuously updates the knowledge base with each
emulation, adding to or improving existing knowledge about
impact relationships between SDI objects.

DEPO: A Platform for Safe DEployment of POlicy

o Layered architecture in SDI with different actors publish-
ing templates for object types related to their own domain. It
is non-trivial for policy writers to go through details of ev-
ery template and trace dependencies and impact flows. Also,
policy evaluation is dynamic and dependencies may exist at
runtime that were not easily extractable statically. E.g., SDI
enables newer operations, such as, dynamic changes to service
topology or architecture, that can make it non-trivial to figure
out generic relationships manually. In Depo, we use model-
ing using a knowledge based approach to deal with this and
systematically determine dependencies through inferencing
in the knowledge base. This inferencing also considers knowl-
edge annotations or modifications that occur due to DEpO’s
continuous learning approach. We couple this dependency
discovery with data analysis and ML based methods to find
the flow of impact among the dependent objects.

e Non-trivial to quantify variable-level relationships. While
domain experts may know dependency relationships between
various object types, however, it is non-trivial to discover and
quantify variable-level knowledge, e.g., how a Server’s CPU
oversubscription variable affects the hosted SGW’s processing
speed and in turn affects EPC service’s response time. Again,
this process is automated using our emulation framework and
subsequent data analysis that generates ML models that help
quantify variable-level impacts.

4 THE DEPO SYSTEM
4.1 Architecture Overview

The Depo architecture is shown in Figure 3 in the context of
a Software Defined Infrastructure (SDI) [1, 14, 46, 61]. The
SDI is a template-driven environment where an Orchestrator
receives service requests and makes use of Templates and a
Topology Database to instantiate virtualized service instances
on its managed infrastructure. Depo interfaces with the SDI
to run emulations and analyze the impact of policies on the
managed infrastructure and the service instances it hosts. We
assume that, for the purposes of emulation, DEpo has access to
a sandbox SDI instead of interfacing directly with a production
SDI (which is left as future work). This sandbox can be a lab
network associated with the production SDI.

Depo has two main components: the Policy Stager performs
the process of policy impact learning, and the Knowledge Base
records the learnt knowledge. The Knowledge Base consists
of a knowledge graph (KG) [23, 50] data structure which is
used to encode domain knowledge, and associated ML mod-
els created during the impact learning process. Section 4.2
discusses the knowledge modeling done by DEepo in detail
while Section 4.3) describes the impact checking process of
the Policy Stager.

A KG captures knowledge in the form of facts which are 3-
tuples of the form "entity1 relationship entity2" e.g.,

102

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

Software Defined Infrastructure Domain Experts Workloads Policies

S —
Topology DB ||

Orchestrator ||
|

|

I
\\/
| Static &

| dynamic

| information

(Emulation Environment)
. Ematon Envlonment)____ , N {
_ Fr———— — — — — — — —
| || Environment
| Control | Creator
| ‘/\ |
|
|

Knowledge
Base (Models)
S

|[Knowledge Graph | ML Models|
L — = J

- Ea

Figure 3: DEPo in the context of an SDI.

server hasVariable serverCpuUsage, or serverCpuUsage
affects VNFLatency. KG is populated with both static and
dynamic knowledge. Static Domain Knowledge is composed
of knowledge provided by Domain Experts in the form of
Knowledge Models that capture known relationships between
entities at all layers in the infrastructure, as well as knowledge
gleaned from Service and Topology information obtained
from the Service Template Repository and the Topology DB
in the SDI.

Dynamic knowledge includes knowledge learnt during the
policy impact checking process performed by the Policy Stager.
This involves the Stager using the SDI to create emulations, de-
ploying policies, and annotating the KG with dynamic knowl-
edge learnt through analyzing the information collected during
these emulations. This information comes from traces of Or-
chestrator actions and templates’ mechanism executions, and
monitoring logs from the infrastructure. To enable this, the
orchestrator and the templates are instrumented to log mech-
anism invocations (traces), and the policies themselves are
instrumented as well. The interface to the SDI makes these
logs available to the Policy Stager for analysis.

The Environment Creator in the Policy Stager takes poli-
cies as input, and generates suitable emulation environment
configurations and directs the SDI orchestrator to instantiate
them. It also generates configuration related to traffic work-
load variables and interfaces with the Traffic Generator to
control traffic generation in emulations. This allows policy
impact checking in varying workload conditions.

The Chaos Inducer is used by the Policy Stager to perform
chaos engineering [9] during these emulations, e.g., killing
servers and service component instances according to a given
failure distribution, or cause performance degradations to
create noise during emulation runs.

The Impact Quantifier analyzes the emulation logs and
systematically quantifies the policy’s impact, and in doing
so, the impact of configuration variables and mechanisms
available on object types that are referred to by these policies.
The main goal of this learning process is to annotate the KG
with learned knowledge about impact. If a generic relationship
is observed between X and Y such that X is seen to ‘affect’ Y,
then we create an ‘X affects Y’ relationship in the KG. Here,

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

X and Y can be mechanisms, variables, policies. Due to the
continuous learning process, the Policy Stager directs further
emulation creations using the Environment Generator based
on analyses from the Impact Quantifier.

4.2 Modeling Knowledge in KG

In this subsection, we describe the concept of a knowledge
graph (KG), and show how we organize knowledge in a KG
to facilitate and enable automated policy impact detection.

The unit of data storage and modeling in a KG is a fact,
a 3-tuple of the form (entityl relationship entity2),
where each entity is represented by a node in the KG and the
relationship is shown using an annotated edge connecting the
two related nodes. Multiple relationship edges with varying
annotations can exist between the nodes which allows us to
have different applications insert their own semantics over the
raw data in the KG by adding overlays created using different
relationship edges. Additionally, the nodes and relationships
can be annotated with properties. Specifically, we add times-
tamps as properties, since we have the notion of time as part of
our knowledge modeling. This allows KG to record changing
state of the SDI and our query primitives can accordingly do
time-based retrievals.

To enable generic inference, we use the concept of types
and instances to create generic models representing an SDI
environment. E.g., Figure 4 shows a high level view of such
a model. A small part of the KG model we build for the vir-
tualized EPC service is shown in Listing 7. The timestamp
property is only shown on one of the facts for brevity. As the
Listing shows, we encode generic model information from
Figure 4 as static knowledge in the KG itself which allows
our queries to be generic by only needing to understand the
semantics from the model in the figure and then using that
knowledge to query for specific instantiations of the model.
This allows the query primitives built on top of the KG to not
have any hardcoded domain knowledge about specific service
instances embedded within them.

The generic knowledge itself can be at two levels, e.g.,
as seen from Figure 4, Service is a generic object or type.
Then, EPC is an instance of that type and then EPC1 is a
specific instance of EPC itself. The generic knowledge model
at the first level is considered as static knowledge inserted
by domain experts at system initialization time into the KG.
Query and inferencing applications built on top of the KG need
to understand the semantics of the model at this level. E.g.,
they may need to know what a ‘hasComponent’ relationship
means, and how to use it to query for the components of
any object of type Service. The generic knowledge at the
second level does not need to be encoded within the query
primitives but does need to be inserted into the KG. E.g., for
an object of type Service, such as EPC, this involves taking
knowledge about the generic service topology, control and

103

A.Syed et al.

Service

Virtual

Physical
SDI Layers

Figure 4: Example model

data protocol interactions, state and configuration variables,
that exists in the heads of a domain expert, or in service and
component templates in an SDI orchestration platform [60,
64], and inserting them into the KG as specific instance of the
generic model. E.g., generic EPC relationships such as, EPC
hasComponent SGW need to be encoded here.

Note that various experts and vendors can encode knowl-
edge about their own templates or domains into the KG using
the extensible modeling approach shown in Figure 4.

Once we have this static knowledge in the KG, monitoring
applications can dynamically insert updates to the KG reflect-
ing the current state of the SDI (i.e., service and network
object instances like SGW1, or EPC1), and data-driven query
primitives and corresponding impact detection applications
can become possible. E.g., the orchestration of new service
instances like EPC1, EPC2 can be logged by the monitoring
module and inserted in the KG. This will cause new facts
that represent the service instances to become available in
the KG. E.g., facts about current protocol peerings, locations,
performance metrics, and configurations. VNF migrations,
load balancing, start and stop of components, configuration
changes, and other changes in the state of the SDI will cause
the KG to get updated accordingly.

A traditional query primitive in a KG is essentially a sub-
graph matching algorithm which takes as input one or more
tuples or a subgraph in which one or more of the edges and
nodes can be constant, acting as constraints, or they can be
variables, and the query primitives then finds the bindings for
those variables such that they follow the pattern dictated by the
constants. For example, Listing 8 shows a KG query, where

Listing 7: Knowledge Graph

EPC isA Service

Service hasComponent NF
EPC hasComponent NF

EPC1 hasType EPC

EPC2 hasType EPC

VNF isA NF

MME isA VNF

MME1 hasType MME

EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF

Server1 isA Server

Server2 hosts MME1
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Listing 8: Query

X_Var hasType EPC
X_Var hasComponent Y_Var
Return X_Var

DEPO: A Platform for Safe DEployment of POlicy

X_Var and Y_Var are variables while the rest are constants.
Running this query against the KG represented by Listing 7
will return the results [X_Var = EPC1; Y_Var = MME1] since
only EPC1 matches this pattern and not EPC2.

4.3 Dero Process

Given the policy to check for impact, DeEpo Policy Stager
learns its impact by emulating it in the SDI sandbox and learn-
ing from the collected logs. To be specific, it performs the
following three tasks.

(1) Generating emulation environment suitable for testing
this policy in the sandbox SDI.

(2) Running emulation in SDI sandbox by running traffic
through it and collecting logs.

(3) Learning impact and annotating domain knowledge
models by analyzing the collected logs.

As shown in Figure 5, these tasks can be divided into a total
of eight steps. The rest of the section describes these steps.

4.3.1 Generating emulation environment.

1. Parsing policy. In order to run emulations for the policy,
Depo first needs to generate an emulation environment which
contains the objects referenced by the policy, e.g., an EPC
policy will require instantiation of an EPC service in emula-
tion. Static parsing allows DEPo to extract the object types
referenced in the policy specification. E.g., parsing the policy
in Listing 3 will extract two object types: SGW and EPC. In
the rest of the section, we will refer to this policy as the SGW
scaling policy.

2. Extracting knowledge from KG. The statically extracted
(parsed) object types aren’t always sufficient to generate an
emulation for the given policy. E.g., if EPC object type was
extracted then each of its components will need to be instanti-
ated on objects of type ComputeNode (e.g., Server or VM),
however, these types were not explicitly specified in the policy.
Moreover, if the SGW scaling policy were written in a way
such that it only referenced a ‘component’ type such as SGW
(and not EPC), then Depo would need to get the ‘container’
type for SGW, i.e., the EPC service type, so that it can in-
stantiate EPC and all of its components on objects of type
ComputeNode. This is because DEPo cannot instantiate a de-
tached component in the emulation, instead instantiation will
need to happen at the service level. Availability of knowledge
based models helps Depo automate the process of obtaining
this information as follows.

For each parsed object from Step 1, Depo performs a ‘ra-
dius’ query that we implement on the KG to find a given object
type’s ‘neighbors’. Radius is a conservative query. It considers
logical/physical/protocol level neighbors. E.g., neighbors for
the SGW type will include the Service it is a component of
(encoded using componentOf relationships), SGW’s protocol

104

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

(3)
Learn impact
@)
Run emulation

Figure 5: Policy stager process diagram.

Parse policy
Extract know-
ledge from KG

Generate emul-
ation parameters

Orchestrate
emulation

Annotate
knowledge models
Collect logs

Run traffic

(1
Generate
— .
emulation
environment

neighbors (encoded using hasNeighbor relationships), and the
type of objects that can host an SGW (encoded using hosts
relationships). E.g., the KG will have facts such as, SGW isA
VNF, ComputeNode hosts VNF, Server isA ComputeNode,
Service hasComponent VNF, EPC isA Service, EPC hasCom-
ponent SGW, EPC hasComponent MME, etc. This knowledge
comes from the modeling approach performed by domain ex-
perts as explained earlier in Section 4.2, and from extraction
of knowledge from SDI templates. It is inserted into the KG at
bootstrapping time (shown in Figure 3 using static information
and domain experts labels).

Since generic knowledge related to neighbors (Figure 4) is
encoded in radius query’s implementation, this allows it to
be generic and still be able to retrieve specific relationships
about instances. E.g., radius understands generic concepts of
Service, Component, and hasComponent relationships, and so
knowledge about specific Service and Component instances
such as EPC and its S/PGW components is extracted by radius
automatically. Radius query thus allows DEpo to get a list of
the object types needed for emulation environment creation
for the given policy. For the SGW scaling policy where SGW
and EPC object types were statically parsed, Figure 6 shows
the result of the radius search that extracts their neighbors in
various directions. This forms the list of object types to be
created in emulation.

By finding object types that are related to the policy and
thus are under its impact radius, this Step 2 in the DEpo process
allows reduction in the number of object types that need to be
created in emulation for the given policy.

3. Generating emulation parameters. Each object from the
list of object types found at the end of Step 2 has configurable
variables that are tagged by the domain expert as emulation
environment parameters in the object’s template. E.g., number
of SGWs, and the number of its neighbor objects to create,
the types of servers, and VM sizes to generate for hosting
the SGWs and their neighbors, where VM.size, Server.type,
EPC.numSGW, etc. are configurable parameters. Similarly,
the workload that will be run on these emulation environments

eNodeB MM

E
hasNeighbor ___/

Figure 6: Update policy subgraph

hasComponent

SGW

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

also have workload variables that can be configured. E.g., rate
of requests, or number of clients. Finally, the threshold variable
THRESH can also be taken as an emulation parameter. We
term all of these as knobs that need to be turned, where each
configuration of the knob values can cause the policy to have
a different impact on the SDI.

In Depo, we use a process of knob turning to try out the
various knob configurations. By default, a new emulation is
used for each knob turn. However, we assume that knobs that
represent workload variables can be knob turned within the
same emulation, e.g., traffic rate can be varied within the same
emulation. Knob examples include configuration variables for
object types, e.g., EPC.numSGW, EPC.numPGW, Server.type,
VM.numCPU; and workload variables that can be used to con-
trol the workload generation process, e.g., EPC.requestRate,
EPC.numClients, Server.otherVMs (for creating server load
emulating other services and their VMs besides e.g., the one
EPC instance for our current policy example).

In short, this Step 3 takes the list of objects output at the
end of Step 2 and provides the list of knobs exposed by them
to the knob turning algorithm (described in Section 4.3.4).
4. Orchestrating emulation. The knob turning algorithm it-
erates on the range of values for each knob and outputs a
configuration of knob values. In this way, multiple knob con-
figurations are output by the algorithm, where each configura-
tion is then used by the Policy Stager to direct the orchestration
of emulation in the sandbox SDI.

4.3.2 Running emulation in SDI sandbox.

5. Running traffic. The Policy Stager configures the Traffic
Generator with the workload variable values output by the
knob turning. The traffic generator is configured to generate
traffic for various types of services present in the emulation.
The duration for the emulations is a tunable parameter.

6. Logs collection. Traffic generation causes the emulation
to generate logs. E.g., the logs collected for analysis include:
information about network and service object instances and the
logs for their state variables, and object instances’ mechanism
invocations (traces of policy action invocations).

4.3.3 Learning impact.

7. Logs analysis for impact checking. The analysis of these
logs gives us the specific object IDs (instances) whose mecha-
nisms were invoked by the policy and the state variable logs of
those objects. This list of objects is under the policy’s direct
impact radius.

Next, for each object ID in this list, we do a ‘radius’ query in
the KG which essentially traverses the neighbor relationships
this object has with other objects. This helps us get a list of
additional potentially impacted objects since they are neigh-
bors to the directly impacted objects we had found earlier. We
combine these two lists to create the (potentially) impacted
objects list. Thus, this list creation process filters out all other

105

A.Syed et al.

object instances in the SDI that are not under the policy’s
impact radius.

A policy’s impact travels from policy action — mechanisms
— configurable variables — observed variables, in the pres-
ence of emulation parameters and workload variables. The
goal of DEPO’s impact quantification is to find the presence
of this impact and attempt to quantify it by learning from
the collected logs and creating new models that capture the
impact (or updating them if they already exist, with new logs).
Multiple policies can use the same mechanisms and so it is
useful to determine and record the relationship between mech-
anisms and configurable variables, and between configurable
and observed variables.

For a given policy’s action, first, the Impact Quantifier re-
trieves the during-action-execution, before-action-execution,
and after-action-execution logs. How far into the past to get
the logs from is controlled by TBefore and how far into the
future to get the logs from is controlled by TAfter. Both are
tunable parameters and can be set globally or per variable.
The Quantifier performs before-during and before-after com-
parison of all variables that exist on objects in the object list
from earlier. A 2-sample Kolmogorov-Smirnov (KS) test [40]
is used for this comparison. Given two distributions, KS re-
turns a difference statistic D, and a p-value. The ‘alpha’ value
for KS is a tunable parameter. If the output p-value is less
than or equal to the alpha value then the two distributions are
considered significantly different.

Thus, the output of the KS tests gives us a table of mappings,
{variable : CHANGE}, for all variables on the objects in our
list, where CHANGE is a boolean variable with ‘yes’ if the
KS test found that it was impacted by the policy, and ‘no’
otherwise. Note that, we combine the results for similar objects
e.g., all object instances of type Server, thus larger number
of instances depicting a large scale network in the emulation
increases accuracy of the KS test since more data samples
are generated. The KS test reduces the number of variables
under consideration. Next, the Quantifier creates a list with
all variables that have CHANGE=yes in the table. The list is
further divided into two lists, for configurable variables, and
observed variables.

Supervised regression or classification machine learning
models can now be created where the configurable variables
are taken as features, and their specific effect is observed on
the observed variables of interest (e.g., latency, usage). DEro
takes a pluggable list of regression and classification model
implementations and selects one of them automatically using a
grid search technique that decides which one to select depend-
ing on whether the data is continuous (regression selected) or
categorical (classification), and the resulting accuracy of the
model. During the search, the dataset is divided into training
and test sets with specific percentages (e.g., 20% as test data,
80% as training). k-fold cross validation [66] is used to further

DEPO: A Platform for Safe DEployment of POlicy

test for bias and produce model accuracy values, the model
with the highest accuracy value is chosen.

While the earlier KS tests tell us that there is ‘an impact’ or

‘an effect’ between the configurable and observed variables
(a Yes/No answer), the machine learning models enable more
fine-grained impact finding and capture knowledge about the
type of relationships (e.g., linear, non-linear, exponential, etc.),
and the environment in which these relationships apply (e.g.,
other environment variables captured as features in the mod-
els). Note that one model is created for each observed variable
under consideration (where CHANGE=yes was observed),
where the configurable variables serve as features, and the
observed variable as the dependent variable.
8. Annotating domain knowledge models. The models and
probabilities learnt are recorded for later querying by policy
writers, and are continually updated when more logs get col-
lected through new emulations, multiple policy triggerings
in time within the same emulation, or a policy triggering in
the same emulation but on multiple similarly typed objects
(object instantiations of the same template).

The variables that were tagged as having CHANGE=yes
earlier are recorded within the KG as ‘affects’ relationships
among variables, mechanisms, and policies. These ‘affects’
relationship edges are annotated with the p-values obtained
using KS tests mentioned earlier. We use Fisher’s method
[20, 24] of combining p-values when we update existing facts
with new results. This combining process depicts increase
or decrease in the strength of the affects relationships. That
is, due to these updates, if the p-value on an affects relation-
ship becomes less than or equal to a given alpha value (e.g.,
common alpha is 0.05 for getting 95% confidence) then it
depicts the KG nodes connected by the affects relationship
have a statistically significant affect on each other (e.g., with
95% confidence if alpha is set to 0.05). Thus over time, DEpo
allows continuous learning by either adding new affects edges
or by updating existing ones and thus helps in improving the
knowledge model over time.

Depo allows domain experts to encode affects relationships
between variables based on their past knowledge and assump-
tions at bootstrapping time of the knowledge model. However,
these may not always be correct. The continuous learning ca-
pability of Depro helps here by allowing automatic correction
of this knowledge using new logs collected through emulation
runs. Thus Depo can correct existing affects relationships or
create new ones if they are missing in the knowledge model
but are learnt through emulations. Note that while Depo can
deal with such incorrect or missing knowledge, however, it
cannot automatically deal with missing object types or vari-
ables. Depo assumes that static knowledge obtained from
templates is complete and correct, e.g., knowledge about com-
ponents of a service, the configurable, observed, and work-
load variables, and the available object mechanisms. This is a

106

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

reasonable assumption given that there is an immense push
in the industry for standardization efforts for SDI templates
[14, 17,32, 46, 61, 64].

4.3.4 Knob Turning. The goal of knob turning is to try out
various configurations of objects in emulations in order to
test the policy’s impact on observed variables (e.g., latency,
throughput). Since we assume no domain knowledge about
what effect the various values of the configurable variables
will have on the observed variables, so we use a process of
coordinate descent, where a coordinate is a configurable vari-
able, and pick N number of uniformly distributed values for
this variable. The uniform distribution allows us to approxi-
mately cover the entire range of the variable and is the best
approach in the face of no prior knowledge.

These N values become the starter set to begin creating the
emulations and trying out the policy within them. As described
later, we collect the results of emulation runs and generate a
dataset that can be used for creating machine learning mod-
els which depict the effect of the starter set on the observed
variables. We split the dataset collected and use part of it to
train the models, and the other part is used as ground truth to
test the accuracy of the models. If the accuracy is lower than a
threshold for the starter set, we generate more values through
knob turning and collect more data through emulations.

For configuration variables whose range is numeric or ranked
i.e., the range of values have some pattern (e.g., EPC. numSGW
is a numeric variable, while Server.type can be a ranked vari-
able with the ranking done in terms of numCPUs on each
machine type), we can follow the following greedy procedure
to more smartly generate the knob turns if the model accuracy
for the starter set turns out to be low.

The starter set values for a given variable divide the vari-
able’s range into multiple intervals. E.g., if the range of a
numeric variable is 1 to 100, and the starter set contains 10,
43,79, then 3 intervals are created. Set a minimum interval
size after which exploration through emulations should stop.
For each interval, if the interval size is above the minimum
size threshold, then take the dataset collected so far through
emulations, and pick M samples from the dataset such that
they all belong to the given interval. Use the model created
from the dataset so far and input the M samples as feature
values and predict the observed variable i.e., the dependent
variable in the model. Similarly, calculate the prediction ac-
curacies for the other intervals. Ignore the intervals that have
acceptable accuracy. From the intervals with accuracy lower
than threshold, pick the widest interval with the highest in-
accuracy value and perform the recursive process of picking
starter values from this interval and performing emulations to
get more data for them, then rechecking the accuracies for all
past and newly generated intervals, and exploring the widest
interval with the highest accuracy.

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

This procedure allows us to find the widest intervals that
are the most inaccurate according to the calculated machine
learning models, thus allowing us to greedily explore in those
intervals that will give us the most gain in terms of reducing
uncertainty in the model. A stopping condition can be set
using parameters for the smallest interval size threshold after
which exploration should stop, and/or an accuracy threshold
after which the exploration should stop, and/or max number
of emulations to run threshold which can be useful since
a low accuracy score for the models may not always mean
more emulations will help since it might be an issue related
to missing variables, or incorrect variable creation by the
domain experts, such issues cannot be automatically found
since DEpPo cannot learn about variables that are non-existent
for it. Note that when the knob turning process generates a
configuration of various knob values, and Dero attempts to
generate an emulation environment using those knob settings
using the orchestrator, the orchestrator checks the validity of
the configuration to see if it can be instantiated.

S IMPLEMENTATION AND EVALUATION

Environment setup and workload. We extend the SDI orches-
trator and common service and object templates from prior
work published in the community [12, 61]. We modify the
templates with additional mechanisms and variables to allow
creation of richer policies. We use Drools [53] for policy speci-
fication. For serving as the emulation environment, we created
a prototype SDI in the Phantomnet mobility testbed [7, 41]
as shown in Figure 7. Our SDI consisted of a combination
of server types available in Phantomnet (pc3000, d710, d430,
d820) over which virtualized infrastructure and services can
be instantiated by the SDI orchestrator as needed for emula-
tions. For workload generation in emulations, depending on
extracted service types in the DEPO process, we created preset
workload generators. These include generators for orchestra-
tion and service management request generations e.g., service
instantiations, deletions, scaling requests, and also include UE
traffic generation based on configurable parameters where the
parameters are configured and varied as part of Depo’s knob
turning.

|
ooo oo
[eNodeB] o0
oo |
e |DOO —{ sDN
LTE [[eNodeB || | “~-on - 00
mn| oo

Core compute in

multiple locations
Emulated RAN with edge

compute in multiple locations

Figure 7: Topology in testbed. Multiple locations repre-
sent residential, and business and touristy areas.

107

A.Syed et al.

Policy impact. Listings 1 to 6 show our usecase policies.
Depo outputs and learns the trace of each policy as it invokes
mechanisms on SDI objects, affecting their configuration vari-
ables, which in term impact the observed variables.

E.g., Listing 11 shows the SDI-level edge-server update
policy’s invoked mechanisms. The policy action had taken
the strategy: Divide the servers to be updated in two batches,
update one batch at a time by migrating VMs to available
servers and stopping the remaining VMs, install updates then
restart VM and VNF. Table 2 shows DEepo learns the find-
grained impact from the various mechanisms invoked by the
policy, on objects and their variables. The table captures only
those object variables that the policy impacted in a statistically
significant way, as seen from calculating p-values and setting
their alpha to 0.05 (for 95% confidence). Recording this in
the KG allows Depo to know which mechanisms have impact
on which variables, which helps Depo in the emulation envi-
ronment generation phase by reducing the policy’s potentially
impacted neighbors, meaning that knob turning has to be done
on less object variables in newer iterations of emulations. This
is also useful for the policy writer since it traces their policy
across various SDI objects.

While Table 2 shows a detailed trace useful for the contin-
uous impact checking process, DEpo outputs a summary of
object variables impacted to the policy writer. E.g., for the
SGW scaling policy, Listing 12 is output. Listings 9 and 10
show some more output examples (for SMORE edge cloud
offloading related policy for turning on caching, and enabling
edge cloud offloading functionality dynamically on EPC).

Table 2: Affected variables learned for update policy.

Variables
Server.[status, version, numVM,
memUsage, cpuUsage,
percentFailedMigrations],

VM. [status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]
Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]
Server.[numVM, memUsage,
cpuUsage], VM. [status, memUsage,
cpuUsage], VNF.[status, memUsage,
cpuUsage], Service.[smoreLatency]
Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]
Server.[memUsage, cpuUsage],

VM. [status, memUsage, cpuUsage],
VNE.[status, memUsage, cpuUsage],
Service.[smoreLatency]
Server.[status,

version, memUsage, cpuUsage]
Server.[status, memUsage,
cpuUsage]

Server.[memUsage, cpuUsage],

VM. [status, memUsage, cpuUsage]
Server.[memUsage, cpuUsage],
VM.[memUsage, cpuUsage],

VNF [status, memUsage, cpuUsage],
Service.[smoreLatency]

Mechanisms
PolicyAction:update

Server.migrateVM

Server.sendVM

Server.receiveVM

VM.stop

Server.installUpdate

Server.reboot

VM.start

VNFE.start

DEPO: A Platform for Safe DEployment of POlicy

Listing 9: Affected variables for various object types in
SMORE caching policy use-case.

PolicyAction:setCaching

smore_cachingStatus
smore_latency
SMORE_Loadbalancer:
smore_loadbalancer_cachingStatus
smore_loadbalancer_availableCacheSize
smore_loadbalancer_usedCacheSize
smore_loadbalancer_resourceFrequencyOfAccess
SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

Listing 10: Affected variables for various object types in
EPC offloading to SMORE policy use-case.

PolicyAction:augmentSMORE

Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

VM:
vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage

SMORE :
smore_latency

SMORE_Loadbalancer:
smore_loadbalancer_webserverNumConnections
smore_loadbalancer_webserverPercentOfConnectionsWorking
smore_loadbalancer_resourceFrequencyOfAccess

SMORE_Switch:
smore_switch_status
smore_switch_routeConfig

SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus

smore_webserve r_memUsage

smore_webserver_cpuUsage
smore_webserver_resourceFrequencyOfAccess

Listing 12: Affected variables for
scaleUpSGW policy.

PolicyAction:scaleUpSGW
Server:
server_numVM
server_cpuUsage

Listing 11: Invoked

mechanisms hierar- server_menlsage
server_allocated_mem
Chy fOI‘ SerVeI' update server_num_allocated_cpu
VM:
licy. vm_status
pO Cy vm_networkConfig
PolicyAction:update xﬁ’ﬁgﬁﬂzzg:
Server.migrateVM EPC: - g
Server. receivevi epc_nunSGH
VM. sto . epc_latency
-Stop SGW:

Server.installUpdate
Server.reboot
VM.start

VNF.start

sgw_status

sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking

sgw_cpuUsage
sgw_memUsage
MME :
mme_numSGW
mme_sgwNumConnections
mme_sgwPercentOfConnectionsWorking

Continuous learning from multiple emulations using knob
turning. In the data analysis for our policies, we tested ML
model creation based on polynomial regression, SVM based
regression, and boosted decision tree (DT) based regression
from scikit-learn and XGBoost libraries [57, 67]. All three
of these are for supervised learning as required by the Depo

108

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

process. We found DT models to perform better than or equiv-
alent to other types of models, in terms of model accuracy
(calculated using automated k-fold technique [66] with 80%-
20% dataset split into training and test datasets). And so used
that as the default model in our prototype.

In order to test the usefulness of performing our knob turn-
ing approach when creating emulations, we tested out our
three SMORE service related policy examples in DEpo us-
ing all possible emulation knobs and recorded the generated
datasets, we call this set of datasets: the ground truth. This
ground truth set is only collected for the purposes of DEpo
evaluation so that we can evaluate the models generated using
the knob turning approach of Depo.

Next, we started a normal policy impact checking test for the
three policies using the Depo process. During the process, the
first emulation using results in an overall ML model that cap-
tures the dependent or observed variable (SMORE response
time in our case). Then each new emulation resulting from the
knob turning approach causes, on average, improvement of the
previously built model. To evaluate that newer emulations ac-
tually result in model improvement, we compare the generated
model from each emulation iteration, with the ground truth
mentioned above. We compare the model accuracy by calcu-
lating the error between the model’s prediction for SMORE
response time, and the ground truth. Figure 8 shows that on
average, our knob turning approach causes newer emulations
to reduce this error thus showing it improves the models using
its greedy approach.

3
w
(%]
=
T1
N
E
5-1 t {
z 0 8 16
Iteration #

Figure 8: Normalized mean squared error (NMSE) calcu-
lated over error between ground truth, and predictions of
model created by DEpo as it is improved through increas-
ing number of emulation iterations.

Variable reduction and cause of impact. Knowledge-based
model learnt from emulations in Depo allows operators to find
‘what’ was the cause of impact on observed variables of in-
terest. E.g., our Server CPU oversubscription policy invokes
mechanisms on different SDI object instances, and causes their
configuration variables to change, which ultimately results in
impact on observed variables, e.g., SMORE response time.

We use our generated ML models to quantify the impact
that each of the invoked mechanisms has on various configu-
ration variable, which in turn affect observed variables. E.g.,
Table 3 shows relative impact caused on SMORE response

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

40

Time (s)
Time (s)

20
20 0 500 1000 0

20 70 120 # Concurrentinsertions
component orchestrations

Figure 9: Orchestration time. ~ Figure 10: KG insertion time.

time by the various configuration variables modified by the
policy, the various emulation environment parameters (such
as num of neighboring VMs), and the workload variables (e.g.,
SMORE request rate). Thus, in figuring out the policy impact
on a given observed variable, DEpo considerably reduced the
potentially impacted object types and variables down from
the ones shown in Table 1. The statistical significance testing
(with significance alpha value set to 0.05 or 5%) is embedded
in DEPO process and helps ensure correctness.

Performance results. Here, we present performance results
for each stage of the Depo process to show the scalability of
our approach and use of the KG data structure.

Dero’s policy parsing time is impacted by the policy size,
which is dependent on the number of object types and actions
in the policy specification. Figure 11 shows this effect for
policies specified in Drools [53]. The time stays below 5s for
up to a 1000 object types and actions. Since the number of
objects and actions in our example policies were small, we
show scalability by generating policies using arbitrary object
types and actions and running the parser on them.

Figure 12 shows the time for emulation parameter gener-
ation using our knob turning approach. As described in the
Depo process earlier, this stage is dominated by time spent on
queries into the KG for searching neighbor object types that
are potentially under impact radius of the object types parsed
from the policy. The time is thus affected by the number of
neighboring objects N, that exist in the KG for a given object
type parsed from the policy. So, in order to show scalability for
this phase, we add increasing number of semantically correct
but arbitrary relationships among KG nodes in a controlled
fashion. Figure 12 shows the time for parameter generation
stage for different values of N. Since multiple object types can
be parsed from a given policy, parameter generation stage will
have to perform KG queries for extracting neighbors of each
of the parsed object types. Thus, the same figure here also

Table 3: Effect of Server CPU oversubscription policy on

SMORE response time.
Variables Importance
VM.cpuUsage 0.254
VM.numNeighborVMs 0.002
Server.cpuUsage (aggregate) | 0.298
Server.oversubscription 0.289
SMORE.requestRate 0.157

t
500

Policy size (# objects/actions)

Figure 11: Policy parsing time.

109

A.Syed et al.
N =50

8 N=25 30

. |-=N=10 . : —
s N=5 . 220

2 ®
PR 2L F 10

1000 e i o

1 Y

800

0 40
500 900 # logs analyzed (in thousands)

Concurrent queries

Figure 12: Parameter generation ~ Figure 13: Data analysis time.

time.

shows effect of such concurrent queries on the KG. Our cor-
rectness checking assertions showed that the queries are able
to retrieve all objects types that had been created as neighbors
in the KG.

Figure 9 shows the emulation environment generation time,
which is essentially the SDI orchestration time for the various
object types that need to be instantiated for a given emulation.
The figure shows time stays below 40s for up to 125 SDI
object instance creations, where instances are for various types
of object templates available to us and are instantiated and
configured in parallel where possible (e.g., a host VM has to
be instantiated before the VNF it will host).

Figure 13 shows the data analysis stage average time for our
policies, which is dominated by the concurrent KS tests and
ML model generations. The figure shows the time stays low as
number of logs used for the analysis increases by increasing
duration and number of emulations. The number of logs de-
pends on the number of object variables related to the policy
and the logging frequency. We set this frequency for observed
variables (e.g., latency) to be 1s in the SDI monitoring module,
and the configuration variable changes that happen through
software were logged whenever the software updated them.

Time for final stage of DEpo process is dominated by anno-
tating the KG based on the knowledge learnt in data analysis.
Figure 10 shows fact insertions (shown as equivalent to ex-
isting fact updates), the time stays below 3s for up to 1000
concurrent insertions.

6 CONCLUSION

We presented Depo for policy impact checking in an SDI
environment. It performs continuous learning of impact using
emulations under varying conditions, and takes a statistical
and machine learning based analysis approach on the data
obtained from emulations. DEpoO’s data analysis enables it to
discover and quantify the impact of policies on SDI objects in
the same or different layers.

7 ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers and our
shepherd Honggiang Liu for their valuable comments. This
work is supported in part by the National Science Foundation
under grant numbers 1302688 and 1647264.

DEPO: A Platform for Safe DEployment of POlicy

REFERENCES

[1] 2016. ECOMP (Enhanced Control, Orchestration, Management and Pol-
icy) Architecture White Paper. ATT Inc. http://about.att.com/content/
dam/snrdocs/ecomp.pdf

5GPPP. 2015. 5G Vision - The 5G Infrastructure Public

Private Partnership: the next generation of communication net-

works and services. https:/5g-ppp.eu/wp-content/uploads/2015/02/

5G-Vision-Brochure-v1.pdf.

J.G. Andrews, S. Buzzi, Wan Choi, S.V. Hanly, A. Lozano, A.C.K.

Soong, and J.C. Zhang. 2014. What Will 5G Be? Selected Areas in

Communications, IEEE Journal on (2014).

Bilal Anwer, Theophilus Benson, Nick Feamster, and Dave Levin. 2015.

Programming slick network functions. In Proceedings of the 1st acm

sigcomm symposium on software defined networking research. ACM,

14.

[5] AT&T. 2013. AT&T Domain 2.0 Vision White Paper. https://www.att.

com/Common/about_us/pdf/ AT&TDomain2.0VisionWhitePaper.pdf.

[6] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawan-

abe, Katja Hansen, and Klaus-Robert MAZller. 2010. How to explain

individual classification decisions. Journal of Machine Learning Re-

search 11, Jun (2010), 1803-1831.

Arijit Banerjee, Junguk Cho, Eric Eide, Jonathon Duerig, Binh Nguyen,

Robert Ricci, Jacobus Van der Merwe, Kirk Webb, and Gary Wong.

2015. Phantomnet: Research infrastructure for mobile networking,

cloud computing and software-defined networking. GetMobile: Mobile

Computing and Communications 19, 2 (2015), 28-33.

Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera,

Kobus Van der Merwe, and Sampath Rangarajan. 2015. Scaling the LTE

control-plane for future mobile access. In Proceedings of the 11th ACM

Conference on Emerging Networking Experiments and Technologies.

ACM, 19.

Cory Bennett and Ariel Tseitlin. 2012. Chaos monkey released into the

wild. Netflix Tech Blog 30 (2012).

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, et al. 2014. P4: Programming protocol-independent packet

processors. ACM SIGCOMM Computer Communication Review 44, 3

(2014), 87-95.

Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and Paramvir Bahl. 2008.

Automating Network Application Dependency Discovery: Experiences,

Limitations, and New Solutions.. In OSDI, Vol. 8. 117-130.

Junguk Cho, Binh Nguyen, Arijit Banerjee, Robert Ricci, Jacobus

Van der Merwe, and Kirk Webb. 2014. SMORE: software-defined

networking mobile offloading architecture. In Proceedings of the 4th

workshop on All things cellular: operations, applications, & challenges.

ACM, 21-26.

[13] Cisco. 2015. Vector Packet Processing (VPP).

[14] CORD. 2019. Central Office Rearchitected as a Datacenter
(CORD). http://opencord.org/wp-content/uploads/2016/03/CORD-
Whitepaper.pdf. Accessed: 10-01-2018.

[15] Bassam Eljaam. 2005. Customer satisfaction with cellular network
performance: Issues and analysis. (2005).

[16] ETSI. 2019. Network Functions
http://www.etsi.org/technologies-clusters/technologies/nfv.
cessed: 10-01-2018.

[17] ETSI. 2019. Open Source MANO (OSM). https://osm.etsi.org/.

[18] Seyed K Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas
Sekar. 2016. BUZZ: testing context-dependent policies in stateful
networks. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). 275-289.

[2

—

(3]

[4

—

3
|

[8

[l

[9

—

[10]

[11]

[12]

Virtualisation (NFV).
Ac-

110

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

[19] Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP configura-
tion faults with static analysis. In Proceedings of the 2Nd Conference on
Symposium on Networked Systems Design & Implementation-Volume 2.
USENIX Association, 43-56.
Ronald A Fisher. 1925. Statistical methods for research workers Oliver
and Boyd. Edinburgh, Scotland 6 (1925).
P. A. Frangoudis, L. Yala, A. Ksentini, and T. Taleb. 2016. An ar-
chitecture for on-demand service deployment over a telco CDN. In
2016 IEEE International Conference on Communications (ICC). 1-6.
https://doi.org/10.1109/ICC.2016.7510921
Jose Manuel Navarro Gonzalez, Javier Andion Jimenez, Juan Car-
los Duenas Lopez, et al. 2017. Root Cause Analysis of Network Failures
Using Machine Learning and Summarization Techniques. IEEE Com-
munications Magazine 55,9 (2017), 126-131.
Google. 2019. Google Inside Search: The Knowledge Graph.
http://bit.ly/2cKZ3cO. Accessed: 10-01-2018.
Jessica Gurevitch, Julia Koricheva, Shinichi Nakagawa, and Gavin Stew-
art. 2018. Meta-analysis and the science of research synthesis. Nature
555, 7695 (2018), 175.
J. Gil Herrera and J. F. Botero. 2016. Resource Allocation in NFV: A
Comprehensive Survey. IEEE Transactions on Network and Service
Management 13, 3 (Sept 2016), 518-532. https://doi.org/10.1109/
TNSM.2016.2598420
DPDK Intel. 2015. Data plane development kit.
Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. 2013. Real time network policy
checking using header space analysis. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). 99-111.
Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header space analysis: Static checking for networks. In Presented as
part of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12). 113-126.
Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. 2013. Veriflow: Verifying network-wide invariants
in real time. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). 15-217.
Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Exam-
ples are not enough, learn to criticize! criticism for interpretability. In
Advances in Neural Information Processing Systems. 2280-2288.
Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Inter-
pretable decision sets: A joint framework for description and prediction.
In Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 1675-1684.
[32] Linux. 2019. Open Network Automation Platform (ONAP).
https://www.onap.org/. Accessed: 10-01-2018.
[33] Zachary C Lipton. 2016. The mythos of model interpretability. arXiv
preprint arXiv:1606.03490 (2016).
[34] Hongqgiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan.
2017. Crystalnet: Faithfully emulating large production networks. In
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 599-613.
Nuno P Lopes, Nikolaj Bjgrner, Patrice Godefroid, Karthick Jayaraman,
and George Varghese. 2015. Checking Beliefs in Dynamic Networks..
In NSDI. 499-512.
Ajay Mahimkar, Zihui Ge, Jia Wang, Jennifer Yates, Yin Zhang, Joanne
Emmons, Brian Huntley, and Mark Stockert. 2011. Rapid detection of
maintenance induced changes in service performance. In Proceedings
of the Seventh COnference on emerging Networking EXperiments and
Technologies. ACM, 13.

(20]

(21]

(22]

(23]

(24]

[25]

[26]
(27]

(28]

[29]

(30]

[31]

(35]

[36]

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

[37] Ajay Mahimkar, Zihui Ge, Jennifer Yates, Chris Hristov, Vincent Cor-
daro, Shane Smith, Jing Xu, and Mark Stockert. 2013. Robust as-
sessment of changes in cellular networks. In Proceedings of the ninth

ACM conference on Emerging networking experiments and technologies.

ACM, 175-186.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P

Godfrey, and Samuel Talmadge King. 2011. Debugging the data plane

with anteater. In ACM SIGCOMM Computer Communication Review,

Vol. 41. ACM, 290-301.

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-

chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and

the art of network function virtualization. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Implementation.

USENIX Association, 459-473.

Frank J Massey Jr. 1951. The Kolmogorov-Smirnov test for goodness

of fit. Journal of the American statistical Association 46,253 (1951),

68-78.

[41] Mobile Networking
https://phantomnet.org/.

[42] Timothy Nelson, Christopher Barratt, Daniel] Dougherty, Kathi Fisler,
and Shriram Krishnamurthi. 2010. The Margrave Tool for Firewall
Analysis.. In LISA. 1-18.

[43] NGMN Alliance. 2014. 5G White Paper-Executive Version. White
Paper, December (2014).

[44] Nokia. 2015. Reinventing telcos for the cloud.
//metworks.nokia.com/sites/default/files/document/reinventing_
telcos_for_the_cloud_white_paper.pdf.

[45] Magnus Olsson, Stefan Rommer, Catherine Mulligan, Shabnam Sultana,
and Lars Frid. 2009. SAE and the Evolved Packet Core: Driving the
mobile broadband revolution. Academic Press.

[46] Open Network Automation Platform. 2017. ONAP Architecture
Overview. https://www.onap.org/wp-content/uploads/sites/20/2018/
06/ONAP_CaseSolution_Architecture_0618FNL.pdf.

[47] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of NFV..
In OSDI. 203-216.

[48] M Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al. 2014.

Mobile-Edge Computing Introductory Technical White Paper. White

Paper, Mobile-edge Computing (MEC) industry initiative (2014).

Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,

Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,

et al. 2015. The Design and Implementation of Open vSwitch.. In NSDI.

117-130.

Ren Quinn, Josh Kunz, Aisha Syed, Joe Breen, Sneha Kasera, Rob Ricci,

and Jacobus Van der Merwe. 2016. KnowNet: Towards a knowledge

plane for enterprise network management. In Network Operations and

Management Symposium (NOMS), 2016 IEEE/IFIP. IEEE, 249-256.

Frak Rayal and Joe Madden. 2015. Cloud RAN is a disruptive

technology. Here’s why. http://www.fiercewireless.com/tech/story/

cloud-ran-disruptive-technology-heres-why/2015-01-20.

Saqib Raza, Yuanbo Zhu, and Chen-Nee Chuah. 2011. Graceful network

state migrations. IEEE/ACM Transactions on Networking (TON) 19, 4

(2011), 1097-1110.

[53] RedHat. 2019. Drools: Rule Language. https://red.ht/2X099VQ. Ac-
cessed: 10-01-2018.

[54] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why
should i trust you?: Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 1135-1144.

[55] Marko Robnik-Sikonja and Igor Kononenko. 2008. Explaining classifi-
cations for individual instances. IEEE Transactions on Knowledge and
Data Engineering 20, 5 (2008), 589-600.

[38]

[39]

[40]

Testbed. 2019. PhantomNet.

http:

[49]

[50]

[51]

[52]

111

A.Syed et al.

[56] Jonathan Rodriguez (Ed.). 2015. Fundamentals of 5G Mobile Networks.
John Wiley & Sons.

SciKit-Learn. 2019. Machine Learning in Python.
learn.org/. Accessed: 10-01-2018.

Peng Sun, Ratul Mahajan, Jennifer Rexford, Lihua Yuan, Ming Zhang,
and Ahsan Arefin. 2015. A network-state management service. ACM
SIGCOMM Computer Communication Review 44, 4 (2015), 563-574.
Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi
Zeng. 2016. Robotron: Top-down Network Management at Facebook
Scale. In Proceedings of the 2016 conference on ACM SIGCOMM 2016
Conference. ACM, 426—4309.

[57] http://scikit-

(58]

[59]

[60] Aisha Syed. 2019. Proteus in PhantomNet.
https://wiki.emulab.net/wiki/phantomnet/proteus. Accessed:
10-01-2018.

[61] Aisha Syed and Jacobus Van der Merwe. 2016. Proteus: a network
service control platform for service evolution in a mobile software
defined infrastructure. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 257-270.
Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster,
and Mostafa Ammar. 2008. Answering what-if deployment and config-
uration questions with wise. In ACM SIGCOMM Computer Communi-
cation Review, Vol. 38. ACM, 99-110.

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,

Antony Rowstron, Tom Talpey, Richard Black, and Timothy Zhu. 2013.

IOFlow: a software-defined storage architecture. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,

182-196.

[64] TOSCA. 2013. Topology and Orchestration Specification for Cloud
Applications (TOSCA) Primer Version 1.0.

[65] Verizon. 2019. Verizon Service Bundles. https://goo.gl/6iVr{N.

[66] Wikipedia. 2019. k-fold Cross Validation.
https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-
fold_cross-validation. Accessed: 10-01-2018.

[67] XGBoost. 2019. Optimized Distributed Gradient Boosting Library.

https://xgboost.readthedocs.io/en/latest/. Accessed: 10-01-2018.

Geoffrey G Xie, Jibin Zhan, David A Maltz, Hui Zhang, Albert Green-

berg, Gisli Hjalmtysson, and Jennifer Rexford. 2005. On static reacha-

bility analysis of IP networks. In INFOCOM 2005. 24th Annual Joint

Conference of the IEEE Computer and Communications Societies. Pro-

ceedings IEEE, Vol. 3. IEEE, 2170-2183.

Danyang Zhuo, Qiao Zhang, Xin Yang, and Vincent Liu. 2016. Canaries

in the Network.. In HotNets. 36-42.

[62]

[63]

[68]

[69]

