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ABSTRACT
The emergence of network functions virtualization (NFV) and
software defined networking (SDN) has resulted in networks
being realized as software defined infrastructures (SDIs). The
dynamicity and flexibility o�ered by SDIs introduces new
challenges in ensuring that policy changes do not result in
unintended consequences. These can range from the break-
down of basic network invariants to degradation of network
performance. We present the D��� framework that enables
automated discovery and quantification of the potential im-
pact of new orchestration and service level SDI policies. Our
approach uses a combination of knowledge modeling, data
analysis, machine learning, and emulation techniques in a
sandbox SDI. We demonstrate our approach by evaluating it
over a testbed SDI with a 4G LTE/EPC broadband service.

CCS CONCEPTS
• Networks � Network management; Programmable net-
works.

1 INTRODUCTION
Emerging software defined infrastructures (SDIs), consist-
ing of software defined networking (SDN), network func-
tions virtualization (NFV), cloud computing, etc. are being
embraced by network service providers and equipment ven-
dors [5, 32, 44, 48]. The inherent flexibility and agility of an
SDI environment is enabling better resource management [25],
rapid service composition [46, 65] with virtualized network
functions (VNF) [4, 16, 39, 47], dynamic service deployment
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and evolution [21, 61], custom data planes [10, 13, 26, 49],
and control plane modifications [8, 63]. SDIs are anticipated
to be key enablers for future mobile network architectures and
related services being developed for 5G [2, 3, 43, 44, 51, 56].

There is immense push in the industry and academia to-
wards closed-loop, policy-driven control platforms for the
SDI ecosystem [1, 5, 14, 16, 17, 38, 46, 58, 61, 64]. The SDI
control platforms being proposed consist of controllers and
orchestrators (with an associated policy engine) that utilize
network and service templates (specifications) to automate the
workflows used for managing the physical and virtual infras-
tructure that creates the SDI, and for the composition, instanti-
ation, evolution, and lifecycle management of the services that
run on top of it. The way automation is expected to be done and
change enacted in this ecosystem, is through policies deployed
via the policy engine. Policies are essentially rules, conditions,
requirements, constraints, attributes, or needs that must be
provided, maintained, and/or enforced. At a lower level, policy
involves machine-readable rules enabling actions to be taken
based on triggers or requests. Policies often consider specific
conditions or events, i.e., triggering specific policies when
conditions are met, and/or selecting specific outcomes of the
evaluated policies appropriate to current conditions [46]. This
benefit of policies in allowing rapid modification and updating
of behavior without rewriting software code fits very well in
the complex and dynamic SDI environment.

Earlier policy related e�orts mostly focused on low-level
configuration and networking policies (e.g., BGP or SDN
rules), with work being done on controlling and verifying their
impact [19, 27, 28, 38, 42, 68]. The SDI environment, however,
has a need for abstractions that allow writing orchestration and
service level policies in addition to the traditional low-level
networking policies and configuration updates. Since SDI con-
trol platforms are being designed to be templates-based, the
domain experts can thus write policies in high-level abstrac-
tions using references to mechanisms specified through these
SDI object templates [61, 64] (possibly created by di�erent
domain experts and vendors). Moreover, the SDI is inherently
layered (physical infrastructure, virtual infrastructure or VNFs,
and the service layers), with complex horizontal and vertical
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Figure 1: D���: Continuous learning
interactions between objects at the various layers, controlled
by policies from potentially independent actors. This cross
layer interaction and presence of multiple actors coupled with
the dynamism due to capabilities from NFV/SDN (scaling,
live migrations, live topological updates or insertion of new
functionality [21, 61]) makes it non-trivial and impractical for
humans to manually trace the impact of their policies.

Thus, there is a need for an automated tool to be coupled
with the SDI such that SDI policies can be tested for impact
before being deployed in production. To this end, we present
D���. D��� is an end-to-end framework for checking the im-
pact of policies in an SDI environment. As shown in Figure 1,
D��� represents a continuous learning approach whereby a
knowledge based model captures the relationships between
objects in the SDI as well as the impact of policies on them.
The D��� learning process involves emulations under varying
conditions, monitoring and data collection of the emulated
environment, statistical and machine learning based analysis
of the data to enable discovery and quantification of impact
relationships between policies and SDI objects. This continu-
ous learning approach enables D��� to continuously annotate
the knowledge base as data is collected through emulations in
varying environments, and the confidence level in the learnt
impact relationships increases. D��� uses a greedy approach
of testing the policy in emulation environments that show po-
tential for resulting in more information gain, as determined
from data analysis from past emulation runs. The knowledge-
based approach allows inferencing so that D��� can find not
only the SDI objects that were significantly impacted by the
given policy, but can also infer how the a�ected objects are
related to the object on which the policy was deployed. This
capability helps in determining both cross-layer and within-
same-layer relationships where the policy writer may not have
knowledge about how their policy impacted other SDI objects.

We make the following main contributions.
•We propose the D��� framework which, given SDI orches-
tration and service-level policies, allows us to determine and
quantify the impact of such policies on objects in the SDI.
• We present a systematic approach to structuring domain
knowledge in a model to enable more informed policy writing
and policy impact checking. We further annotate and verify the
initial domain knowledge model by incorporating knowledge
learnt through SDI emulations.
•We use statistical analysis and machine learning (ML) to
enable knowledge-based inference and reasoning to further
describe how a given SDI policy a�ects the SDI objects.

•We present a prototype implementation of D��� and its eval-
uation using example policies in a testbed SDI environment.
We show D��� is capable of capturing the impact of policies
and can reuse and revise learnt knowledge across emulations.

2 RELATED WORK

Traditional approaches to enacting network change include
multiple stages during which network changes can be checked
and validated before deployment, e.g., manual planning, static
or online verification and validation [18, 27–29, 35, 52, 59],
simulation and emulations [34], phased rollout or first field
application (FFA) [37], and canaries [69]. The focus of these
e�orts has either been on low-level configuration updates re-
lated to the network and routing layers, or has enabled limited
automation and required the presence of domain experts for
designing the test environment needed for policy or update
checking. With D���, we consider the virtual and service lay-
ers made possible by the SDI and perform knowledge-based
modeling to capture cross-layer interactions as well as auto-
mate the process of suitable test environment generation.

More related to our work are dependency checking and
analysis [11, 36, 37], statistical and ML based analysis ap-
proaches [15, 22, 42, 62]. These earlier e�orts create siloed
models for specific use-cases, services, or network objects. In
contrast, D���’s modeling approach makes it service-agnostic
so that policies for any SDI services can be tested. D��� also
has an analysis process that systematically bootstraps its knowl-
edge base using service and network object specifications that
have been presented and tested by the community for use in the
SDI [61, 64]. Further, D��� performs automated emulation
generations and tests the policies in various configurations, us-
ing a learning process that is continuous, i.e., learning across
emulation iterations and improving learnt knowledge about
policy impact over time. Finally, D���’s modeling and learn-
ing approach also allows learning cross-layer interactions and
relationships which arise in the SDI ecosystem.

Our work is aligned with industry and academic e�orts
on policy-driven SDI systems that consider the definition of
policies to be more than traditional networking and routing
policies [1, 5, 14, 16, 17, 46, 61]. However, to the best of our
knowledge, our work is the first to present SDI service and
orchestration policies and develop a generic testing framework
for learning their impact in the SDI ecosystem. D��� thus
serves as a practical first step towards exploring the challenges
and opportunities in this space through prototyping an end-to-
end impact discovery/checking system.

There is ongoing research in the ML community for build-
ing tools that can help humans interpret ML models [6, 30, 31,
33, 54, 55]. This is complementary to our work since one of
our goals is to encode the learnt policy impact so that it is both
machine and human interpretable, i.e., actionable knowledge
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that the machine can utilize in the continuous learning pro-
cess, and humans can utilize in understanding their policies’
impacts. However, in contrast to D���, these e�orts output
model interpretations that are still at a lower level.

3 CONTEXT AND CHALLENGES
3.1 D��� Context and Use-Cases
SDI Services. We take the standard 4G LTE/EPC broadband
[45] as our first use-case service. Figure 2a shows the high
level EPC architecture consisting of the Radio Access Net-
work (RAN) and the Evolved Packet Core (EPC). eNodeBs
(base stations) are part of the RAN and wirelessly connect
to the user equipment (UE) i.e., mobile devices. We assume
a software-defined core and RAN [51]. The EPC core has
three main components. The MME (Mobility Management
Entity) is a control plane entity and handles UE authentica-
tion, registeration, and mobility. The SGW (Serving Gateway)
is a datapath element and forwards user tra�c coming from
the RAN to the PGW (Packet Data Network Gateway) which
serves as the gateway to external networks. The S/PGW and
eNodeB also handle control plane functions.

Figure 2b shows an EPC variant with selective edge cloud
tra�c o�oading functionality. An implementation of this
architecture is SMORE [12] and we take it as our second
use-case SDI service. We use webservers as the example low-
latency apps in the edge cloud.

Terminology. Here we define terminology used in the paper.
In the SDI ecosystem, parameterizable templates [61, 64]

serve as the specification or ‘object type’ for SDI components
and services. Instantiating them through an SDI orchestrator
causes instances or objects of them to be created in the SDI.
This is similar to classes and objects (instances) in an object
oriented programming language. Templates can be ‘container’-
type templates such that they describe a type composed of one
or more other SDI object types. E.g., a service template, such
as, EPC, can be composed of component templates, such as,
MME, SGW, PGW, eNodeB. Similarly, a SMORE service tem-
plate can be composed of components, such as, the Webserver
in the edge cloud, any load balancer or cache components, etc.

Templates contain variables, lifecycle and management
mechanisms, and policies. Mechanisms can be related to rout-
ing (push/remove/update flows), scaling, load balancing, mi-
gration, performance tuning, etc. For example, init, start, stop,
migrate, scaleUp, update, configureIPv4, are some typical
mechanisms available in SDI component or service templates.

Table 1 shows example variables in the templates of vari-
ous SDI object types we considered. For space reasons, some
of the related variables are shown as grouped together, e.g.,
Server.ifaceVars and VNF.migrationVars represent variables
related to Server interface configuration (e.g., IPv4Addr, MAC-
Addr) and VNF migrations (e.g., numMigrationsPast5Min, or
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Figure 2: (a) EPC, (b) EPC with edge cloud o�oad

numFailedMigrations). Also, variables from di�erent VNFs
(e.g., S/PGW, SMORE_Webserver or SMORE_Cache), and
Services (e.g., EPC, SMORE) are shown grouped together
under the VNF and Service headers.

For systematic impact analysis, we categorize variables as:
(1) configuration/configurable, (2) observed, and (3) work-
load variables. In addition, the domain expert or policy writer
can tag certain configuration and workload variables to be
(4) emulation environment parameters. We assume a domain
expert annotates them as such in the templates.

Configuration variables are template variables that can be
modified (or configured) directly using template mechanisms,
e.g., IP address, location (configurable using e.g., VNF migra-
tions), num of VMs, cpuOversubscription, num of CPUs, etc.
In addition, we also consider configurable emulation environ-
ment parameters to be part of this category. E.g., Server’s num
of CPUs is considered a configurable variable since it can be
varied across emulation runs by picking Server types that have
varying number of CPUs. We define observed variables or
(performance) metrics as those that cannot be directly con-
figured using mechanisms or emulation parameter selection.
E.g., CPU usage, average latency seen by subscribers in a loca-
tion, percentage of failed UE hando�s, etc. Finally, workload
variables represent features of service workloads e.g., num
of UEs, request rates, etc. Values for these are encoded by
the domain expert or policy writer running the emulations.
E.g., their values can come from realistic tra�c datasets, or
the policy writer may want to also use values that have not
been seen in realistic datasets. These can also be tagged as
emulation environment parameters in which case they are
used to control workload generation during emulation runs for

Table 1: Example variables in the SDI
Server VM Switch/Link VNF Service
location location location location topologyVars
status status status status numENB
rateStatusChange rateStatusChange ifaceVariables type numSGW
totalMem totalMem rateStatusChange totalMem numPGW
allocatedMem numCPU numFlaps numCPU numMME
numCPU version latency version numWebserver
numAllocatedCPU type totalMem cpuUsage latency, throughput
cpuOversubscription cpuUsage numCPU memUsage ...
numAllocatedVM memUsage version throughput Workload
numRunningVM migrationVars type latency numUE
version, memUsage numNeighborVM cpuUsage topologyVars rateOfRequests
cpuUsage, type osImage memUsage migrationVars interarrivalTime
ifaceVars ifaceVars propagationDelay cacheVars num/rateOfMobility
... ... ... ... concurrentVNF/Service
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policy impact checking under various workload conditions.
Since these are not relevant to template instantiation they are
typically not captured as part the of SDI templates. However,
we extend the templates to add them.

The goal of D��� is determining the impact of policies;
we define ‘impact’ systematically as follows. Policies when
activated, invoke object mechanisms, which in turn a�ect
or impact configuration variables (i.e., modify their values),
which in turn a�ect the observed variables (or performance
metrics), in the presence of workload variables (e.g., request
rates). We capture this entire trace, from policy, down to the
configuration and observed variables impacted. This is be-
cause both configuration and observed variable impacts can
be due to unintended consequences which were not part of
the policy writer’s intent. We consider a statistically signif-
icant change in the value of a variable as an impact on that
variable. Significance level is a tunable parameter (e.g., 95%
confidence using p-values with alpha set to 0.05). When a pol-
icy is tested, the correlated changes at the given significance
level, on object variables in the context of an object template
are output as impact.

Policy examples. Listings 1 to 6 show the pseudocode for
example policies used in the paper, written for our SDI envi-
ronment with the two services introduced earlier: EPC, and
a variation of EPC with edge cloud o�oading (referred to
as SMORE in the paper). We consider if-then style policies
that are written in the context of mechanisms and variables
exposed by SDI object templates.

The policies are self-explanatory. Listing 1 shows a Server
update policy which applies available updates on all servers
in the edge cloud location. Listing 2 shows a Server policy
that enables CPU oversubscription by some threshold if the
CPU usage has been high i.e., it causes the SDI orchestrator
to pack more VMs on the Server instances by oversubscribing
the CPU resource. Listing 3 shows an EPC service policy for
SGW scale up. Listing 4 shows an SMORE service policy
for scale up of its webserver component. Listing 5 shows a
SMORE policy that enables caching for the webservers if
SMORE service’s subscribers are seeing a higher latency.
Finally, Listing 6 shows a cross-service policy where if some
EPC service’s subscribers are seeing a higher latency to an
Internet webserver, then the SMORE service is dynamically
enabled for specific subscriber UEs, i.e., selective edge cloud
o�oading is enabled for this EPC instance for subscribers
mentioned in the subscriber list. This would include the SDI
orchestrator instantiating SMORE service components (e.g.,
webserver in the edge cloud), and configuring networking
(e.g., SDN rules) so that EPC tra�c for specific subscribers
is diverted to the webserver in the edge cloud.

As seen from the listings, we allow the policy writer to
specify policy variables, such as, threshold variables, and the
associated range of values they can take. E.g., for Listing 2,

the writer can specify the range taken by THRESH2 to be [10,
50, 100] to test only few oversubscription percentages, or [1 ..
100] to test percentage values ranging from 1 to 100. Since
the SDI is a very dynamic environment, hardcoding threshold
values does not always result in intended consequences. Thus,
during emulations, D��� iterates on the given policy variables
(through a ‘knob turning’ process described later) and can
output the learnt impact seen for them.

Listing 1: Update server
when:

Server.updateAvailable == True AND
Server.locatedAtEdge == True

then:
Server.update()

Listing 2: Oversubscribe
when:

Server.cpuUsage_10minAvg < THRESH1
//THRESH1 = 50%

then:
Server.setCPU_Oversub(oversubPerc =

THRESH2) //THRESH2 = 50%

Listing 3: Scaling SGW
when:

SGW.cpuUsage >= THRESH
//THRESH = 70%

then:
EPC.scaleUpSGW()

Listing 4: Scaling SMORE
when:

SMORE_Webserver.cpuUsage_5minAvg
>= THRESH //THRESH = 70%

then:
SMORE.scaleUpWebserver()

Listing 5: SMORE caching
when:

SMORE.subscriberLatency_5minAvg >=
THRESH

//THRESH = 30ms
then:

SMORE.setCaching()

Listing 6: SMORE o�oad
when:

EPC.subscriberLatency_10minAvg >=
THRESH

//THRESH = 30ms
then:

EPC.augmentSMORE(subscriberList)

3.2 Challenges and Solutions Overview
• Large number of knobs. There is typically a large number
of knobs or test environment variables that need to be varied
when testing a policy for impact. These include e.g., emula-
tion parameters and workload variables, as well as threshold
variables specified in the policy. A large number of knobs
can make the policy impact checking costly and it is also
non-trivial to manually set up test environments and perform
impact checking. In D���, we deal with this by automating the
test environment generation using emulations, and perform
systematic impact checking using a greedy approach of knob
turning which first varies and explores knobs that result in
more information/knowledge gain in terms of their impact on
observed variables or performance metrics of interest.
• Dynamic environment and stale knowledge. SDI reduces
the time to market for introducing new (or updated) services
and/or components which makes it imperative to automate
the continuous learning of policies’ impacts. Traditional ap-
proaches and related work in policy impact learning that manu-
ally create siloed models and enable one-time learning cannot
work in this dynamic environment. D��� deals with this by
systematically modeling domain knowledge coupled with us-
ing templates that together allow automation of emulation
environment generations for testing the impact of policies.
D��� continuously updates the knowledge base with each
emulation, adding to or improving existing knowledge about
impact relationships between SDI objects.
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• Layered architecture in SDI with di�erent actors publish-
ing templates for object types related to their own domain. It
is non-trivial for policy writers to go through details of ev-
ery template and trace dependencies and impact flows. Also,
policy evaluation is dynamic and dependencies may exist at
runtime that were not easily extractable statically. E.g., SDI
enables newer operations, such as, dynamic changes to service
topology or architecture, that can make it non-trivial to figure
out generic relationships manually. In D���, we use model-
ing using a knowledge based approach to deal with this and
systematically determine dependencies through inferencing
in the knowledge base. This inferencing also considers knowl-
edge annotations or modifications that occur due to D���’s
continuous learning approach. We couple this dependency
discovery with data analysis and ML based methods to find
the flow of impact among the dependent objects.
• Non-trivial to quantify variable-level relationships. While
domain experts may know dependency relationships between
various object types, however, it is non-trivial to discover and
quantify variable-level knowledge, e.g., how a Server’s CPU
oversubscription variable a�ects the hosted SGW’s processing
speed and in turn a�ects EPC service’s response time. Again,
this process is automated using our emulation framework and
subsequent data analysis that generates ML models that help
quantify variable-level impacts.

4 THE DEPO SYSTEM
4.1 Architecture Overview
The D��� architecture is shown in Figure 3 in the context of
a Software Defined Infrastructure (SDI) [1, 14, 46, 61]. The
SDI is a template-driven environment where an Orchestrator
receives service requests and makes use of Templates and a
Topology Database to instantiate virtualized service instances
on its managed infrastructure. D��� interfaces with the SDI
to run emulations and analyze the impact of policies on the
managed infrastructure and the service instances it hosts. We
assume that, for the purposes of emulation, D��� has access to
a sandbox SDI instead of interfacing directly with a production
SDI (which is left as future work). This sandbox can be a lab
network associated with the production SDI.

D��� has two main components: the Policy Stager performs
the process of policy impact learning, and the Knowledge Base
records the learnt knowledge. The Knowledge Base consists
of a knowledge graph (KG) [23, 50] data structure which is
used to encode domain knowledge, and associated ML mod-
els created during the impact learning process. Section 4.2
discusses the knowledge modeling done by D��� in detail
while Section 4.3) describes the impact checking process of
the Policy Stager.

A KG captures knowledge in the form of facts which are 3-
tuples of the form �entity1 relationship entity2�, e.g.,
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Figure 3: D��� in the context of an SDI.

server hasVariable serverCpuUsage, or serverCpuUsage
affects VNFLatency. KG is populated with both static and
dynamic knowledge. Static Domain Knowledge is composed
of knowledge provided by Domain Experts in the form of
Knowledge Models that capture known relationships between
entities at all layers in the infrastructure, as well as knowledge
gleaned from Service and Topology information obtained
from the Service Template Repository and the Topology DB
in the SDI.

Dynamic knowledge includes knowledge learnt during the
policy impact checking process performed by the Policy Stager.
This involves the Stager using the SDI to create emulations, de-
ploying policies, and annotating the KG with dynamic knowl-
edge learnt through analyzing the information collected during
these emulations. This information comes from traces of Or-
chestrator actions and templates’ mechanism executions, and
monitoring logs from the infrastructure. To enable this, the
orchestrator and the templates are instrumented to log mech-
anism invocations (traces), and the policies themselves are
instrumented as well. The interface to the SDI makes these
logs available to the Policy Stager for analysis.

The Environment Creator in the Policy Stager takes poli-
cies as input, and generates suitable emulation environment
configurations and directs the SDI orchestrator to instantiate
them. It also generates configuration related to tra�c work-
load variables and interfaces with the Tra�c Generator to
control tra�c generation in emulations. This allows policy
impact checking in varying workload conditions.

The Chaos Inducer is used by the Policy Stager to perform
chaos engineering [9] during these emulations, e.g., killing
servers and service component instances according to a given
failure distribution, or cause performance degradations to
create noise during emulation runs.

The Impact Quantifier analyzes the emulation logs and
systematically quantifies the policy’s impact, and in doing
so, the impact of configuration variables and mechanisms
available on object types that are referred to by these policies.
The main goal of this learning process is to annotate the KG
with learned knowledge about impact. If a generic relationship
is observed between X and Y such that X is seen to ‘a�ect’ Y,
then we create an ‘X a�ects Y’ relationship in the KG. Here,
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X and Y can be mechanisms, variables, policies. Due to the
continuous learning process, the Policy Stager directs further
emulation creations using the Environment Generator based
on analyses from the Impact Quantifier.

4.2 Modeling Knowledge in KG
In this subsection, we describe the concept of a knowledge
graph (KG), and show how we organize knowledge in a KG
to facilitate and enable automated policy impact detection.

The unit of data storage and modeling in a KG is a fact,
a 3-tuple of the form (entity1 relationship entity2),
where each entity is represented by a node in the KG and the
relationship is shown using an annotated edge connecting the
two related nodes. Multiple relationship edges with varying
annotations can exist between the nodes which allows us to
have di�erent applications insert their own semantics over the
raw data in the KG by adding overlays created using di�erent
relationship edges. Additionally, the nodes and relationships
can be annotated with properties. Specifically, we add times-
tamps as properties, since we have the notion of time as part of
our knowledge modeling. This allows KG to record changing
state of the SDI and our query primitives can accordingly do
time-based retrievals.

To enable generic inference, we use the concept of types
and instances to create generic models representing an SDI
environment. E.g., Figure 4 shows a high level view of such
a model. A small part of the KG model we build for the vir-
tualized EPC service is shown in Listing 7. The timestamp
property is only shown on one of the facts for brevity. As the
Listing shows, we encode generic model information from
Figure 4 as static knowledge in the KG itself which allows
our queries to be generic by only needing to understand the
semantics from the model in the figure and then using that
knowledge to query for specific instantiations of the model.
This allows the query primitives built on top of the KG to not
have any hardcoded domain knowledge about specific service
instances embedded within them.

The generic knowledge itself can be at two levels, e.g.,
as seen from Figure 4, Service is a generic object or type.
Then, EPC is an instance of that type and then EPC1 is a
specific instance of EPC itself. The generic knowledge model
at the first level is considered as static knowledge inserted
by domain experts at system initialization time into the KG.
Query and inferencing applications built on top of the KG need
to understand the semantics of the model at this level. E.g.,
they may need to know what a ‘hasComponent’ relationship
means, and how to use it to query for the components of
any object of type Service. The generic knowledge at the
second level does not need to be encoded within the query
primitives but does need to be inserted into the KG. E.g., for
an object of type Service, such as EPC, this involves taking
knowledge about the generic service topology, control and
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data protocol interactions, state and configuration variables,
that exists in the heads of a domain expert, or in service and
component templates in an SDI orchestration platform [60,
64], and inserting them into the KG as specific instance of the
generic model. E.g., generic EPC relationships such as, EPC
hasComponent SGW need to be encoded here.

Note that various experts and vendors can encode knowl-
edge about their own templates or domains into the KG using
the extensible modeling approach shown in Figure 4.

Once we have this static knowledge in the KG, monitoring
applications can dynamically insert updates to the KG reflect-
ing the current state of the SDI (i.e., service and network
object instances like SGW1, or EPC1), and data-driven query
primitives and corresponding impact detection applications
can become possible. E.g., the orchestration of new service
instances like EPC1, EPC2 can be logged by the monitoring
module and inserted in the KG. This will cause new facts
that represent the service instances to become available in
the KG. E.g., facts about current protocol peerings, locations,
performance metrics, and configurations. VNF migrations,
load balancing, start and stop of components, configuration
changes, and other changes in the state of the SDI will cause
the KG to get updated accordingly.

A traditional query primitive in a KG is essentially a sub-
graph matching algorithm which takes as input one or more
tuples or a subgraph in which one or more of the edges and
nodes can be constant, acting as constraints, or they can be
variables, and the query primitives then finds the bindings for
those variables such that they follow the pattern dictated by the
constants. For example, Listing 8 shows a KG query, where

Listing 7: Knowledge Graph
EPC isA Service
Service hasComponent NF
EPC hasComponent NF
EPC1 hasType EPC
EPC2 hasType EPC
VNF isA NF
MME isA VNF
MME1 hasType MME
EPC1 hasComponent MME1
Server isA ComputeNode
Server hosts VNF
Server1 isA Server
Server2 hosts MME1
MME.usage isA UsageVariable
MME1.usage hasValue 90% [timestamp=123]

Listing 8: Query
X_Var hasType EPC
X_Var hasComponent Y_Var
Return X_Var
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X_Var and Y_Var are variables while the rest are constants.
Running this query against the KG represented by Listing 7
will return the results [X_Var = EPC1; Y_Var = MME1] since
only EPC1 matches this pattern and not EPC2.

4.3 D��� Process
Given the policy to check for impact, D��� Policy Stager
learns its impact by emulating it in the SDI sandbox and learn-
ing from the collected logs. To be specific, it performs the
following three tasks.

(1) Generating emulation environment suitable for testing
this policy in the sandbox SDI.

(2) Running emulation in SDI sandbox by running tra�c
through it and collecting logs.

(3) Learning impact and annotating domain knowledge
models by analyzing the collected logs.

As shown in Figure 5, these tasks can be divided into a total
of eight steps. The rest of the section describes these steps.

4.3.1 Generating emulation environment.
1. Parsing policy. In order to run emulations for the policy,
D��� first needs to generate an emulation environment which
contains the objects referenced by the policy, e.g., an EPC
policy will require instantiation of an EPC service in emula-
tion. Static parsing allows D��� to extract the object types
referenced in the policy specification. E.g., parsing the policy
in Listing 3 will extract two object types: SGW and EPC. In
the rest of the section, we will refer to this policy as the SGW
scaling policy.
2. Extracting knowledge from KG. The statically extracted
(parsed) object types aren’t always su�cient to generate an
emulation for the given policy. E.g., if EPC object type was
extracted then each of its components will need to be instanti-
ated on objects of type ComputeNode (e.g., Server or VM),
however, these types were not explicitly specified in the policy.
Moreover, if the SGW scaling policy were written in a way
such that it only referenced a ‘component’ type such as SGW
(and not EPC), then D��� would need to get the ‘container’
type for SGW, i.e., the EPC service type, so that it can in-
stantiate EPC and all of its components on objects of type
ComputeNode. This is because D��� cannot instantiate a de-
tached component in the emulation, instead instantiation will
need to happen at the service level. Availability of knowledge
based models helps D��� automate the process of obtaining
this information as follows.

For each parsed object from Step 1, D��� performs a ‘ra-
dius’ query that we implement on the KG to find a given object
type’s ‘neighbors’. Radius is a conservative query. It considers
logical/physical/protocol level neighbors. E.g., neighbors for
the SGW type will include the Service it is a component of
(encoded using componentOf relationships), SGW’s protocol
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Figure 5: Policy stager process diagram.
neighbors (encoded using hasNeighbor relationships), and the
type of objects that can host an SGW (encoded using hosts
relationships). E.g., the KG will have facts such as, SGW isA
VNF, ComputeNode hosts VNF, Server isA ComputeNode,
Service hasComponent VNF, EPC isA Service, EPC hasCom-
ponent SGW, EPC hasComponent MME, etc. This knowledge
comes from the modeling approach performed by domain ex-
perts as explained earlier in Section 4.2, and from extraction
of knowledge from SDI templates. It is inserted into the KG at
bootstrapping time (shown in Figure 3 using static information
and domain experts labels).

Since generic knowledge related to neighbors (Figure 4) is
encoded in radius query’s implementation, this allows it to
be generic and still be able to retrieve specific relationships
about instances. E.g., radius understands generic concepts of
Service, Component, and hasComponent relationships, and so
knowledge about specific Service and Component instances
such as EPC and its S/PGW components is extracted by radius
automatically. Radius query thus allows D��� to get a list of
the object types needed for emulation environment creation
for the given policy. For the SGW scaling policy where SGW
and EPC object types were statically parsed, Figure 6 shows
the result of the radius search that extracts their neighbors in
various directions. This forms the list of object types to be
created in emulation.

By finding object types that are related to the policy and
thus are under its impact radius, this Step 2 in the D��� process
allows reduction in the number of object types that need to be
created in emulation for the given policy.
3. Generating emulation parameters. Each object from the
list of object types found at the end of Step 2 has configurable
variables that are tagged by the domain expert as emulation
environment parameters in the object’s template. E.g., number
of SGWs, and the number of its neighbor objects to create,
the types of servers, and VM sizes to generate for hosting
the SGWs and their neighbors, where VM.size, Server.type,
EPC.numSGW, etc. are configurable parameters. Similarly,
the workload that will be run on these emulation environments

EPC

SGWMMEeNodeB

Server

hasNeighbor

hasComponent

hosts

Figure 6: Update policy subgraph
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also have workload variables that can be configured. E.g., rate
of requests, or number of clients. Finally, the threshold variable
THRESH can also be taken as an emulation parameter. We
term all of these as knobs that need to be turned, where each
configuration of the knob values can cause the policy to have
a di�erent impact on the SDI.

In D���, we use a process of knob turning to try out the
various knob configurations. By default, a new emulation is
used for each knob turn. However, we assume that knobs that
represent workload variables can be knob turned within the
same emulation, e.g., tra�c rate can be varied within the same
emulation. Knob examples include configuration variables for
object types, e.g., EPC.numSGW, EPC.numPGW, Server.type,
VM.numCPU; and workload variables that can be used to con-
trol the workload generation process, e.g., EPC.requestRate,
EPC.numClients, Server.otherVMs (for creating server load
emulating other services and their VMs besides e.g., the one
EPC instance for our current policy example).

In short, this Step 3 takes the list of objects output at the
end of Step 2 and provides the list of knobs exposed by them
to the knob turning algorithm (described in Section 4.3.4).
4. Orchestrating emulation. The knob turning algorithm it-
erates on the range of values for each knob and outputs a
configuration of knob values. In this way, multiple knob con-
figurations are output by the algorithm, where each configura-
tion is then used by the Policy Stager to direct the orchestration
of emulation in the sandbox SDI.

4.3.2 Running emulation in SDI sandbox.
5. Running tra�c. The Policy Stager configures the Tra�c
Generator with the workload variable values output by the
knob turning. The tra�c generator is configured to generate
tra�c for various types of services present in the emulation.
The duration for the emulations is a tunable parameter.
6. Logs collection. Tra�c generation causes the emulation
to generate logs. E.g., the logs collected for analysis include:
information about network and service object instances and the
logs for their state variables, and object instances’ mechanism
invocations (traces of policy action invocations).
4.3.3 Learning impact.
7. Logs analysis for impact checking. The analysis of these
logs gives us the specific object IDs (instances) whose mecha-
nisms were invoked by the policy and the state variable logs of
those objects. This list of objects is under the policy’s direct
impact radius.

Next, for each object ID in this list, we do a ‘radius’ query in
the KG which essentially traverses the neighbor relationships
this object has with other objects. This helps us get a list of
additional potentially impacted objects since they are neigh-
bors to the directly impacted objects we had found earlier. We
combine these two lists to create the (potentially) impacted
objects list. Thus, this list creation process filters out all other

object instances in the SDI that are not under the policy’s
impact radius.

A policy’s impact travels from policy action!mechanisms
! configurable variables! observed variables, in the pres-
ence of emulation parameters and workload variables. The
goal of D���’s impact quantification is to find the presence
of this impact and attempt to quantify it by learning from
the collected logs and creating new models that capture the
impact (or updating them if they already exist, with new logs).
Multiple policies can use the same mechanisms and so it is
useful to determine and record the relationship between mech-
anisms and configurable variables, and between configurable
and observed variables.

For a given policy’s action, first, the Impact Quantifier re-
trieves the during-action-execution, before-action-execution,
and after-action-execution logs. How far into the past to get
the logs from is controlled by TBefore and how far into the
future to get the logs from is controlled by TAfter. Both are
tunable parameters and can be set globally or per variable.
The Quantifier performs before-during and before-after com-
parison of all variables that exist on objects in the object list
from earlier. A 2-sample Kolmogorov-Smirnov (KS) test [40]
is used for this comparison. Given two distributions, KS re-
turns a di�erence statistic D, and a p-value. The ‘alpha’ value
for KS is a tunable parameter. If the output p-value is less
than or equal to the alpha value then the two distributions are
considered significantly di�erent.

Thus, the output of the KS tests gives us a table of mappings,
{�ariable : CHANGE}, for all variables on the objects in our
list, where CHANGE is a boolean variable with ‘yes’ if the
KS test found that it was impacted by the policy, and ‘no’
otherwise. Note that, we combine the results for similar objects
e.g., all object instances of type Server, thus larger number
of instances depicting a large scale network in the emulation
increases accuracy of the KS test since more data samples
are generated. The KS test reduces the number of variables
under consideration. Next, the Quantifier creates a list with
all variables that have CHANGE=yes in the table. The list is
further divided into two lists, for configurable variables, and
observed variables.

Supervised regression or classification machine learning
models can now be created where the configurable variables
are taken as features, and their specific e�ect is observed on
the observed variables of interest (e.g., latency, usage). D���
takes a pluggable list of regression and classification model
implementations and selects one of them automatically using a
grid search technique that decides which one to select depend-
ing on whether the data is continuous (regression selected) or
categorical (classification), and the resulting accuracy of the
model. During the search, the dataset is divided into training
and test sets with specific percentages (e.g., 20% as test data,
80% as training). k-fold cross validation [66] is used to further
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test for bias and produce model accuracy values, the model
with the highest accuracy value is chosen.

While the earlier KS tests tell us that there is ‘an impact’ or
‘an e�ect’ between the configurable and observed variables
(a Yes/No answer), the machine learning models enable more
fine-grained impact finding and capture knowledge about the
type of relationships (e.g., linear, non-linear, exponential, etc.),
and the environment in which these relationships apply (e.g.,
other environment variables captured as features in the mod-
els). Note that one model is created for each observed variable
under consideration (where CHANGE=yes was observed),
where the configurable variables serve as features, and the
observed variable as the dependent variable.
8. Annotating domain knowledge models. The models and
probabilities learnt are recorded for later querying by policy
writers, and are continually updated when more logs get col-
lected through new emulations, multiple policy triggerings
in time within the same emulation, or a policy triggering in
the same emulation but on multiple similarly typed objects
(object instantiations of the same template).

The variables that were tagged as having CHANGE=yes
earlier are recorded within the KG as ‘a�ects’ relationships
among variables, mechanisms, and policies. These ‘a�ects’
relationship edges are annotated with the p-values obtained
using KS tests mentioned earlier. We use Fisher’s method
[20, 24] of combining p-values when we update existing facts
with new results. This combining process depicts increase
or decrease in the strength of the a�ects relationships. That
is, due to these updates, if the p-value on an a�ects relation-
ship becomes less than or equal to a given alpha value (e.g.,
common alpha is 0.05 for getting 95% confidence) then it
depicts the KG nodes connected by the a�ects relationship
have a statistically significant a�ect on each other (e.g., with
95% confidence if alpha is set to 0.05). Thus over time, D���
allows continuous learning by either adding new a�ects edges
or by updating existing ones and thus helps in improving the
knowledge model over time.

D��� allows domain experts to encode a�ects relationships
between variables based on their past knowledge and assump-
tions at bootstrapping time of the knowledge model. However,
these may not always be correct. The continuous learning ca-
pability of D��� helps here by allowing automatic correction
of this knowledge using new logs collected through emulation
runs. Thus D��� can correct existing a�ects relationships or
create new ones if they are missing in the knowledge model
but are learnt through emulations. Note that while D��� can
deal with such incorrect or missing knowledge, however, it
cannot automatically deal with missing object types or vari-
ables. D��� assumes that static knowledge obtained from
templates is complete and correct, e.g., knowledge about com-
ponents of a service, the configurable, observed, and work-
load variables, and the available object mechanisms. This is a

reasonable assumption given that there is an immense push
in the industry for standardization e�orts for SDI templates
[14, 17, 32, 46, 61, 64].

4.3.4 Knob Turning. The goal of knob turning is to try out
various configurations of objects in emulations in order to
test the policy’s impact on observed variables (e.g., latency,
throughput). Since we assume no domain knowledge about
what e�ect the various values of the configurable variables
will have on the observed variables, so we use a process of
coordinate descent, where a coordinate is a configurable vari-
able, and pick N number of uniformly distributed values for
this variable. The uniform distribution allows us to approxi-
mately cover the entire range of the variable and is the best
approach in the face of no prior knowledge.

These N values become the starter set to begin creating the
emulations and trying out the policy within them. As described
later, we collect the results of emulation runs and generate a
dataset that can be used for creating machine learning mod-
els which depict the e�ect of the starter set on the observed
variables. We split the dataset collected and use part of it to
train the models, and the other part is used as ground truth to
test the accuracy of the models. If the accuracy is lower than a
threshold for the starter set, we generate more values through
knob turning and collect more data through emulations.

For configuration variables whose range is numeric or ranked
i.e., the range of values have some pattern (e.g., EPC. numSGW
is a numeric variable, while Server.type can be a ranked vari-
able with the ranking done in terms of numCPUs on each
machine type), we can follow the following greedy procedure
to more smartly generate the knob turns if the model accuracy
for the starter set turns out to be low.

The starter set values for a given variable divide the vari-
able’s range into multiple intervals. E.g., if the range of a
numeric variable is 1 to 100, and the starter set contains 10,
43, 79, then 3 intervals are created. Set a minimum interval
size after which exploration through emulations should stop.
For each interval, if the interval size is above the minimum
size threshold, then take the dataset collected so far through
emulations, and pick M samples from the dataset such that
they all belong to the given interval. Use the model created
from the dataset so far and input the M samples as feature
values and predict the observed variable i.e., the dependent
variable in the model. Similarly, calculate the prediction ac-
curacies for the other intervals. Ignore the intervals that have
acceptable accuracy. From the intervals with accuracy lower
than threshold, pick the widest interval with the highest in-
accuracy value and perform the recursive process of picking
starter values from this interval and performing emulations to
get more data for them, then rechecking the accuracies for all
past and newly generated intervals, and exploring the widest
interval with the highest accuracy.
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This procedure allows us to find the widest intervals that
are the most inaccurate according to the calculated machine
learning models, thus allowing us to greedily explore in those
intervals that will give us the most gain in terms of reducing
uncertainty in the model. A stopping condition can be set
using parameters for the smallest interval size threshold after
which exploration should stop, and/or an accuracy threshold
after which the exploration should stop, and/or max number
of emulations to run threshold which can be useful since
a low accuracy score for the models may not always mean
more emulations will help since it might be an issue related
to missing variables, or incorrect variable creation by the
domain experts, such issues cannot be automatically found
since D��� cannot learn about variables that are non-existent
for it. Note that when the knob turning process generates a
configuration of various knob values, and D��� attempts to
generate an emulation environment using those knob settings
using the orchestrator, the orchestrator checks the validity of
the configuration to see if it can be instantiated.

5 IMPLEMENTATION AND EVALUATION
Environment setup and workload. We extend the SDI orches-
trator and common service and object templates from prior
work published in the community [12, 61]. We modify the
templates with additional mechanisms and variables to allow
creation of richer policies. We use Drools [53] for policy speci-
fication. For serving as the emulation environment, we created
a prototype SDI in the Phantomnet mobility testbed [7, 41]
as shown in Figure 7. Our SDI consisted of a combination
of server types available in Phantomnet (pc3000, d710, d430,
d820) over which virtualized infrastructure and services can
be instantiated by the SDI orchestrator as needed for emula-
tions. For workload generation in emulations, depending on
extracted service types in the D��� process, we created preset
workload generators. These include generators for orchestra-
tion and service management request generations e.g., service
instantiations, deletions, scaling requests, and also include UE
tra�c generation based on configurable parameters where the
parameters are configured and varied as part of D���’s knob
turning.
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Figure 7: Topology in testbed. Multiple locations repre-
sent residential, and business and touristy areas.

Policy impact. Listings 1 to 6 show our usecase policies.
D��� outputs and learns the trace of each policy as it invokes
mechanisms on SDI objects, a�ecting their configuration vari-
ables, which in term impact the observed variables.

E.g., Listing 11 shows the SDI-level edge-server update
policy’s invoked mechanisms. The policy action had taken
the strategy: Divide the servers to be updated in two batches,
update one batch at a time by migrating VMs to available
servers and stopping the remaining VMs, install updates then
restart VM and VNF. Table 2 shows D��� learns the find-
grained impact from the various mechanisms invoked by the
policy, on objects and their variables. The table captures only
those object variables that the policy impacted in a statistically
significant way, as seen from calculating p-values and setting
their alpha to 0.05 (for 95% confidence). Recording this in
the KG allows D��� to know which mechanisms have impact
on which variables, which helps D��� in the emulation envi-
ronment generation phase by reducing the policy’s potentially
impacted neighbors, meaning that knob turning has to be done
on less object variables in newer iterations of emulations. This
is also useful for the policy writer since it traces their policy
across various SDI objects.

While Table 2 shows a detailed trace useful for the contin-
uous impact checking process, D��� outputs a summary of
object variables impacted to the policy writer. E.g., for the
SGW scaling policy, Listing 12 is output. Listings 9 and 10
show some more output examples (for SMORE edge cloud
o�oading related policy for turning on caching, and enabling
edge cloud o�oading functionality dynamically on EPC).

Table 2: A�ected variables learned for update policy.
Mechanisms Variables

PolicyAction:update Server.[status, version, numVM,
memUsage, cpuUsage,
percentFailedMigrations],
VM.[status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.migrateVM Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM.[status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.sendVM Server.[numVM, memUsage,
cpuUsage], VM.[status, memUsage,
cpuUsage], VNF.[status, memUsage,
cpuUsage], Service.[smoreLatency]

Server.receiveVM Server.[numVM, memUsage,
cpuUsage, percentFailedMigrations],
VM.[status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

VM.stop Server.[memUsage, cpuUsage],
VM.[status, memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]

Server.installUpdate Server.[status,
version, memUsage, cpuUsage]

Server.reboot Server.[status, memUsage,
cpuUsage]

VM.start Server.[memUsage, cpuUsage],
VM.[status, memUsage, cpuUsage]

VNF.start Server.[memUsage, cpuUsage],
VM.[memUsage, cpuUsage],
VNF.[status, memUsage, cpuUsage],
Service.[smoreLatency]
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Listing 9: A�ected variables for various object types in
SMORE caching policy use-case.
PolicyAction:setCaching

SMORE:
smore_cachingStatus
smore_latency

SMORE_Loadbalancer:
smore_loadbalancer_cachingStatus
smore_loadbalancer_availableCacheSize
smore_loadbalancer_usedCacheSize
smore_loadbalancer_resourceFrequencyOfAccess

SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

Listing 10: A�ected variables for various object types in
EPC o�oading to SMORE policy use-case.
PolicyAction:augmentSMORE

Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

VM:
vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage

SMORE:
smore_latency

SMORE_Loadbalancer:
smore_loadbalancer_webserverNumConnections
smore_loadbalancer_webserverPercentOfConnectionsWorking
smore_loadbalancer_resourceFrequencyOfAccess

SMORE_Switch:
smore_switch_status
smore_switch_routeConfig

SMORE_Webserver:
smore_webserver_status
smore_webserver_networkConfig
smore_webserver_loadbalancerConnectionStatus
smore_webserver_cpuUsage
smore_webserver_memUsage
smore_webserver_resourceFrequencyOfAccess

Listing 11: Invoked
mechanisms hierar-
chy for Server update
policy.
PolicyAction:update

Server.migrateVM
Server.sendVM
Server.receiveVM

VM.stop
Server.installUpdate
Server.reboot
VM.start
VNF.start

Listing 12: A�ected variables for
scaleUpSGW policy.
PolicyAction:scaleUpSGW

Server:
server_numVM
server_cpuUsage
server_memUsage
server_allocated_mem
server_num_allocated_cpu

VM:
vm_status
vm_networkConfig
vm_cpuUsage
vm_memUsage

EPC:
epc_numSGW
epc_latency

SGW:
sgw_status
sgw_networkConfig
sgw_mmeNumConnections
sgw_mmePercentOfConnectionsWorking
sgw_cpuUsage
sgw_memUsage

MME:
mme_numSGW
mme_sgwNumConnections
mme_sgwPercentOfConnectionsWorking

Continuous learning from multiple emulations using knob
turning. In the data analysis for our policies, we tested ML
model creation based on polynomial regression, SVM based
regression, and boosted decision tree (DT) based regression
from scikit-learn and XGBoost libraries [57, 67]. All three
of these are for supervised learning as required by the D���

process. We found DT models to perform better than or equiv-
alent to other types of models, in terms of model accuracy
(calculated using automated k-fold technique [66] with 80%-
20% dataset split into training and test datasets). And so used
that as the default model in our prototype.

In order to test the usefulness of performing our knob turn-
ing approach when creating emulations, we tested out our
three SMORE service related policy examples in D��� us-
ing all possible emulation knobs and recorded the generated
datasets, we call this set of datasets: the ground truth. This
ground truth set is only collected for the purposes of D���
evaluation so that we can evaluate the models generated using
the knob turning approach of D���.

Next, we started a normal policy impact checking test for the
three policies using the D��� process. During the process, the
first emulation using results in an overall ML model that cap-
tures the dependent or observed variable (SMORE response
time in our case). Then each new emulation resulting from the
knob turning approach causes, on average, improvement of the
previously built model. To evaluate that newer emulations ac-
tually result in model improvement, we compare the generated
model from each emulation iteration, with the ground truth
mentioned above. We compare the model accuracy by calcu-
lating the error between the model’s prediction for SMORE
response time, and the ground truth. Figure 8 shows that on
average, our knob turning approach causes newer emulations
to reduce this error thus showing it improves the models using
its greedy approach.
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Figure 8: Normalized mean squared error (NMSE) calcu-
lated over error between ground truth, and predictions of
model created by D��� as it is improved through increas-
ing number of emulation iterations.

Variable reduction and cause of impact. Knowledge-based
model learnt from emulations in D��� allows operators to find
‘what’ was the cause of impact on observed variables of in-
terest. E.g., our Server CPU oversubscription policy invokes
mechanisms on di�erent SDI object instances, and causes their
configuration variables to change, which ultimately results in
impact on observed variables, e.g., SMORE response time.

We use our generated ML models to quantify the impact
that each of the invoked mechanisms has on various configu-
ration variable, which in turn a�ect observed variables. E.g.,
Table 3 shows relative impact caused on SMORE response
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time by the various configuration variables modified by the
policy, the various emulation environment parameters (such
as num of neighboring VMs), and the workload variables (e.g.,
SMORE request rate). Thus, in figuring out the policy impact
on a given observed variable, D��� considerably reduced the
potentially impacted object types and variables down from
the ones shown in Table 1. The statistical significance testing
(with significance alpha value set to 0.05 or 5%) is embedded
in D��� process and helps ensure correctness.

Performance results. Here, we present performance results
for each stage of the D��� process to show the scalability of
our approach and use of the KG data structure.

D���’s policy parsing time is impacted by the policy size,
which is dependent on the number of object types and actions
in the policy specification. Figure 11 shows this e�ect for
policies specified in Drools [53]. The time stays below 5s for
up to a 1000 object types and actions. Since the number of
objects and actions in our example policies were small, we
show scalability by generating policies using arbitrary object
types and actions and running the parser on them.

Figure 12 shows the time for emulation parameter gener-
ation using our knob turning approach. As described in the
D��� process earlier, this stage is dominated by time spent on
queries into the KG for searching neighbor object types that
are potentially under impact radius of the object types parsed
from the policy. The time is thus a�ected by the number of
neighboring objects N, that exist in the KG for a given object
type parsed from the policy. So, in order to show scalability for
this phase, we add increasing number of semantically correct
but arbitrary relationships among KG nodes in a controlled
fashion. Figure 12 shows the time for parameter generation
stage for di�erent values of N. Since multiple object types can
be parsed from a given policy, parameter generation stage will
have to perform KG queries for extracting neighbors of each
of the parsed object types. Thus, the same figure here also

Table 3: E�ect of Server CPU oversubscription policy on
SMORE response time.

Variables Importance
VM.cpuUsage 0.254
VM.numNeighborVMs 0.002
Server.cpuUsage (aggregate) 0.298
Server.oversubscription 0.289
SMORE.requestRate 0.157

shows e�ect of such concurrent queries on the KG. Our cor-
rectness checking assertions showed that the queries are able
to retrieve all objects types that had been created as neighbors
in the KG.

Figure 9 shows the emulation environment generation time,
which is essentially the SDI orchestration time for the various
object types that need to be instantiated for a given emulation.
The figure shows time stays below 40s for up to 125 SDI
object instance creations, where instances are for various types
of object templates available to us and are instantiated and
configured in parallel where possible (e.g., a host VM has to
be instantiated before the VNF it will host).

Figure 13 shows the data analysis stage average time for our
policies, which is dominated by the concurrent KS tests and
ML model generations. The figure shows the time stays low as
number of logs used for the analysis increases by increasing
duration and number of emulations. The number of logs de-
pends on the number of object variables related to the policy
and the logging frequency. We set this frequency for observed
variables (e.g., latency) to be 1s in the SDI monitoring module,
and the configuration variable changes that happen through
software were logged whenever the software updated them.

Time for final stage of D��� process is dominated by anno-
tating the KG based on the knowledge learnt in data analysis.
Figure 10 shows fact insertions (shown as equivalent to ex-
isting fact updates), the time stays below 3s for up to 1000
concurrent insertions.

6 CONCLUSION
We presented D��� for policy impact checking in an SDI
environment. It performs continuous learning of impact using
emulations under varying conditions, and takes a statistical
and machine learning based analysis approach on the data
obtained from emulations. D���’s data analysis enables it to
discover and quantify the impact of policies on SDI objects in
the same or di�erent layers.
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