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ABSTRACT

Determining the particular application associated with a given flow
of internet traffic is an important security measure in computer
networks. This practice is significant as it can aid in detecting intru-
sions and other anomalies, as well as identifying misuse associated
with prohibited applications. Many efforts have been expended to
create models for classifying internet traffic using machine learning
techniques. While research so far has proven useful, studies have
focused on machine learning techniques for detecting well-known
and profiled applications. Some have focused only on particular
transport layer traffic (e.g., TCP traffic only). In contrast, unknown
traffic is much more difficult to classify and can appear as previously
unseen applications or established applications exhibiting abnor-
mal behavior. This work presents methods to address these gaps in
other research. The methods utilize k-Nearest Neighbor machine
learning approaches to model known application data with the
Kolmogorov-Smirnov statistic as the distance function to computer
nearest neighbors. The models identify incoming data which likely
does not belong to the model, thus identifying unknown applica-
tions. This study shows the potential of our approach by presenting
results which show successful implementation for a controlled envi-
ronment, such as an organization with a fixed number of approved
applications. In this setting, our approach can distinguish unknown
data from known data with accuracy up to 93 percent compared
to an accuracy of 57 percent for a strawman k-Nearest Neighbors
approach with Euclidean distance. In addition, there are no restric-
tions on particular protocols. Operational considerations are also
discussed, with emphasis on future work that can be performed
such as exploring processing of incoming data in real-time and
updating the model in an automated way.
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1 INTRODUCTION

In computer networking, large amounts of traffic flow through in-
dividual networks at very high rates. A huge amount of data can be
gathered and this is typically well beyond the scope of a network
manager to evaluate. This is particularly true for tasks that require
close to real-time evaluation, such as network security pursuits.
One important task of this type is traffic application classification,
which identifies the application(s) and protocol(s) associated with a
given traffic flow. This is an important pursuit because it allows ma-
licious or inappropriate application use in a network to be identified
and handled. However, an often overlooked, yet critically important
security consideration for application identification is that there
are constantly new types of applications released for consumer use,
some of which may be malicious or inappropriate. These are some-
times referred to as 0-day applications [30]. Furthermore, many
applications will be disguised in unique ways because of updates
to an application or explicit efforts to prevent discovery, such that
the traffic looks unlike any other application. Such applications are
sometimes referred to as obfuscated or dynamic applications [9].
These are examples of unknown application traffic that a security
system will be exposed to amidst other well-known and profiled
applications. Operational systems have proven to be quite robust
against well-known applications, but suffer against unknown appli-
cations [22]. Additionally, a significant percentage of operational
network traffic is in reality unknown application traffic [20]. This is
a major vulnerability that can leave networks exposed to dangerous
applications for significant time periods before detection.

The focus of this work is to address the problem of unknown
application classification. While some work has been completed on
classifying unknown application traffic, previous efforts have been
encumbered by strict constraints (e.g., particular transport layer
protocols or deep packet inspection), and the general problem is
considered an open challenge [9, 14, 19, 22, 36]. This work seeks to
contribute to gaps in the current research landscape by implement-
ing a machine learning approach to classify unknown application
traffic. This is done without imposing restrictions of any kind on
the traffic that can be processed.

Ideally, a machine learning approach will be able to identify
unknown traffic within a large and complex network, such as a
full university or corporate network. In these types of networks,
it would be desireable to identify unknown traffic specifically to
prevent malicious or inappropriate activity such as the spread of
malware or the use of Netflix at work. In these settings, great care
is required to create an accurate machine learning approach to
distinguish between applications which are truly malicious and/or
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inappropriate and applications which are benign, but quite similar
to other bad applications. In particular, it requires thorough knowl-
edge of thousands of different applications and the ability to devise
a feature set which can describe differences between many different
types of allowable traffic and many different types of bad traffic.

However, this study focuses on a more specific environment,
namely, the approach presented constrains the problem to smaller,
more controlled networks. Examples of these could be a financial
institution or hospital with a specific set of approved applications
which can be utilized on the network. Then the goal in these cir-
cumstances is to identify any use of the network which is not one of
the approved applications, whether or not it is explicitly malicious
or inappropriate. So, it is realistic and appropriate in these circum-
stances to first define a narrow set of applications. With a thorough
knowledge of this limited set of applications, it is much more fea-
sible to devise a feature set which accurately and very narrowly
can separate these applications from any other applications. For
example, in a bank with only one specific application used for trans-
actions and customer service, the specific purpose of the machine
learning model includes separating out general web-browsing as
well as a piece of malware. Even though the general web-browsing
isn’t explicitly malicious or inappropriate in any way, it is realis-
tic in this setting to filter out both. Furthermore, when building
a machine learning model with a controlled set of data from the
list of approved applications, constraining the approach to focus
on these specific environments is operationally viable because a
successful approach will successfully monitor any application traf-
fic which does not belong to this approved list, including any and
all malicious traffic. Critically, this also provides a more controlled
setting to begin exploring the use of machine learning algorithms
to identify unknown traffic in networks generally. This is done
by treating all application traffic which does not fit within the ap-
proved list of applications as unknown, regardless of whether or
not it is actually unknown within a larger, unrestricted network.
This approach is also specific and pragmatic, a feature which is
rarely found in previously published research on machine learning
application classification [17].

The machine learning approach developed in this research uses
a k-Nearest Neighbors classifier that requires an initial set of ex-
plicitly labeled data. A critical component of the model is the se-
lection of the most appropriate distance function, in this case the
Kolmogorov-Smirnov statistic. To identify unknown application
traffic using the k-Nearest Neighbors model, the distances between
a new point and its closest neighbors are compared with the dis-
tances between the new point’s neighbors and their closest neigh-
bors. The key to this comparison is using a hyper-parameter thresh-
old, which is tuned using cross-validation, to specify how much
“further” from its neighbors a new point needs to be to be accurately
classified as an unknown application, rather than just an outlier for
a known application. With this approach, the classifier is able to
achieve an overall accuracy of 92.67 %, with 91.98 % accuracy on
known traffic and 92.81 % accuracy on unknown traffic.

Moreover, internet traffic classification is an invaluable tool for
network operators to identify network misuse, such as intrusions
from outside the network and violations of the network usage poli-
cies established by a university, company, or other organization.
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This work will significantly aid network operators in maintaining
a secure network environment by enabling real-time identifica-
tions of unknown traffic that were previously very difficult or even
impossible.

The main contributions of this work are as follows:

(1) Gathering specific application data and extracting a set of
features that can be used to distinguish traffic from other
applications.

(2) Showing that a machine learning approach with a k-nearest-
neighbors model, used with the Kolmogorov-Smirnov statis-
tic, can accurately identify traffic from unknown applica-
tions, without restrictions on traffic type (e.g., a specific
network protocol).

(3) Discussing future research directions for utilizing this ap-
proach in an operational, and possibly a more general, sys-
tem.

The next section of this paper discusses the background and
related work of this problem. The following few sections discuss the
architecture, data and methodologies. Finally, the paper concludes
with an evaluation and discussion of operational implementation
and future work.

2 RELATED WORK

Machine learning techniques have been used heavily in network
management and security settings to analyze large amounts of data.
These methods include supervised methods, which require explicit
labels for data points, and unsupervised methods, which do not
require any labels. These methods have been used in a number of
papers for application classification tasks [6, 12, 13, 16, 18, 21, 27,
32, 34] . Many of these methods show great potential and have been
successful in achieving classification accuracy of up to 99%. Another
group of approaches uses semi-supervised learning, a blend of these
two styles, to produce robust and flexible models [38]. Some studies
focus on very specific protocols and traffic types, such as HTTPS
services [28]. Other studies focus on tackling specific sub-problems
of classification such as high accuracy in cross-platform scenarios
[15].

However, creating models to address general classification of
unknown traffic is still an open research challenge. A small set of
studies has been able to achieve very high accuracy for unknown
traffic classification, but is dependent on deep packet inspection
(DPI) [29, 30]. Unfortunately, DPI has significant impact in an op-
erational system in order to examine the payload contents of a
network packet. Not only is this process expensive and slow, but it
is encumbered by strict security and privacy issues. Another study
is able to obtain 60% accuracy for identifying unknown application
traffic, but maintains constraints that only TCP traffic can be consid-
ered, which eliminates a huge amount of other traffic (e.g., UDP) [6].
The researchers utilize labeled data, which is difficult or perhaps
impossible to obtain in a real-time evaluation setting, but are able
to achieve their results by only looking at the first few packets of
a connection in the network. Further still, other researchers have
combined these previous two types of schemes that can selectively
filter packets that should be examined with DPI, without sacrificing
accuracy [23, 25]. There has also been work completed for classify-
ing new applications, but is specifically based upon bot detection



Toward Classifying Unknown Application Traffic

[14]. Some work has shown promise using unsupervised methods,
which don’t explicitly require labels, but these works also don’t
study unknown traffic situations [12, 13].

There are also many corporate systems that incorporate machine
learning into network security products. In conjunction with many
of these systems, companies have published white papers on their
use of machine learning in network security products. However,
these systems are proprietary and white papers do not include
any details about the actual implementation or results of machine
learning methodology in the systems. LogRhythm [3], IBM [1], and
Juniper [2] are among those who have published such white papers.

Besides the network setting and focus of a study, the machine
learning modeling choices are also of great significance. These mod-
eling choices incorporate both algorithmic and statistical factors.
While tackling application classification, researchers have used di-
verse categories of machine learning algorithms, such as clustering
and probabalistic algorithms. Examples of these include k-Nearest-
Neighbor models [10] and Gaussian mixture models [31], respec-
tively. There are also statistical metrics that must be selected to use
in conjuction with each algorithm. Some examples of these statistics
are the Kolmogorov-Smirnov statistic [24] and the Kullback-Leibler
divergence [18]. Each unique data set will respond differently to a
particular machine learning model, and the data is factored heavily
into these choices. The methodology for this study is based upon
k-Nearest-Neighbors clustering combined with the Kolmogorov-
Smirnov statistic, and these choices are qualified in subsequent
sections.

Other work has also been useful to review to conduct this re-
search using machine learning. One of the most important aspects
of machine learning approaches is the ability to extract useful fea-
tures from a data set to use in a machine learning model. In fact,
the feature selection associated with a data set can impact results
as much or more than the choice of machine learning model [5, 35].
Netflow data is a particularly portable and convenient set of data to
obtain that describes traffic in a network. While other more robust
data can be obtained, it is more expensive and intrusive, which
again has potentially dooming privacy implications with respect
to operational settings. Using netflow data in machine learning
models for application classification is the current focus of most
research because of the ease associated with its collection [19]. On
the other hand, netflow data is less descriptive and it is difficult to
classify dynamic applications [19] and general (including unknown)
applications [36].

Many authors detail how traffic flow data may be analyzed to
form different features that are used in machine learning algorithms
[8, 11, 16, 21, 26, 32-35, 37]. Arzani et al. [7] describe in detail
some of the features they use for TCP related work. Examples
from their work include maximum congestion windows, changes
in congestion windows, round trip time (RTT) estimates, number
of duplicate ACKs, duration of the connection, and the number of
bytes sent and received. This previous work in feature selection is
instrumental in identifying a starting point for extracting useful
features in this study. To fully utilize flow statistics as features, there
has also been work indicating the effectiveness of using 5-tuple
based connections as distinct entities for gathering statistics [31].
Similarly, the data gathered and used for the work presented here
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will also incorporate these results in an effort to build off previous
successes. This is described in coming sections. Finally, the machine
learning tools available for these types of endeavors are important
to acknowledge. SciKit-Learn is an important package available in
Python that provides access to many machine learning techniques
and tools, and is used extensively in this project [4].

3 ARCHITECTURE

3.1 Network Management Setting and Threat
Model

This research focuses on a particular management setting. In order
to evaluate traffic in real-time, network management staff needs
tools and devices for continuous monitoring of traffic. At one or
more edge points, firewalls or other devices can continuously col-
lect network data. This network data may contain various levels
of flow details, but typically contain details such as IP addresses,
port numbers, and packet and byte counts [19]. In addition to the
device(s) collecting network data, the network management staff
maintains a database of network traffic data. It is assumed that
data in this database contain known application information. At
any given time, the database can be queried for data, which can be
used to form feature vectors that are then used to create machine
learning models. As new traffic comes in and goes out, network
management staff have the task of identifying inappropriate traffic.
The similar edge device, possibly the same device, can create fea-
ture vectors from incoming traffic and use machine learning models
to classify whether or not this traffic is inappropriate. When an
edge device determines that a batch of inbound or outbound traffic
doesn’t match known traffic, the edge device can notify the net-
work management staff for further evaluation. In an operational
environment it is important for traffic to be evaluated right away
and both known and unknown traffic is collected. In a controlled
environment, used in this study to develop and evaluate a method-
ology and in general to create an initial model, only known traffic
is collected and then stored. The stored data is then used to develop
a model. In this study, the controlled data is also used to evaluate
the methodology. In particular, a portion of the controlled, known
traffic is simulated as unknown traffic to evaluate the model as if it
were operational (Figure 1).

This research focuses on two different forms of misuse as a
threat model. The first form is intrusive and often malicious misuse,
largely characterized by unsolicited or undesired network traffic.
For a constrained use case such as a bank, examples of this form of
misuse include malware, worms, and viruses intended to compro-
mise sensitive information and financial security. The second form
is native misuse that originates from sources inside the network.
This form of misuse is often characterized by intentional activity
that violates network acceptable use policies. Again considering
the use case of constrained bank network, an example of this might
be gaming on the network. For both of these forms of misuse, the
threat model for this study assumes that traffic crosses a network
edge boundary. That is, the traffic either originates in the network
and is sent outside the network, or the traffic originates outside the
network and is sent into the network.
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Figure 1: Setting - Monitoring inbound/outbound traffic for
identification of unknown applications

3.2 Problem Formulation

As described in the network setting, a device may be placed at
the edge of a network to collect network traffic data, and known
application data is stored in a database. To form a basis for compar-
ison, this data is used to create a model using a machine learning
algorithm. In this case, the unsupervised machine learning method
used is a k-Nearest Neighbors clustering algorithm. Once a base
model has been formed, it is possible to begin analyzing incoming
data. The edge device will record network traffic data and form a
“batch” of incoming data. The exact methods for separating masses
of incoming traffic into individual batches is left to future work. One
example, depending on the needs of a network, is that application
traffic might be grouped based upon the IP address of the client
within the network being monitored. Batches of incoming data
will be processed into individual data points with the appropriate
feature values.

Recall that the k-Nearest Neighbors model is trained with only
known, or accepted, application traffic. Network management staff
are interested in finding traffic which is unknown, or is not con-
sistent with known application traffic. In contrast to traditional
k-Nearest Neighbors, which identifies the best classification for
a new point based upon its neighbors, this method determines
whether a new data point is sufficiently far from all other neighbors
that the classifier should predict that the new point is unknown
relative to the application traffic used to build the model.

To accomplish this, the model computes the average distance
from the new data point (a new application session) to its k nearest
neighbors. Let this new data point be x, and let each neighbor be
y; for 1 < i < k. Then, for each of these k nearest neighbors, the
model computes the average distance to their k nearest neighbors.
Let the neighbors of each y; be the points z; j where 1 < i,j < k.
In this case, the distance metric used is the Kolmogorov-Smirnov
(KS) Statistic. The KS statistic is defined as

KS(m, n) = sup [Fpu(x) = Fn(x)| 1)

where sup is the maximum over all values of x and Fp, and Fy
are the cumulative distribution functions (CDF) of the two samples
m, n. So, the model computes:
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where X and y; are the average distance from the new point to
its k neighbors and the average distance from the new point’s i-th
neighbor to its k neighbors, respectively.

To determine if a new data point is unknown relative to the
known application traffic, the model compares the average distance
from the new point to its neighbors with the average distances from
the new point’s neighbors to their neighbors (Figure 2). However,
to tune the model for optimal performance, a threshold, a, is used
as a multiplier for the average distances between the new point’s
neighbors and their neighbors. This value will vary depending on
the data set, and should be determined using cross-validation. So,
the model determines the relations

X > ay; (4)

for the k neighbors (y;) of x. If this relation is true for each y;,
then the application session data point x is classified as unknown,
otherwise it is classified as known.

For example, consider that for some given data set, an optimal
value of @ may be 2. This would mean that for a new data point
to be classified as unknown, it is required for the average distance
from the new point to its neighbors be twice as large as each of the
average distances from these neighbors to their k nearest neighbors.
If this is the case, then the traffic would be classified as unknown,
and network management staff would be notified to review the
finding. The k-Nearest Neighbors model can be updated over time
with additional data to provide a more robust model. Operationally,
incoming data which is classified as known by the model may be
able to be incorporated into the model automatically, although this
could have undesired effects on the model. An exploration of this
is left to future work.
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4 DESCRIPTION OF DATA

The data used for training and evaluating the machine learning
models were originally captured as tcpdump output files in PCAP
format. While, netflow data is not used here specifically, the data
is still based upon flows of traffic. That is, the data is based upon
flows and their statistics as opposed to deep packet inspection
or other more invasive data collection methods. PCAP data files
were then transformed into CSV files of packet dissections. The
data were gathered using machines on the Emulab cluster, and
tcpdump was run with controlled filters such that only desired
traffic was captured, while SSH, Emulab network management
and other undesired traffic was dropped. Data from four different
application types were gathered, namely Skype, Google Hangouts
(which has been used previously to study application classification
[8]), YouTube and HTTP web browsing. A unique output file was
generated for running individual sessions of each application.

4.1 Data Processing

In order to extract meaningful features for a machine learning
model, each session file was processed into a collection of data
points. Recall that a session file is a large set of individual packet
dissections over a time period on the scale of minutes. Though each
file represents one session of a running application, these files po-
tentially contain several network connections, each defined by their
own unique five-tuple (source and destination IP, source and desti-
nation port, and protocol). To represent the data in a way such that
both time based and connection based features could be extracted,
the data was split based upon both of these structures. In particular,
a session file was split into many windows of 2 seconds each. Then
for each 2 second window, individual data points were created for
each five-tuple connection by aggregating all packet dissections
into a single point, one point for each unique five-tuple connection
(Figure 3). In this figure, the horizontal axis represents time in win-
dows of 2 seconds, and the vertical axis represents distinct 5-tuples
within a session, and the packets arriving or being sent as part
of that connection. As is evident in the figure, some connections
will have one or more 2-second windows with no packet arrivals.
Rather than adding noise to the data, this actually helps represent
variations in traffic flow levels for each distinct application and
these attributes are captured in the features. Moreover, once these
data points have been organized appropriately, all feature vectors
could then be extracted for individual data points.

4.2 Feature Selection and Data Analysis

Features were developed through several iterations of experiments
to find an optimal feature set. This feature set is useful for uncov-
ering the differences in the data used in this study, which varies
according to volume, consistency, and direction of traffic. However,
features should be analyzed uniquely for individual operational
systems to provide best performance. Operational systems may use
all, some or none of these features, and may be augmented by other
features, depending on the profiles of known traffic that would be
used in the model. Using individual data points after processing,
the following features were extracted to use in machine learning
models:

(1) Total number of packets sent
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Figure 3: Separation of a session network flow data into in-
dividual points through windowing

) Total number of bytes sent
) Average inter-arrival time of packets
) Average bit-rate of connection
) Largest packet size
) Smallest packet size
) Longest time between packet arrivals
8) Shortest time between packet arrivals
) Direction of travel in Emulab (inbound or outbound)
) Number of ARP packets
) Number of DNS packets
) Number of TCP ACKs

) Minimum advertised receive window

These features are utilized in the classification methods and eval-
uation. Note that some features only apply to TCP type traffic. In
order to handle traffic which is not TCP, these features are engi-
neered such that values are representative of each protocol. For
example, UDP traffic will always have 0 for the number of ACKs,
and the minimum and maximum congestion window sizes will be
zero and infinity, respectively. These features of data can be repre-
sented by a variety of CDFs and other charts that help to visualize
the data before being used in machine learning models.

Data analysis with this feature set revealed keys for distinguish-
ing between applications. As noted previously, each individual ses-
sion of data was processed into a set data points, each of which was
extracted into a feature vector. Moreover, an individual application
session is represented as a list of many feature vectors. Graphing
CDFs of all applications (with all sessions included) revealed that
there are noticeable differences between applications. In some cases,
each application is quite distinct from all other applications over
the whole spectrum of values for an individual feature (Figure 4).
In other cases, it is possible to distinguish each application from
the others, but the CDF of values from different applications are
intertwined across the spectrum of values (Figure 5). In other words,
at some points along the CDFs, two applications may have similar
curves, while at other points the applications diverge from each
other.
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Figure 4: CDF of many averaged sessions from all applica-
tion types
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Figure 5: CDF of many individual sessions of a single appli-
cation type

While these types of differences between applications are not
easily distinguishable using some metrics, such as standard devi-
ation and mean or Euclidean distance, it is possible to make the
distinctions using a distance function that is appropriate for identi-
fying the differences apparent in the CDFs. In this case, the most
appropriate distance function is the two-sample KS statistic and is
used in this work. Because each new application session is actually
represented by several features, and each of these is represented by
a conglomeration of sub-data points derived from 2-second inter-
vals of individual 5-tuple connections, the KS statistic between two
application sessions (shown as KS(m, n) in the previous section), is
computed by averaging the KS statistics for of each feature. That is,
if there are [ features (14 in this model), then more precisely,

Stms 9Py |Fmy (¥) = Fn, (¥)]
I

where m, is the a-th feature of the application session data point
m.

KS(m,n) = (5)
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5 METHODOLOGY

To implement the architecture as described previously, the data
collection just described represents the collection of data at the edge
of a network. In this case, the network in question is the Emulab
cluster that houses the machines used for collection. Because the
specific IP addresses of the machines used for data collection are
known, the data accurately represents the architecture in which
data is being sent in and out of the network. After the data was
collected, it was appropriately transformed into featurized data that
could be used in evaluation, precisely how it would happen in an
operational network, except that this data processing didn’t happen
in real-time.

Recall that there are 4 unique application types represented in
the data, namely Skype, Google Hangouts, YouTube, and general
web browsing. In order to implement the architecture setting and
then evaluate the model in a variety of scenarios, the data is divided
many ways to create new trials. For each trial, the invocation of the
model includes one or more applications in a group of data which
is simulated as known data. This data is included in the final model
for testing a holdout set for accuracy. The remaining application
data is simulated as unknown data. A series of 150 experiments
were run to evaluate the performance of the model. Among the
150 experiments, 15 different formats were used. First, all data was
included as known data. Next, 4 formats specified one application
type as unknown and the remainder as known data. Next, 6 formats
specified half of the applications as known and the other half as
unknown, using different combinations of the applications. Finally,
4 additional formats used one type of application as known and the
remainder as unknown data.

For each trial, 20 percent of the data is held out for testing only.
The remaining 80 percent of the data is used for training only. Both
of these sets contain both known and unknown data. For each
trial, leave-one-out cross-validation is completed. This produces
a threshold hyper-parameter which tunes the model to optimal
performance. That is, a range of intuitively possible thresholds is
selected. A model is trained using all but one data point of the
training data. Then the model is evaluated with this left out data
point. This is performed for every point of the training data for each
possible threshold value. The results for each possible threshold are
averaged. Then, a final model is created based upon only the known
data in the training set and the best threshold hyper-parameter
determined during cross-validation. Finally, the test set is used to
evaluate the final model and gain measurements of overall accuracy,
as well as specific performance with known and unknown traffic
in the test set.

In order to compare the methods presented to a baseline, a straw-
man machine learning model is created by using the same archi-
tecture, but using a typical Euclidean distance instead of using a
KS-statistic in the distance function for the k-Nearest-Neighbors
model. This represents a method which is generic and can be used
to model any data set, but doesn’t necessarily represent the nuances
of that data set accurately, particularly for high-dimensional data
and data represented by features that are measured on different
scales.
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Predicted Known Predicted Unknown
94.72 % 5.28 %
81.07 % 18.93 %

True Known
True Unknown

Table 1: Confusion matrix for strawman (Euclidean) model

Predicted Known Predicted Unknown
91.98 % 8.02 %
92.81 %

True Known
True Unknown 7.19 %

Table 2: Confusion matrix for unknown traffic (KS-Statistic)
model

6 RESULTS
6.1 Strawman Method Results

The strawman method described in the previous section achieves an
accuracy of only 57.72 % on the entire data set, with 94.72 % accuracy
on the known traffic but only 18.93 % accuracy on unknown traffic
(Table 1)]. The most notable aspect of these results is that the
strawman approach is obtains a dismal 18.93 % accuracy on the
unknown data. This is a poor result given that a random classifier
should be able to guess correctly up to 50 % of unknown data.

6.2 KS Statistic Method Results

Using the KS statistic modeling approach architected in this study
instead of a typical Euclidean distance with the k-Nearest-Neighbors
model yielded significantly better results. The improved method
achieves an overall accuracy of 92.67 %. Furthermore, the KS statis-
tic method achieved an accuracy of 91.98 % on the known traffic
and 92.81 % on unknown traffic (Table 2). This method clearly out-
performs the strawman method described above. One persistent
weakness of this classification is the high false negative rate for
operational endeavors. While overall improvement is still desire-
able, it is especially important to further improve the ability of the
classifier to correctly identify unknown traffic. But, this method
shows promise for high accuracy machine learning classification
of unknown application traffic while mainting high accuracy of
known traffic, and further improvement with more sophisticated
and larger data sets is left to future work.

7 OPERATIONAL IMPLEMENTATION AND
FUTURE WORK

The first concern to address before completing an operational im-
plementation of this approach is to reduce the relatively high false
negative rate shown in the results of this study. In order to reduce
the false negative rate, it is necessary to gather significantly more
data from the applications being considered. Then, for each appli-
cation session that is incorrectly classified as a known application,
it is necessary to examine the features that are having the greatest
impact on the misclassification of that session. By gathering this
information, changes and additions can be made to the feature set
to create a better distinction between known and unknown traffic.
Creating a cleaner separation between the known and unknown
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traffic with a more refined feature set will reduce this false negative
rate.

There are a number of other operational considerations to be
made for this type of machine learning approach to network secu-
rity. Assuming that a controlled, initital data set is already available,
network management staff can move ahead with creating a model
for evaluating incoming traffic. However, incoming traffic is diverse
compared with the data used to train and evaluate the k-Nearest
Neighbors approach. This approach must be evaluated in further
phases to determine the accuracy of the algorithm with uncon-
trolled data. But, in order to complete this step, it is requisite to
have a method to separate the large amount of incoming traffic
into individual sessions of distinct applications, as this is the for-
mat with which the machine learning model has been trained. An
intuitive approach will likely separate traffic based upon five-tuple
connections and then combine multiple connections into a session,
perhaps based upon the IP address of the client within the network
being monitored. This is a critical step that must still be explored
to make this approach operationally viable.

Another critical aspect of this approach is the evolution of the
model to adapt to changing natures of approved applications. In
an ideal operational setting, the data used to create the model
would be augmented in an automated way based upon other traffic
approved by the model. However, this could cause the model to
shift in ways such that truly unknown traffic begins to fit within
the known traffic of the model. The model could also change in
other detrimental ways, and automated methods for updating the
model must be thoroughly explored and tested to find a way to
update the model to include changes in known traffic.

Finally, to enhance the utility of the approach, it is possible to
combine this approach that can classify unknown application traffic
with methods that are proven to accurately classify known bad
application traffic (e.g., specific types of well-known and profiled
malware). This could be achieved by placing two separate machine
learning models in one data pipeline. First, data could be compared
with a model to identify any known inappropriate application traffic.
If this test passes, then traffic can be sent to the model developed
in this study which can identify unknown traffic.

8 CONCLUSION

This study has explored and proven the utility of a machine learning
approach to be able to classify unknown traffic in a computer net-
work. The approach achieved up to 92.67 % accuracy on a controlled
data set with a basic feature set. The study also discusses opera-
tional factors related to the machine learning approach, and how
they might initially be studied to find optimal solutions for an oper-
ational setting. While the machine learning approach presented is
limited by only using controlled data and using a basic feature set,
the approach shows potential for effectively solving the problem of
securely handling unknown applications in a network. This study
shows that the machine learning approach presented warrants a
full operational research study to realize the full potential of the
approach.
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