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Abstract—Smart meters record power consumption data at
every minute or even every second. This fine-grained data on
electricity usage exposes private information about the residents
of the house like the number of occupants, times of occupancy,
appliance information, and much more. A solution to obscure this
data is to add a battery to each home and use it strategically to
manipulate the readings observed at the smart meter. Deploying
such a solution at a large scale can result in sudden peaks in
the energy usage. This is an alarming concern for the electric
utility companies as this may cause outages, making the grid
unstable. This paper is the first to expose this shortcoming and
propose algorithms to mitigate the problem while maintaining
the privacy of the residents. Furthermore, this paper shows that
the proposed algorithms are more effective in preserving privacy
than existing ones while reducing the peak load.

I. INTRODUCTION

Extracting appliance information by monitoring the net load
consumed, known as Non-Intrusive Load Monitoring [1], was
first introduced in the early 1990s [2]. The appliance data is
now easily available through smart meters that are automated
to record and report power consumption in real time. This fine-
grained data is used by electric utility companies to estimate
power generation, distribution, and predict the demand pattern
[3]. Certain third parties also have access to this data either
directly from the meter or from utility companies that often do
not consult the customer about how the data will be used. Third
parties use this data for in-home displays, energy management
solutions, or load control equipment [4].

Meter data can be disaggregated to identify specific appli-
ance load signatures and observe schedules [1, 5] resulting
in many privacy concerns. Appliance signatures can also be
derived from patterns in other parameters such as the funda-
mental frequency, voltage and current, and harmonic currents
[2]. Further, this data can be combined with data from other
sources, like other installed sensors, to track an individual’s
position [1]. Further, when combined with publicly available
demographic pointers of the residents, activities, behaviors,
and preferences can be identified.

An existing approach to preserve privacy is to use a
rechargeable battery [6] as a local storage entity in each home
between the meter and the appliances as shown in Fig. 1. Even
though many algorithms have been proposed to strategically
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Fig. 1: Smart Home Configuration with Battery.

charge and discharge the battery to vary the readings recorded
by the meter [6–8], these privacy solutions are not seen in
practice. We argue that this is because the objectives of smart
metering and privacy are contradictory [9] and a hypothesis
that has not been considered until now is its cascading effect
on power generation. Hence we analyzed the cumulative load
profiles of multiple homes and observe sudden surges in the
demand load. This is a concern because the utility company
needs to be able to prepare for the worst case to prevent
outages. If the possible peaks are rare but significantly higher
than the average load observed, the generated power would be
underutilized.

To prevent such scenarios, we propose to exploit Demand-
Response (DR) communication schemes similar to the ones
currently being used to mitigate high load at the utility
companies. We leverage the infrastructure for DR systems
to provide real-time feedback from the utility to individual
homes. This feedback is sent when the utility detects “conges-
tion” in the network caused by aggregation of simultaneous
load consumption across the grid. When the homes receive
this feedback message, the battery is discharged to supply the
load in the homes. However, the battery is a local buffer of
limited capacity and if all homes back-off together then once
the load reduces and the feedback stops, all batteries would
try to charge together resulting in a period of high load. To
avoid this, we propose two algorithms to evenly distribute this
load. Our novel algorithms ensure the safety of the grid while
using our improved privacy solution.

We use an open-source power grid simulation tool,
GridLAB-D [10], to evaluate our algorithms. GridLAB-D
allows us to control different components of the smart grid and



to capture time-series power distribution data. We use a dataset
from the UMass Smart project [25] to run our simulations
with real load patterns. To evaluate the impact of battery size
on our algorithms we use three battery size models that size
the battery depending on each home’s load pattern. We find
that larger batteries are able to hide the load signatures more
effectively but they also cause high peaks in the load profile
which is undesirable. Our evaluations show that our algorithms
are more effective in preserving privacy with smaller batteries
than existing ones and appropriately reduce the peak load by
distributing it over time.

The goal of this work is to build and analyze the effect
of the battery on the privacy of the residents in smart homes
and the peak load at the electric utility providers. Towards this
goal, we make the following contributions:
• We design an algorithm to control battery usage in each

home to minimize private data disclosure.
• We develop novel algorithms that use a dynamic Demand-

Response framework to reduce the aggregate peak load
across a group of homes.

• We use data-driven simulations to evaluate our algorithms
and show that they are effective in preserving privacy
while reducing aggregate peak load.

II. THREAT MODEL

A. Threat to Privacy

The adversary is either capable of accessing the readings
directly from the power utility company, monitoring the con-
sumption recorded at the smart meter, or by intercepting
transmissions to and from the utility companies. We also
consider the utility company to be adversarial in terms of
violating smart home privacy, for load optimization services
and targeted commercial advertisements.

B. Threat to Reliability

Fig. 2 shows the load profile that a utility provider would
observe when a group of homes is using a battery-based
privacy solution. We observed this pattern in our experiments
described in Section VII. If the utility company is unable to
predict surges in demand from homes, as the peak observed at
420 minutes, they might not be able to prepare for a sudden
peak ahead of time. This makes the smart grid unreliable and
prone to power outages in that area. Very high peaks can also
cause fuse breaks at substations resulting in prolonged outages.
We assume that the utility company would want to provide a
reliable service, thus, we do not consider it to be a threat to
reliability.

III. BACKGROUND AND RELATED WORK

A. Smart Power Grid

The utility companies need to plan the generation and
distribution pattern throughout the day [3]. The general pattern
is largely predictable and an increase in demand is usually
compensated by shifting the distribution, quick backup gen-
erators (which have higher start-up costs), or by buying from
other companies.

Fig. 2: Load Profile Observed at Utility Node

Fig. 3: Hierarchical Network Structure of the Smart Grid

Smart meters are connected to the electric utility companies
over a two-tier network through substations as shown in Fig.
3. A substation (also known as collector) is connected to a
group of homes [11]. They monitor the demand load over time,
recording the electric usage at the homes at a fine granularity
of a few minutes or seconds. Some also have the capability to
log power-relevant events like outages and peaks [12].

B. Battery-based Solutions to Preserve Privacy

In this model, the demand of the devices in the home is
partially met by the reserve charge in the battery and partially
by drawing power directly from the grid. Therefore, the values
recorded by the smart meter are a sum of the actual demand of
the devices and the battery usage. The battery can be used to
store and supply power to the devices in the home at strategic
times to hide appliance loads from the smart meter. Early
approaches to preserve privacy were to flatten the load to hide
the variations in the usage patterns [6, 7]. Other ones focused
on adding patterns through the use of the battery that could
not be correlated to the usage patterns of specific devices [8].
The algorithms proposed in this paper follow the second class
of algorithms.

These algorithms base their calculations on the actual
demand in the house. Due to this intrinsic property of the
algorithms and the physical restrictions of the battery (capacity
and charging/discharging rate), at certain times, the meter
readings can be directly correlated to the actual demand. If an
adversary observes points at which the load changed, it would
be possible to correlate those with activities in the house [8].

In a variation of the algorithm in [8], the battery is charged
and discharged probabilistically depending on the state of
charge in the battery. This makes it difficult to monitor the
battery state and draw correlations to the actual demand.



Fig. 4: Data and Control Flow Paths in Smart Grid

However, this algorithm is also restricted by the battery spec-
ifications. In this paper, we design an algorithm that removes
the constraint of always discharging or charging the battery at
a constant rate.

C. Peak Load Reduction Solutions

Demand Response (DR) schemes provide incentives to
customers to lower electricity usage at times of high wholesale
market prices or when the reliability of the system is in
question [13]. Such schemes are decided ahead of time and
incentives are predefined [14, 15]. They also require the cus-
tomer to actively change their load according to the program
they have opted for. In these cases, utility companies often use
third parties to keep a check on the customers.

Direct Load Control (DLC) is a more dynamic and intru-
sive form of DR where the utility can remotely control the
customer’s electrical equipment [16–18]. This technique is
common in an industrial setting where control over appliances
like the air conditioning system is more effective [11, 19, 20].
However, some operators [21] offer residential DLC solutions.

Battery-based peak-aware charging algorithms are proposed
in [22, 23] where factors such as cost generators and trans-
mission rates are used to minimize the cost for residents.
Their model is based on predicting the next-day demand
using machine learning to reduce peak load. However, these
solutions cannot be directly used in conjunction with the class
of battery-based control algorithms we explore in this work.

IV. SYSTEM MODEL

The overall system model is shown in Fig. 4. In this model,
apart from the power connections to draw electricity, the
substation or collector nodes are connected to a group of
smart homes by data paths to communicate the information
recorded by the meter and for the control messages to be sent
to the homes by the utility indicating the load level. In addition
to smart meters, these homes also have a battery connected
through a gateway node. The function of the gateway is to
implement the local control algorithm, which decides, in real-
time, when and how the battery will be used to support the
demand in the home. The gateway is assumed to have charge
controller-like [24] capabilities to be able to control the battery
at the level required.

V. CONTROL ALGORITHMS

In this section, we first improve on existing privacy-
preserving algorithms [6–8] by operating the battery indepen-
dent of any external factors, such as the load in the home.
Additionally, unlike the earlier work, we charge the battery at

a random rate. Next, we propose two algorithms that distribute
the load over time to reduce undesired peaks that might be
observed in the aggregate load at the utility.

A. Modified Privacy-Preserving Algorithm

Our Random Charging scheme is outlined in Algorithm 1.
Charging the battery probabilistically depends on the state of
charge in the battery. Unlike existing work, in our algorithm,
the battery is charged at a random rate, which is bounded
by the maximum charging rate. On the other hand, in our
algorithm, when a discharge decision is made, the battery is
discharged at the maximum rate to compensate for the demand
of the devices and hide the usage pattern.

Algorithm 1 Random Charging (RC)

Input: Battery’s state of charge soc ε [0,1]
Output: Battery rate: charging(+); discharging(-)

1: function RC(soc)
2: At each timestamp (t):
3: if Pr[random(0, 1) > soc] then
4: return (random(0, 1) ∗ ratecharging)
5: else
6: return (−1 ∗ ratedischarging)
7: end if
8: end function

Due to the random nature of our algorithm, we are able
to construct a robust system that can largely maintain an
equilibrium in the load variations at each home. However,
occasional high peaks are observed in the aggregated load
across multiple homes. We show a quantitative analysis of
this behavior in Section VII-F2.

B. Feedback-Driven Algorithms for Peak Load Reduction

When a high load period coincides across multiple homes,
a momentary spike is observed. This observed peak is unpre-
dictable unlike the expected progressive pattern observed when
no privacy solutions are used in homes. These momentary
spikes can potentially cause outages in areas of high demand.
To tackle these load spikes, we need a “congestion avoidance”
strategy to distribute the load over time. In our model, a
collector sends a feedback message to the homes when it
is experiencing a surge in demand. There are no feedback
messages sent when the utility is able to handle the load.

If all the homes receiving this feedback message reduce
their load at the same time by using the battery, the load on
the utility will drop and there will be no feedback message.
At this point, all the batteries would attempt to charge with a
high probability, as the state of charge would be low, resulting
in an increase in the load observed at the utility. To prevent
this, we study different approaches to incorporate the feedback
message to add some variability in the battery usage according
to the number of consecutive feedback messages received to
avoid synchronization among homes.

1) Linear Response: This approach is outlined in Algo-
rithm 2. When the feedback is first received, the probability
to incorporate its effect is half. If the feedback persists, it



would indicate that the load needs to reduce further. Thus, the
longer the message is received, the higher is the chance of the
homes to discharge the battery.

The gateway now bases its decision on two factors, the
current state of change in the battery and high load indicated
through the feedback messages. The probability of charging
the battery is lower when the state of charge in the battery is
high. The probability of charging the battery further reduces as
more number of consecutive feedback messages are received.

Algorithm 2 Random Charging with Linear Response (LR)

Input: Battery’s state of charge(soc) ε [0,1], feedback(fb(t))
ε {0,1}

1: // normal load, fb(t) = 0
2: // undesired high load, fb(t) = 1

Output: Battery rate: charging(+); discharging(-)
3: function RC(soc, fb(t), fb(t− 1)) // Called at time(t):
4: if fb(t) == 0 then
5: n = 0
6: else if fb(t− 1) == 0 then
7: n = 1
8: else
9: n = n+ 1 // linear response

10: end if
11: if Pr[random(0,1) > soc] and Pr[random(0,n) == 0]

then
12: return random(0, 1) ∗ ratecharging
13: else
14: return (−1 ∗ ratedischarging)
15: end if
16: end function

2) Quick Response: In comparison to the previous Linear
Response algorithm, this algorithm (Algorithm 3) reduces
the probability of charging the battery by responding to the
feedback quicker. Here, the probability of discharging the
battery increases multiplicatively.

To prevent high load directly after the feedback messages
stop, a recovery period is added that slowly relaxes the
constraint induced by the feedback message. If a similar
multiplicative decrease is applied to reduce this influence,
then this quick decrease can cause a successive peak. This
would happen when the load momentarily reduces and the
feedback message stops earlier than the previous case, but
since the conditions have not significantly changed, the load
goes back when the restriction is removed too quickly. This
creates an oscillating unstable system. By adding a slow decay,
an optimally distributed equilibrium is possible.

VI. BATTERY SIZING

A very small battery would not be able to hide the load or
act on the utility feedback effectively. On the other hand, a
large battery will cost more and, as shown in Section VII-F2,
increase the peaks in the load profile. Thus, determining the
optimal battery size for each home is critical to find a balance.
Battery specifications are decided based on analysis drawn

Algorithm 3 Random Charging with Quick Response (QR)

Input: Battery’s state of charge(soc) ε [0,1], feedback(fb(t))
ε {0,1}

1: // normal load, fb(t) = 0
2: // undesired high load, fb(t) = 1

Output: Battery rate: charging(+); discharging(-)
3: function RC(soc, fb(t)) // Called at time(t):
4: if fb(t) == 0 and n! = 0 then
5: n = n− 1 // linear back-off
6: else
7: n = n ∗ 2 // multiplicative response
8: end if
9: if Pr[random(0,1) > soc] and Pr[random(0,n) == 0]

then
10: return random(0, 1) ∗ ratecharging
11: else
12: return (−1 ∗ ratedischarging)
13: end if
14: end function

from the load profile of the individual homes. Fig. 5 shows
how much of the load the battery sizes can handle.

1) Bulky Battery Sizes: This model is designed such that the
battery is sufficient to supply the load at high peak times. The
capacity is chosen such that it is able to supply enough power
required during the peak intervals. The discharging/charging
rate is set such that any peak can be masked at a given
timestamp. The sizes of these batteries are close to those used
in off-grid systems.

2) Moderate Battery Sizes: The algorithms controlling the
battery use are very different from the behavior assumed in
the previous model, i.e., the battery is not always used to
supply all the load during peak times. A more befitting model
should supply some of the load during peaks. This model sizes
the capacity of the battery to be able to mask instantaneous
peak loads while the discharging/charging rate is adjusted
accordingly.

3) Compact Battery Sizes: To test the performance bounds,
this model selects battery sizes that have enough capacity
to compensate for the average load observed. The discharg-
ing/charging rate is adjusted to match the respective battery.

VII. EVALUATION

To evaluate the proposed algorithms, we simulate our
system model in the GridLAB-D simulation tool [10]. The
experiments are driven by the readings of 40 homes taken
from the UMass Smart project [25] for January-June 2016.
The meter readings generated by the simulation were used to
compare the performance of the algorithms across all battery
sizing models. The focus of the analysis is to study how
effectively our algorithms are able to conceal points that reveal
the activities in the homes in comparison with the existing
work. To determine whether these solutions can be widely
used in practice, we study the collective load distribution to
identify if there are any events that may cause grid instability
due to high load peaks.



Fig. 5: Battery Sizing Models

A. Quantifying Privacy

An algorithm is privacy preserving if it can hide individual
device signatures, load patterns, and activity bursts. Similar
to existing work [6–8], we use mutual information (MI) to
capture the correlation between the actual load in the home
and the observed load at the meter by considering both these
time-series values as distributions of random variables. MI is
a measure of how much information about the actual demand
load consumed by the devices is exposed by the observed load
recorded at the smart meter. A lower mutual information score
signifies low correlation between the actual and observed load.

1) MI with Independence Assumption: The first step in
calculating mutual information is to discretize both the time-
series data, i.e., the observed (x) and actual (y) load. In
this first case, each value is assumed to be independent of
the previous values in the same series to evaluate mutual
information in the most general case. Next, the joint (p(x,y))
and marginal (p(x), p(y)) distributions are calculated using the
discretized time-series data, which is finally used to calculate
the MI according to (1).

I(X;Y ) =
∑
t

∑
(x,y)

p(x(t), y(t))log
p(x(t), y(t))

p(x(t))p(y(t))
(1)

2) MI with Correlation Assumption: The assumption that
each value observed is independent of the previous is not true
in the real setting as we are more likely to see bursts of activity
and inactivity in homes. To evaluate the mutual information in
a more realistic setting, we compare if the changes in the load
profiles of the observed load are correlated to the changes in
the load profile of the actual load. We see that the maximum
correlation is observed at a lag of one minute by calculating the
autocorrelation function for each time-series measurements.
We considered a range of shifts in time, from a lag of one
minute to a lag of one day.

The mutual information score is altered to account for the
information lost due to the dependence within the observed
load values. Therefore, we introduce a single-step Markov
chain to the probabilities of the samples. This is similar to the
metric used in [8]. With this assumption, we are able to capture
if there is a dependence in the corresponding changes in the
distributions whereas the previous case in Section VII-A1 only
checks for the dependence in the corresponding values in both
these distributions. It is essential to compare the privacy based
on adding this assumption since changes in the load profile

can also expose information. The mutual information is now
calculated for these new random variables that are the observed
and actual loads given the value at one timestamp before the
current value. The mutual information equation is modified as
per (1).

I(X;Y ) =
∑
t

∑
(x′,y′)

p(x′(t), y′(t))log p(x′(t), y′(t))
p(x′(t))p(y′(t))

=
∑
t

∑
(x,y)

p(f(t− 1))p(f(t))|(f(t− 1))).

log
p(f(t− 1))p(f(t))|(f(t− 1)))

p(x(t)|x(t− 1))p(y(t)|y(t− 1))

− p(f(t− 1))log
p(f(t− 1))

p(x(t− 1))p(y(t− 1))

where, f(t) = (x(t), y(t))

(2)

B. Peak Load Analysis

The other area of concern is the peaks observed at the utility
node. The motivation to use the feedback from the utility is
to avoid the scenario when we might observe these peaks by
distributing the load more uniformly.

1) Load Distribution: We analyze the cumulative density
function (CDF) of the load profiles as observed at the utility
node to compare the load distribution. The aim is to bring the
load distribution as close to the distribution of the actual load
to have the least impact on load prediction.

2) Power Utilization: The peak average power ratio (PAPR)
drives the power generation estimation [9]. The PAPR value
is computed by the fraction of peak load by the root mean
square of the load over time. A smaller PAPR value indicated
higher utilization of the power generated.

PAPR =
load observedmax

load observedrms
(3)

C. Simulation Tool and Experimental Setup

The GridLAB-D time-series power distribution system sim-
ulation and analysis tool [10] provides different module ab-
stractions such as power flow, demand response, and market
pricing, which can be used to simulate the different aspects
of the model. The system can be executed for different time
scales, ranging from sub-seconds to many years.

The simulated model of 40 Homes connected through
4 substation or Collector nodes is shown in Fig. 6. Each
Collector node is connected to 10 Smart Home nodes.



Fig. 6: Experiment Structure

Fig. 7: Smart Home Node

We enhance the simulator by adding classes to record the
different states needed by the different control algorithms; for
instance, the feedback from the collector nodes, which is used
in the proposed algorithms, was stored in a new parameter.
The battery control algorithms were specified in a MATLAB
function that was linked to the main model file.

The power generation is controlled at the utility node
and the collector nodes simply convert and forward as per
demand. Apart from this, the only operation outside the smart
homes was recording the load at the collector nodes and
communicating the feedback message for high loads back to
the homes, when required.

D. Smart Home Node

Fig. 7 shows the Smart Home node that is realized by a
collection of appliance nodes connected together. The point
of connection between the home and the Collector node is
through a Gateway node. The Gateway also receives feedback
messages from the Collector node when it is experiencing high
load. The load in the smart home is defined at the House Load
object.

The Smart Meter connects the home to the substations and
records the net power usage of the smart home. Load Meter
records the power required by the devices in the home and
Battery Meter records just the power consumed and supplied
by the battery.

A Battery storage has been added to each home through an
Inverter that connects to the Smart Meter. This configuration
allows us to control the battery usage. When the battery
is charging from the grid, it draws power along this path
and when it is discharging, it supplied power through the
same path in the reverse direction. While discharging, the
demand in the house is partially or completely, supplied by the
battery. To obtain such algorithmic control, the simulator has
to interact with MATLAB where the local control algorithm is
implemented. The Inverter is able to sense the demand in the
home from the Load Meter needed for the control algorithm.

Fig. 8: Load Profile at Sample Home with Moderate Battery Sizes

E. Dataset

The UMass Smart project [25] contains data for 114 single-
family apartments for the period 2014-2016. The aggregate
load is recorded for every minute by a smart meter at the
apartment. Of these 114 apartments, 40 were selected for our
simulation based on diverse load profiles. From the dataset, we
selected an even split of homes that had an average load higher
and lower than the mean across all homes in the dataset. These
homes also had a varying percentage of peaks to ensure widely
heterogeneous usage patterns. The duration of these peaks was
also a differentiating factor in selecting the homes.

F. Experimental Results

The load variation observed at the smart meter from the
use of different control algorithms is directly comparable. We
compare our proposed algorithms with the existing work i.e.,
Best Effort (BE) [6], Non-Intrusive Load Leveling (NILL) [7],
and Stepping Framework (SF) [8]. Events in the actual load
can be directly correlated to the observed load when limited by
the battery specifications but load signatures are better hidden
as the battery sizes increase. Fig. 8 shows a sample of the
data recorded over a day and how the load varies with these
algorithms.

1) Privacy Comparison: In this section, we show the
variation in MI for the simulated homes. A bin size of 500 W
was selected during the discretization step while calculating
the MI. This size was empirically chosen as it was found that
the MI was less sensitive to bin sizes in this range. Earlier work
[8] also found this bin size to be appropriate to represent the
signal well.

Fig. 9a summarizes the MI for all homes with different
battery sizes under all the algorithms. It is also interesting
to note how gradually information leakage is observed when
the battery use is suppressed by the incorporation of the
feedback message. Given strict constraints by the battery
in the compact battery model, the proposed algorithms are
still able to hide signatures better than the existing work.
With the use of the moderate sized batteries, the proposed
algorithms consistently perform better. When comparing the
bulky battery model an interesting conclusion can be drawn.
The BE algorithm outperforms all other algorithms, and in



(a) Independence Assumption (b) Correlation Assumption
Fig. 9: MI across Battery Sizes.

its best case successfully hides almost all data points. This
does however come at a cost examined in the next section.
The existing work also shows high variance in MI as for
an interval when the battery has the capacity, it can largely
hide all load changes, but this is followed by a period of
maximum information exposure when the battery is unable
to support the demand due to this overuse. On the other hand,
the proposed algorithms, achieve a consistent level of privacy
with less variation even across homes.

To summarize, when comparing the variation in MI for
the various algorithms for the different battery sizes it is
observed that the proposed algorithms are less restricted by
the battery specifications and are able to hide load signatures
better, making it harder to identify targeted load signatures.
It is also interesting to note that the variations proposed in
this paper are able to achieve similar MI values with compact
batteries as the existing algorithms are with bulky batteries.

Fig. 9b shows that not only do the proposed algorithms leak
less information than the existing work, the difference in MI
between them has also increased. A drastic change is observed
in the case of the bulky battery sizes from Fig. 9a where the
best effort algorithm exposes more information. This is due to
its high correlation in observed values, even a small change
in the load profile can be easily correlated. The proposed
algorithms expose much less information. The effect of the
feedback message is also minimal at the privacy front and the
impact of the battery specifications is minimal.

2) Load Comparison: Fig. 10a shows the load profiles
as observed at a utility node that could cause instability.
The proposed feedback-driven algorithms are able to realize
more uniform load distribution and reduce the chance of
experiencing these peak events. The change in the observed
load profile is shown in Fig. 10b, with reduced peaks.

As shown in Fig. 11a, 11b, 11c, RC has a very wide
variation in its pattern whereas a desirable load distribution
pattern would be one that is as close to the actual load as
possible with reduced peaks. Thus, the goal is to achieve a load
distribution that has a shape like the distribution of the actual
load and also see lower maximum values than those with the
RC algorithm. By utilizing the feedback-driven algorithms, the
distribution of the load improves and the chance of observing
concerning peaks reduces.

With the compact battery sizes, as shown in Fig. 11a, the
load distribution with the feedback-driven algorithms is very

close to that of the actual load. When using the moderate
sized batteries the load distribution by the feedback-driven
algorithms is still better at compressing the gap between
that of the actual load and the observed load with the RC
algorithm, seen in Fig. 11b. The slight shift only indicated
those values that were lower than that in the actual load, which
is not a concerning difference. Fig. 11c shows a similar load
distribution but also highlights an important observation when
using bulky battery sizes. The large batteries, when used in this
manner, cause very high peaks, which make them undesirable.

The PAPR values are estimated using the cumulative load,
as observed by the utility node. Table I shows the impact
of the feedback on the efficiency of power generation. With
the feedback-driven algorithms, the load utilization is higher
than the RC algorithm. The battery also has an effect on this
parameter. As seen in Table I, the bulky battery sizes increase
the max peak observed at the homes, resulting in higher PAPR
values.

TABLE I: PAPR Values for Proposed Algorithms

Battery Random Charging Linear Response Quick Response
Compact 2.710 2.277 2.213
Moderate 2.814 2.145 2.113

Bulky 7.536 7.458 7.224

VIII. CONCLUSION

We reveal the shortcomings in existing privacy-preserving
algorithms and the threat such battery-based solutions pose to
the grid’s stability and reliability. To overcome the pitfalls in
the existing privacy solutions we propose a Random Charging
algorithm. We also propose two algorithms that maintain
stability in the power grid by using real-time feedback from
the utility to distribute high load over time. Through our
evaluations, we show that our algorithms are more effective
in preserving privacy with smaller batteries than existing ones
and appropriately reduce the peak load by distributing it over
time. A mathematical analysis of the proposed algorithms
will be explored in future work. Our work can also proceed
along several directions. First, we will investigate the problems
of privacy and peak load reduction in microgrid systems
that have local power generation capabilities. Second, we
will investigate the interplay between the battery life and
the random charging patterns. Last, we will explore machine
learning based techniques to derive the battery sizes suitable
for each home.



(a) Random Charging across Battery Sizes (b) Proposed Solutions using Moderate Battery
Fig. 10: Load Profile at Utility Node

(a) Compact Battery Sizes (b) Moderate Battery Sizes (c) Bulky Battery Sizes
Fig. 11: Load Distribution at Utility Node with Different Battery Sizes.
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