MobileStream: A Scalable, Programmable and Evolvable Mobile
Core Control Plane Platform’

Junguk Cho Ryan Stutsman Jacobus Van der Merwe
University of Utah University of Utah University of Utah
junguk.cho@utah.edu stutsman@cs.utah.edu kobus@cs.utah.edu
ABSTRACT Cost-effective handling of heavy and bursty control traffic will

Control planes in future mobile core networks face two new chal-
lenges. First, they must scale to process the growing control traffic
generated by an ever increasing number of mobile devices. Sec-
ond, they must be flexible and evolvable to support the range of
emerging service abstractions and to realize customized network
slices to meet the broad range of requirements of these networks.
To address these challenges, we propose MobileStream, a scalable,
programmable, and evolvable mobile core control plane platform.
MobileStream provides a set of refactored basic building blocks,
functionally decomposed from existing monolithic control plane
components. It leverages realtime streaming frameworks to as-
semble, execute, and scale these blocks as streaming control plane
applications. Moreover, it allows users to add their own functions
to customize and optimize streaming control plane applications.
We present several streaming control plane applications to show-
case the flexibility and generality of MobileStream. We describe our
extensive functional testing, with a variety of mobile devices and
base stations, to validate the MobileStream prototype, and present
the results of large-scale experiments demonstrating its scalability.

CCS CONCEPTS

» Networks — Mobile networks; Programmable networks;

KEYWORDS

Mobile Core Network; Control Plane; Realtime Streaming Frame-
work

1 INTRODUCTION

Control planes in mobile core networks face two key growing
concerns: exploding traffic volume and number of connected de-
vices, and growing network service diversity. A large number of
mobile devices will be connected to future mobile networks (e.g.,
11.6 billion mobile-connected devices by 2021 according to some es-
timates [34]). These devices will generate an unprecedented volume
of control traffic, creating the potential for signaling storms [30].

“Instructions for accessing the MobileStream code and using it in the powder testbed
are available here: https://gitlab.flux.utah.edu/powder-profiles/mobilestream

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4—7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12...$15.00
https://doi.org/10.1145/3281411.3281442

correspondingly require highly scalable control planes.

These scalability concerns are leading, in part, to the second issue:
mobile networks must be programmable to support flexible service
abstractions and instantiate customized network slices to meet the
broad range of requirements of these networks. Recently, several
new mobile network architectures have been proposed, for example,
Multi-Access Edge Computing (MEC) [36] for latency sensitive
services; Cellular IoT (CIoT) Serving Gateway Node (C-SGN) [24]
for IoT and M2M; and Control and User Plane Separation of EPC
nodes (CUPS) [23] using SDN for better scalability and flexibility.
In addition to new architectures, customized logical networks (i.e.,
network slices) can be dynamically created to meet the specific
service requirements [17, 67]. In 5G networks, Network Slicing
Selection Function (NSSF) [21] is introduced as a new control plane
function to natively support network slicing. This requires easy and
rapid adoption of new optimizations and control plane protocols as
well as composition and instantiation of control plane functions in
a variety of ways.

The fundamental limitations of inflexibility and scalability due to
the current EPC architecture design are well understood [39, 45, 49—
51, 53, 54, 59, 61, 63, 64, 66]. First, monolithic mobile network com-
ponents make it difficult to customize networks (i.e., network slic-
ing) and scale independently. For example, the MME performs most
control plane operations (i.e., authentication, mobility and session
management) and S/P-GWs perform both control and data plane
operations. Second, distributed control plane components, which
generate unique user equipment (UE) states, result in frequent
state synchronization with sequential control procedures for state
consistency. These procedures cause long delays.

Several research efforts have proposed a redesign of existing
EPC networks [39, 45, 49, 51, 53, 54, 59, 61, 63, 64, 66] to address
the limitations using NFV and SDN. They clearly separate control
and data plane and take approaches to consolidate control and
data components in different ways. Some of these efforts merge
control and data plane components into one new component [53,
54, 63] and others merge control plane components based on mobile
events [51, 64], or different service requirements [61] using modular
components.

While existing works show better performance in terms of scal-
ability than LTE/EPC networks, we argue that there is a need for a
general and programmable control plane platform to address con-
cerns related to inflexibility and scalability. Such a general platform
will allow users to build various control plane architectures and
easily run them in a scalable manner. However, to design a new
mobile core control plane platform, there are several questions: (i)
what are the key and reusable functions from control planes, (ii)

https://doi.org/10.1145/3281411.3281442

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

how to manage complex UE states, (iii) how to provide programma-
bility, and (iv) what is a right runtime environment to build and
manage the control plane applications?

To answer these questions, we propose MobileStream, a scal-
able, programmable, and evolvable mobile control plane platform.
MobileStream starts by decomposing the functions of the mobile
network control plane into a set of refactored basic building blocks.
As a result, MobileStream is highly modular which allows cre-
ating a pipeline to function as a control plane application by as-
sembling basic building blocks. In addition, these pipelines can
be rearranged to support new services. MobileStream is also scal-
able since individual blocks can be scaled independently to avoid
pipeline bottlenecks. Key components that makes MobileStream
easy to work with are its user state management building blocks,
which assign globally unique UE states in a single point and exter-
nalize UE states in a remote key-value store. This allows control
plane pipelines to remain mostly stateless.

As a runtime environment, MobileStream uses a stream pro-
cessing framework which provides programmability. With the
standard realtime stream processing framework APIs, users can
(i) define pipelines based on basic building blocks, (ii) consolidate
building blocks in one node in the pipeline, or distribute them across
multiple nodes, (iii) specify data flows using different routing poli-
cies and data format between nodes in the pipeline and parallelism
on a per-block level, and (iv) add custom functions on top of basic
building blocks to optimize performance or support new services.
MobileStream executes these stream control plane pipelines on a
realtime stream processing framework in a cloud environment. Fi-
nally, streaming frameworks provide built-in redundancy and fault
tolerance to transparently handle failures; something essential in
moving critically reliable mobile control plane components to less
reliable cloud platforms.

However, designing a mobile control plane over a streaming
platform is not straightforward. MobileStream has to address a
number of key challenges. First, to be effective and fault-tolerant,
the stream control plane pipeline must be stateless, but it also must
avoid frequent access to a remote store for UE states that would stall
the pipeline and destroy its scalability. A second related challenge is
that the control plane faces tight deadlines: the stream control plane
pipeline processes control plane messages as soon as possible since
control plane operations directly impact data access latency [50, 64].

MobileStream solves these issues following two design principles:
centralized and smart state management, and distributed computa-
tions. It uses a single synchronization point with a remote store at
the start of the pipeline, after which all operations in the pipeline
are non-blocking. It maintains only one remote key-value store,
regardless of radio connectivity mode of a UE, by leveraging novel
state allocation. In addition, MobileStream uses state partitioning,
a right parallelism of each building block, and different routing
policies between basic building blocks for fair load distribution.
Finally, it customizes building blocks to reduce the processing time
of specific mobile events.

While designing 5G core networks is still ongoing [20, 42, 55, 58],
for example, 3GPP proposes a Service Based Architecture (SBA) [21,
22]. The main concepts of the architectural design are similar to Mo-
bileStream: clean separation of control and data plane, functional
decompositions of current monolithic components and stateless

J. Cho, R. Stutsman, and J. Van der Merwe

network functions (NFs) [21]. MobileStream can be a platform to re-
alize the 5G next generation core architectures enabling the service
diversity, scalability and flexibility envisioned by 5G.

To prototype MobileStream, we have implemented basic building
blocks as well-encapsulated C++ and Java classes, which support
most 4G network mobile events. We use the Apache Storm [69]
realtime stream processing framework and programming APIs from
Storm to assemble basic building blocks and run stream control
plane applications on clusters of machines. In addition, we develop
control plane protocol-specific routing classes based on Storm rout-
ing interfaces to build stream control plane applications. A Re-
dis [16] in-memory key-value store holds user states, serialized as
protocol buffers [15]. We demonstrate the generality and flexibil-
ity of MobileStream by implementing several mobile architectures
which extend and refactor mobile control planes (ACACIA [33] and
Fat-Proxy [64]) as Storm stream applications.

To validate the MobileStream framework, we evaluate our pro-
totype with extensive functional tests including multiple UEs and
eNBs (i.e., commercial smartphones and ip.access as eNB and Software-
Defined Radio (SDR) based UEs and eNBs). Large-scale experiments
demonstrate its scalability.

To the best of our knowledge, MobileStream is the first control
plane platform that provides scalability and programmability by
leveraging a realtime stream processing framework to build mobile
control applications. We make the following specific contributions
in this work.

o We design MobileStream, which provides a set of refactored ba-
sic building blocks and a remote key-value store to build stream
control plane applications and executes them on a realtime stream
processing framework.

e We introduce key design principles and use them to design sev-
eral control plane applications, optimized for performance and
consistent user state management in the face of a range of mobile
events.

e We implement and evaluate a MobileStream prototype.

2 RELATED WORK

Modular design for mobile networks: Approaches to refactor
mobile networks based on modular components have been pro-
posed [51, 61]. Both works strategically locate multiple modules
in the same machine to process a specific mobile event [51] or to
meet different service requirements [61] to reduce the control mes-
sages exchanged in mobile networks. While MobileStream is also
based on a modular design, MobileStream provides finer-grained
modularity and a way of assembling the modules. In addition, both
works leave the prototype of their approaches as future work and
MobileStream can be a platform to realize their approach.
Fat-Proxy [64] optimizes control plane execution by combining
logic from multiple EPC components into one Network Function
(NF) running on a virtual machine to process a specific event. Its
decomposition and reassembly of logic are similar to MobileStream,
but MobileStream generalizes it as a full platform for existing func-
tionality and for extending control plane functionality.
EPC-in-a-box design: CleanG [53] consolidates refactored con-
trol plane functions in EPC into one component. PEPC [63] and

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

SoftBox [54] propose EPC-in-a-box on a per UE basis by consoli-
dating both control and data plane into one component. The pro-
posed architectures [53, 54, 63] avoid distributed states management
and long delay to synchronize them. MobileStream consolidates
state management to avoid the complex state management, but dis-
tributes control plane computations by providing stateless building
blocks and exploiting computation parallelism for them.

Distributed MME architectures: Recent works propose dis-
tributed MME architectures to address control plane scalability [26,
30, 62, 68]. DMME [26] proposes geographically distributed MMEs
with remote storage. SCALE [30] proposes distributed MMEs con-
sisting of front-end load balancers, MME processing entities and
state replication. Stateless distributed MMEs with load balancers,
MME processing entities, and remote storage have been proposed [62,
68]. One motivation of MobileStream is addressing signaling storms
using distributed stream control plane applications, but its approach
more generally supports function-level scalability beyond MME
instance-level scalability. In addition, unlike [26, 30, 62, 68], which
are a drop-in replacement for the MME with NFV, MobileStream
goes beyond MME functionality and supports other control plane
functionality (e.g., S/PGW-C and AuC).

NF frameworks: Click [47] provides packet processing mod-
ules and configuration abstractions (i.e., a directed graph) to assem-
ble them as various network functions. NetBricks [60] proposes a
small set of customizable network processing elements to build net-
work functions and guarantees memory and packet isolation with
very low overheads. StreamNF [46] proposes an NFV framework
which leverages a streaming framework for network functions and
a remote key-value store to externalize the internal state of NFs. It
provides a simple and flexible API for operators to hide low level de-
tails of managing NFs and offers high performance and correctness.
MobileStream takes similar approaches [47, 60] such as providing
small building blocks and assembling them as a pipeline and has a
similar architecture (e.g., a stream framework with a remote key-
value store) to StreamNF [46], but MobileStream differs from them
in the sense that it is a specialized NF framework to support mobile
control plane network functions.

3 BACKGROUND

3.1 Mobile Networks

LTE/EPC architecture: The LTE/EPC network architecture con-
sists of the Radio Access Network (RAN) and the Evolved Packet
Core (EPC). RAN (i.e., eNBs) offers radio connectivity to user equip-
ments (UEs) and communicates with the EPC. The EPC performs
both control and data plane operations. MME (Mobility Manage-
ment Entity) is the main control plane component; it performs user
authentication, mobility and session management. MMEs interact
with the HSS (Home Subscriber Server), which is a database of user
profile information (e.g., subscription information). The data plane
components (the S/P-GWs) interact with the control plane to set
up data paths to enable forwarding of user traffic.

UE states: One of main functions in the EPC is to read, generate
and update UE states based on mobile events. Table 1 shows the
classification of important UE states managed by the EPC (a UE’s

IStatic and Dynamic variables are shown in bold and italic text respectively. Global
variables are marked with an asterisk among dynamic variables.

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

Categories Variables

UE IDs IMSI, IMEL GUTI", UE IP address™
Authentication vectors (AVs)
(i.e., auth, rand, xres, k_asme),

Security NAS (i.e., encryption, integrity keys,

nas_count_ul/dl),
Radio security key
SI1AP ids™ (i.e. mme/enb_ue_slap_id)

S1 UL/DL TEIDs*, S5 UL/DL TEIDs*
Subscribed profile (e.g.,QCI, ARP, etc.),
APN conf (e.g., PDN type, DNS)
EMM, ECM states, and
EMM procedure states

Table 1: Classification of UE states!

Control plane
Data plane

Subscription info

State machines

complete state is much larger). They are classified as static, dynamic
and global states. Static states, shown with bold text in Table 1,
are permanently stored in UE and HSS; they do not change during
mobile events. The rest excluding static states are dynamic states,
shown with italic text.

Dynamic states are generated from different EPC components
and eNB; for example, mme_ue_slap_id and UE IP address are gen-
erated by the MME and PGW respectively. Some dynamic states are
shared between EPC components via control messages. As the main
control plane component, the MME maintains all of the dynamic
states. Among dynamic states, the GUTIL, UE IP address, AVs, S1
UL TEID and S5 UL/DL TEIDs are only generated when the UE
first attaches to the mobile network (during an initial attachment
event) and are semi-permanent. Some states are changed per con-
trol message or mobile event. For example, nas_count_ul/dl values
change per control message when the control message is security
protected. EMM and EMM procedure states are mainly changed
per control message to keep track of the current progress of mobile
events for the UE. S1IAP ids, S1 TEID DL in the data plane, and
radio security key are changed based on the UE radio connectivity
mode. When a UE goes into idle mode, from active mode, due to
data inactivity (upon an S1 release event), they are released and
when the UE becomes active (upon a service request event), they
are re-generated by the eNB and MME.

Global states are a subset of the dynamic states and marked with
asterisk. They should be globally unique per UE in each MME and
S/P-GWs. They are used as identities in EPC components to perform
UE-specific actions (e.g., processing control and data traffic in the
MME and the S/P-GWs respectively). So, uniqueness is critical; if
the same values for the global states are assigned to multiple UEs,
the EPC malfunctions for the UEs. GUTI and mme_ue_slap_id in
the MME, TEIDs of the data plane in the S/P-GWs and IP address
in the PGW are global states.

3.2 RealTime Stream Frameworks

There are many open-source stream processing frameworks [1,
3, 11, 31, 48, 56, 69, 70] to support a variety of use cases (e.g.,
big data processing, realtime business intelligence [4, 7, 9], and
network analytics [43, 44]). Each stream framework has slightly
different characteristics and architecture, but Figure 1 shows a
generic streaming framework architecture. The Streaming manager
manages and schedules the execution of streaming applications

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

submitted to the framework. Worker agents running on each ma-
chine in a cluster launch scheduled streaming applications from
the streaming manager. Workers? running on the worker agents
perform application-specific computation and routing logic speci-
fied in submitted streaming applications. The Central coordinator
coordinates the communication among the components.

[« - Management plane «<—» Data tuple stream | Computer Cluster

Worker Agent
f Central
Streaming Manager [« --» Coordinator €™~
\/

Figure 1: Stream framework architecture

Intermediate (2)

(a) An example logical topology

m Intermediate .ﬂ
Intermediate

(b) A physical topology converted from (a)

Figure 2: Example topology

Streaming applications: A streaming application in realtime
streaming frameworks is represented as a topology. A logical topol-
ogy shown in Figure 2(a) defines how input data tuples generated
at the source node(s) are transformed into final output data tuples
at the sink node(s) through the topology. Data tuple is a stream
communication data model for node-to-node communications and
a named list of values. Each node in a topology defines application-
specific functions that converts incoming tuples to output tuples
at the node, a routing policy that decides the next node(s) for the
output tuples, and the degree of parallelism for the node. The logical
topology is implemented by the user using the stream framework
APIs. Given a logical topology, the scheduler converts it into a phys-
ical topology shown in Figure 2(b) based on the parallelism of nodes.
The physical topology is deployed on available worker agents based
on scheduling policies and resource availability of current worker
agents. Individual nodes in the topology are launched as workers by
worker agents and interconnect with one another based on assigned
TCP connections.

Data tuple communication: A data tuple consists of the output
values defined by the stream framework APIs from a worker and
metadata. The metadata including source/destination node IDs,
output length, and stream type is added to the output values by the
stream framework. The metadata is used for parsing, forwarding
and multiplexing in destination workers.

To decide the destination of data tuples, a stream processing
framework can provide several types of routing policies [18] for
individual workers. For example, Key-based routing and Round-
Robin routing are used to guarantee the same data tuples go to the
same next-hop worker by using a hash of data tuples and give fair

2In the remainder of this paper, we interchangeably use node and worker.

J. Cho, R. Stutsman, and J. Van der Merwe

load distributions respectively. In addition, a stream processing
framework provides a routing policy programming interface to
enable users to define custom routing policies.

4 MOBILESTREAM DESIGN
4.1 Design Goals

In architecting a new control plane platform for future mobile net-
works, we identify several key design goals. First, the platform must
enable users to easily build distributed control plane architectures.
It should provide a set of modular building blocks disassembled
from existing control plane functionality and APIs to compose them.
After assembling building blocks, the platform must be easy to exe-
cute and should manage the distributed control plane application
without extensive configurations. Second, these distributed control
plane applications must achieve horizontal scalability, high through-
put and low latency even under massive control plane traffic by
transparently exploiting parallelism and different composition of
building blocks. In addition, it must always guarantee UE state
consistency despite distributed operations. Finally, the resulting
framework must be evolvable in the sense that users can create
new building blocks and incorporate them to support new services.

4.2 MobileStream Overview

< —-» Data storage plane
(@ Computation node

<1- &> Mobile control plane
-<«— Data stream plane

Key-value storage |

4 Data plane

eNB 3 Get/set UE states

N Stream control plane app /’

\\\\\ P Data plane
e .

A -~ \
Data plane

Stream framework on cloud

' ' \l

Figure 3: MobileStream overview

Figure 3 shows an overview of the MobileStream platform, which
consists of a realtime stream processing framework and a remote
key-value store. A MobileStream user builds a stream control plane
application by defining a logical topology and submitting it to Mo-
bileStream. After transforming the logical topology to a physical
topology, MobileStream runs it atop a realtime stream processing
framework. After deployment, a stream control plane application
interacts with eNBs and data plane components, and performs con-
trol plane operations. The first nodes in the stream control plane
application get control request messages from multiple eNBs. The
control request messages are processed and their corresponding
control response messages are generated through the entire topol-
ogy. Each node in the topology performs a small part of the control
plane functionality and forwards an output to a next node. The
generated control response message is finally forwarded to the first

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

node that originally received the control request message. This first
node transfers the control response message back to the eNB that
sent the original request. As the control plane operates, it occasion-
ally must exchange control message with data plane components
in order to set up data paths. Whenever a node must read or update
UE states, it contacts the remote key-value store.

4.3 MobileStream Primitives

MobileStream provides three primitives: Control plane building
blocks and MobileStream programming APIs, to define a logical topol-
ogy, and UE state management to manage UE states in stream con-
trol plane applications. Given these three primitives, MobileStream
enables a user to build a stream control plane application. In the
following, we explain each primitive in detail.

4.3.1 Control Plane Building Blocks. MobileStream provides a
set of basic building blocks, which perform a small part of control
plane functionality, as C++ or Java classes, to build distributed
mobile control plane architectures. The highly modular approach
in MobileStream has multiple advantages. First, it enables users to
compose building blocks in a different way according to their use
cases. Second, each building block can scale independently based
on its usage and resource requirements.

To decompose control plane components (i.e., MME, S/P-GWs,
AuC) in 4G core network into a set of basic building blocks, we take
three steps. First, we consolidate all control plane components into
one logical control plane component to remove redundant state
management. Then, we divide the logical control plane component
into computation and state management layers. Finally, we decom-
pose the two layers into refactored basic building blocks which
minimize the dependency among them. The basic building blocks
consist of (i) message transport layers, (ii) SIAP, mobility and ses-
sion management, (iii) UE states management, (iv) security, and (v)
utility. This classification makes them easy to parallelize, modify
and replace.

Based on the classification, MobileStream provides transport
layer building blocks (e.g., SCTP, UDP, TCP) to manage connections
with other components (e.g., eNBs, S/P-GWs) and exchange control
messages. The SCTP block manages SCTP connections and is used
to send/receive control messages with multiple eNBs.

To perform control plane operations with eNB and UE, Mo-
bileStream provides three building blocks. SIAP block supports all
procedures with eNB (e.g., S1 data and control bearer management
and handover management). Mobility Management (MM) and Ses-
sion Management (SM) blocks are responsible for procedures with
a UE. MM block supports (un)registration, location management,
and authentication of a UE and SM block handles EPS bearer and
PDN connection management for a UE. Their first function is to
convert byte streams to structured protocol data and vice versa
(i.e., (un)pack control messages). After unpacking control request
messages, they update UE states from structured protocol data.
Then, they execute their own specific functions (e.g., generating
dynamic variables shown in Table 1) and update UE states. Finally,
they prepare structured protocol data with updated UE states and
pack it to byte streams.

For UE states management functions, MobileStream provides
three building blocks. The UEstates block is a data structure that

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

holds all variables shown in Table 1. The Global variable allocator
block manages globally unique variables per UE defined as global
variables in Table 1. UE states manager block is responsible for
managing UEstates in a local cache and a remote store. The Global
variable allocator and UE states manager make UE state manage-
ment simple and avoid distributed and duplicated states problems
in existing EPC architecture. In addition, they allow other blocks
to remain stateless.

For security functions, MobileStream provides the authentication
center (AuC) building block, which generates security keys for mu-
tual authentication between UE and networks (EPS Authentication
and Key Agreement (AKA) in 4G networks). The Integrity block
computes a message authentication code (MAC) for data integrity
and the Cipher block encrypts and decrypts control messages.

Besides core control plane functions, MobileStream provides sev-
eral utility functions like multiple protocol header decoder building
blocks that return message types of control messages. They are
used with other building blocks to assist in event-aware routing in
stream control plane applications. For example, the SIAP decoder
block returns a procedure code (e.g., initial UE message, handover,
etc.) in the SIAP message. The MM decoder and the Security decoder
blocks return mobility management type (e.g., attach request/accept,
service request, etc.) and security type (e.g., plain text, integrity
protected, ciphered, etc.) respectively.

Note that since a control message is (un)packed based on 3GPP
standard, each building block only parses a required part of the con-
trol message to avoid frequent packing and unpacking the control
message. For example, SIAP block does not (un)pack NAS message
from the control message.

4.3.2 MobileStream Programming APIs. MobileStream provides
two programming APIs to build distributed control plane applica-
tions. The first programming API is to use control building blocks.
The other is streaming framework APIs used to define a topology
of a stream control plane application.

/% Common programming interfaces x/

public interface ControlMessageHandler {

StreamValue ProcessReqMsg (byte[] PDU,byte[] ueStates)
StreamValue ProcessResMSg (byte[] PDU,byte[] ueStates)
}

/% Return value of the functions x/
class StreamValue{

NEXT_TASK nextTask;

byte[] PDU;

byte[] ueStates;
}

public enum NEXT_TASK {
NEXT_TASK_FORWARD_MSG ,
NEXT_TASK_REPLY_MSG,
NEXT_TASK_REPLY_AND_UE_UPDATE ,
NEXT_TASK_UE_UPDATE ,
NEXT_TASK_STAP_SRC_HO_REPLY_AND_UE_UPDATE,
NEXT_TASK_ST1AP_DST_HO_REPLY_AND_UE_UPDATE,
NEXT_TASK_ERROR

};

Listing 1: Interface for basic building blocks.

(i) Programming APIs for basic building blocks: We define a com-
mon programming interface for control building blocks since it
helps users to easily use and extend them. Basically, the control
plane processes control request messages, updates UE states and
sends control response messages based on updated UE states. There-
fore, inputs and outputs of control plane building blocks are a con-
trol message payload and current UE states.

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

Based on this observation, we define a programming interface
shown in Listing 1. ControlMessageHandler has two functions which
process control request and response messages. Both use a con-
trol message payload and UE states as function parameters and
return StreamValue. The StreamValue is a data structure including a
nextTask value, a payload and updated UE states. The payload and
updated UE states will be inputs to the next building block.

/* S1AP building blockx/

S1AP slap = new S1AP();

/% Process S1AP and NAS control messages x/

StreamValue streamValue = slap.ProcessReqMsg(slapPDU,ueStates);
StreamValue streamValue = slap.ProcessResMsg(nasPDU,ueStates);

Listing 2: Basic building block APIs.

Most control plane building blocks implement ControlMessage-
Handler. Listing 2 shows how to process SIAP control messages
with an S1AP block. S1AP block is created using the S1AP class,
which implements ControlMessageHandler. The S1AP block calls
ProcessReqMsg with an S1IAP payload and UE states to process
an S1AP control request message. ProcessReqMsg returns a pay-
load, which can be a NAS request, a SIAP response, or no pay-
load, and updated UE states. The nextTask value in StreamValue
decides a type of payload and a next action. For example, when
NEXT_TASK_FORWARD_MSG is a nextTask value, a NAS request
message and updated UE states are forwarded to a next node. To
process S1AP control response message, ProcessResMsg is called
with a NAS response message and UE states.

S1AP Node (2)

SCTP Node (1)

UE states
manager
)

1]

‘ Remote key-value storage ‘

Figure 4: An example logical topology

(ii) Programming APIs for defining a topology: We need to define
a topology based on building blocks to run a distributed control
plane application as a streaming application on a realtime stream
processing framework. This is done via the streaming framework
APIs. With streaming framework APIs, users can configure building
blocks by consolidating or distributing them in a node and spec-
ifying the parallelism of each block. Also, users can program the
data flow between nodes by defining specific routing policies and
data format. Lastly, on top of basic building blocks, users can add
custom functions in nodes to optimize performance and support
new services. Well-known stream framework operations (e.g., join,
aggregations, filter, windows, etc.) can be used.

The logical topology shown in Figure 4 processes control mes-
sages from and to eNBs. The SCTP node, SIAP node, and NAS node
internally create instances of building blocks represented as rectan-
gle boxes in the nodes and use them to process control messages.
Note that one or multiple building block(s) can be used in a node.
For example, S1IAP node uses UE states manager and SIAP blocks
in the topology. When the topology is deployed on a stream frame-
work, one SCTP node and two SIAP and NAS nodes are physically
deployed and data flows through the topology.

J. Cho, R. Stutsman, and J. Van der Merwe

4.3.3 UE State Management. As a distributed control plane ap-
plication on the cloud, MobileStream needs a remote store. So, nodes
can share UE states. Additionally, since any nodes in a stream con-
trol plane application running on cloud can fail, a remote store is
required to avoid losing UE states. A failed node can recover lost
UE states from the remote key-value store.

To store and fetch UE states in a remote key-value store while
handling mobile events (e.g., receiving control messages from eNB),
a unique key that is included in all control messages is needed.
So, after unpacking a control message, a node including UE states
manager block can fetch UE states based on a key from a remote
key-value store.

In 4G networks, eNBs and MME identifies a UE using S1AP-
ids (i.e., enb_ue_slap_id and mme_ue_slap_id). We decide to use
mme_ue_slap_id as a key to store UE states in a remote key-value
store. Since enb_ue_slap_id is only unique within an eNB and a

MME can connect multiple eNBs, it is not unique. Instead, mme_ue_slap_id

is unique within a MME and does not change even during intra X2
and S1 handovers, since a new eNB still uses the same MME.

However, S1AP-ids are released when a UE goes to idle mode
from active mode due to data inactivity. When the UE has a mobile
event (e.g., service request and tracking area update), the first con-
trol message for the mobile event does not have the mme_ue_slap_id.
Instead, the control message includes an SAE-temporary mobile
subscriber identity (S-TMSI), which consists of a MME code and
MME-temporary mobile subscriber identity (M-TMSI). The S-TMSI
is a part of GUTI assigned during an initial attachment procedure.
Thus, the mme_ue_slap_id cannot be used as a key in idle mode. A
simple solution is to maintain two key-value stores with different
keys according to idle and active modes. However, considering
the frequent transition between idle and active modes [50, 64] and
more accesses to two key-value stores to transfer UE states between
them, this naive solution is not efficient.

Instead, to avoid managing two key-value stores for a UE, in
MobileStream the Global variable allocator block assigns the same
value for mme_ue_slap_id and M-TMSI during an initial attachment
procedure. This does not break EPC functionality since both are 32-
bit, which is the maximum UE capacity of a MME. Due to this smart
variable allocation, the UE states manager block can find UE states
with M-TMSI from a key-value store when a control message is from
an idle UE. In addition, the same mme_ue_slap_id assigned before is
reused for the same UE within a MME by reserving mme_ue_slap_id
in UE states. Note that a MME code is added to a key to differentiate
between UEs associated to different MMEs.

5 MOBILESTREAM APPLICATION DESIGN

In this section, we introduce the design of a stream control plane
application with MobileStream primitives based on two design
principles: centralized and smart state management, and distributed
computations. Specifically, we introduce three optimizations to (i) re-
duce the number of accesses to a remote key-value store, (ii) evenly
distribute load to nodes, and (iii) avoid a bottleneck in a topology
We then show how a designed stream control plane application per-
forms common mobile events. Note, however, that MobileStream
allows users to follow different approaches to building control plane
applications.

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

‘ —b> SCTP ——@ TCP —® TCP (Round-robin) — > TCP (Partition-aware) ———@ TCP (Destination-aware) ‘

SECURITY Node
Stateful Node
SCTP Node
_I< < S1AP/MM iables ieez\ljjrietry Auc ode
eNB ny dh:ca(-)d:ér allocator decoder NAS Nods AuC

MM Security

dr:eecacgjdeerr

[Y

‘ Remote key-value storage ‘

‘ Database server (i.e., HSS)

Figure 5: Stream EPC control plane application

5.1 Challenges in Designing a Stream
Application

While MobileStream provides basic primitives to build stream con-
trol plane applications, designing a performant, scalable and robust
mobile control plane over a streaming platform is not straightfor-
ward. There are two main challenges. First, since MobileStream
splits computation and states management of the control plane into
multiple building blocks, it requires efficient management of user
states to utilize stateless computation building blocks. However, the
design of a stateless stream control plane application requires fre-
quent access to a remote store that would stall the pipeline, saturate
the throughput of a remote key-value store, and destroy its scalabil-
ity. In addition, it increases the latency to complete control plane
operations due to round trips to a remote key-value store. Second, a
stream control plane application, which consists of multiple nodes,
should evenly distribute the management of user states and compu-
tations to nodes and avoid computation bottlenecks in a topology
since that will slow down the entire pipeline. This is important in
the sense that the stream control plane application should complete
control plane operations as soon as possible since control plane
operations directly impact data access latency [50, 64].

5.2 Optimizations for a Stream Application

Figure 5 shows a logical topology which is designed as a refactored
EPC control plane architecture based on MobileStream primitives.
The logical topology performs control plane operations of MME,
AuC, and S/P-GWs in 4G networks based on three optimizations:
(i) as many stateless nodes as possible and a synchronization node
at entry point in a topology, (ii) smart topology partition, and (iii)
independent scaling of individual blocks. This makes stream control
plane applications performant, scalable and robust. Figure 6 shows
the data tuple format exchanged between nodes in the topology.
Detailed values in the data tuple are explained when they are used
in the rest of this section.

Initial source worker id
eNB IP address
mme_ue_s1ap_id
UE states

Control message
(e.g., STAP, NAS)

Tuple metadata

Tuple payload

Figure 6: Data tuple format used between nodes

5.2.1 More Stateless Nodes and One Stateful Node. The first de-
sign choice is that a stream control plane application be as stateless
as possible. The definition of stateless is that nodes in a topology
do not store UE states locally and access a remote key-value store.
This design improves performance linearly as more computation
resources are allocated to stateless nodes. It makes scale-up/down
operations easy and a topology robust in case of node failure. In
addition, this design evenly distributes computations to stateless
nodes with round-robin routing policy. This is depicted in Figure 5.
All nodes are stateless except for one node depicted as gray color
and round-robin routing policy is used for all data tuples heading
to stateless nodes.

Since all nodes in a topology cannot be stateless, some nodes
are stateful. Stateful nodes have a local cache and are synchronized
with a remote key-value store. Thus, a stateful node should include
the UE states manager block. Since stateless nodes in a topology
also need UE states to process control messages, a stateful node is
located at the entry of a topology, includes UE states in the data
tuple shown in Figure 6, and sends it to a next stateless node. With
this data flow model, the UE states can flow through the entire
topology. One stateful node (i.e., one synchronization point) in the
topology has several advantages. First, it improves performance
due to infrequent access to a remote key-value store from multiple
nodes, which eliminates network latency and makes stateless nodes
non-blocking. In addition, it avoids saturating the throughput of a
remote key-value store. Second, it helps the consistent management
of UE states by avoiding maintaining UE states in multiple nodes
and updating UE states from multiple nodes at the same time.

5.2.2 Smart Topology Partition. Since one mobile event com-

pletes after successfully exchanging multiple control messages (e.g.,
11 messages in an initial attachment and 9 messages in S1 handover
between eNB and MME in our testbed), using a local cache in a
stateful node helps reduce the number of accesses to a remote key-
value store. The challenge of this optimization is that the data tuple
from stateless nodes should be forwarded to the same stateful node
which has UE states in a local cache.

Smart topology partition using global state partitioning and partition-
aware routing with mme_ue_slap_id, which is a key in a remote key-
value store explained in Section 4.3.3, solves this challenge. When a
stream control plane application runs, each stateful node is assigned
to the same number of global variables based on the number of state-
ful nodes and global variables (i.e., the number of partitioned states =
%). For example, a pool of mme_ue_slap_id,
which is one of the global variables, is assigned to one stateful node

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

using maximum number of mme_ue_slap_id (ie., 232) divided by
the number of stateful nodes. Global variables allocator block in a
stateful node manages the assigned global variables. When a UE
attaches to mobile networks (i.e., an initial attachment event), the
Global variables allocator in a stateful node assigns global variables
to the UE. The stateful node stores UE states in a local cache.

To make use of a local cache in a stateful node, partition-aware
routing running on stateless nodes guarantees all control messages
including the same mme_ue_slap_id value are forwarded to the
same stateful node. The partition-aware routing finds the index of

stateful node with a simple calculation (i.e., index of stateful node =
value of mme_ue_slap_id
max number of mme_ue_slap_ids per stateful node

—1) and sends data to

the right stateful node using an internally maintained table <node
ID, TCP connection> in the stateless nodes. Since all required in-
formation to execute partition-aware routing in the stateless nodes
are obtained when the stateless nodes are initialized, this func-
tionality does not lead to extra overhead (e.g., higher memory
usage for a mapping table). The SCTP node shown in Figure 5
includes the mme_ue_slap_id in a data tuple shown in Figure 6.
The mme_ue_slap_id flows through the entire topology.

Since one stateful node is responsible for initially assigned UEs
due to global state partitioning and partition-aware routing, even
distribution of UEs to stateful nodes is important. Header decoder
blocks and different routing policies in the first node (i.e., SCTP
node in this topology shown in Figure 5) achieve this. When the
SCTP node knows that a control message is the first control message
in an initial attachment event using the header decoder blocks, the
first control message is routed to a stateful node with round-robin
routing policy and the subsequent messages are forwarded to the
stateful node with partition-aware routing.

While smart topology partition enables each stateful node to
manage user states in a local cache, the stateful node updates the
user states to a remote key-value store after completing a mobile
event due to two reasons. First, it avoids performing heavy control
plane operations again to generate the user states (i.e., security keys,
sequence numbers, GUTI tunnel Ids), when the stateful worker is
dead. Second, up-to-date states in a remote key-value store can be
used in different nodes to process a specific mobile event.

5.2.3 Scale Independently. A right degree of parallelism per
node is important to improve performance of a topology. Since
each building block requires different computation resources, we
profile each building blocks using Linux perf tool [35]. Due to
heavy mathematical computations in Integrity and Cipher blocks,
their execution time takes longer than other blocks. So, using high
parallelism for a node including Integrity and Cipher blocks avoids
a bottleneck in a topology.

5.24 SCTP Management. Besides performance optimization, a
designed stream EPC application should ensure correct SCTP packet
delivery to eNBs. Since SCTP is a connection-oriented protocol at
the transport layer, a response control message should be forwarded
to a correct SCTP node, which gets a request control message from
eNB.

To guarantee this requirement, SCTP node includes an initial
source worker ID (i.e., its own node ID) and eNB IP address in a data
tuple shown in Figure 6, when it receives a control request message.

J. Cho, R. Stutsman, and J. Van der Merwe

The two values are forwarded through an entire topology. When a
control response message is ready in a node just before the SCTP
node, the node can find the SCTP node using destination-aware
routing with the initial source worker ID. The destination-aware
routing uses a table <node ID, TCP connection> which is internally
maintained in a node. Thus, in this case, the data tuple is forwarded
to the SCTP node including the initial source worker ID in the
data tuple before. Since one SCTP node can have multiple SCTP
connections with multiple eNBs, it finds a right connection from
a map table <eNB IP address, socket> using eNB IP address in the
tuple. SCTP node updates the map when a new eNB is connected.

5.3 MobileStream Application Operations

In the following sections, we show how the topology shown in
Figure 5 performs common mobile events.

5.3.1 Initial Attachment. When SCTP node receives a control
message from eNB, it uses SIAP and MM header decoders to know
an event type of the control message. In case of an initial attachment
control message, the SCTP node forwards a data tuple including the
control message, initial source worker ID and eNB IP address shown
in Figure 6 to a stateful node based on round-robin routing policy.
This guarantees even distributions of initial attachment events to
stateful nodes. The stateful node creates new UE states from the
request message (e.g., enb_ue_slap_id, IMSI, etc.) and assigns global
variables (e.g., mme_ue_slap_id, GUTL TEID, and IP address) using
Global variables allocator block. After finishing S1AP protocol spe-
cific computations in the stateful node, the data tuple goes through
NAS, AuC and NAS nodes sequentially with round-robin routing
policy. This also guarantees even computation distributions to state-
less nodes. When NAS node returns a control response message
to the stateful node creating UE states, partition-aware routing
with assigned mme_ue_slap_id is used. Since all next control mes-
sages in the initial attachment event have mme_ue_slap_id, SCTP
node can forward the control messages to the stateful node which
has UE states in a local cache using partition-aware routing with
mme_ue_slap_id. After completing the initial attachment event
procedure, the stateful node updates UE states in a remote key-
value store. Since stateful and NAS nodes know which security
options (e.g., plain text, integrity protected, ciphered) are used for
the control messages due to the Security header decoder block, they
forward the data tuple to the SECURITY node if needed.

5.3.2 S1 Release and Service Request. In LTE/EPC networks, if
a UE does not send data for about 10~12 seconds [41, 65] in active
mode, it goes to idle mode after completing S1 release procedure.
The UE starts a service request procedure to re-establish a connec-
tion in idle mode if needed.

In case of S1 release event, all messages are forwarded to a
stateful node which has UE states in a local cache using partition-
aware routing policy with mme_ue_slap_id. After completing the
S1 release procedure, some UE states (i.e., SIAP ids, S1 TEID DL
in data plane, and radio security key) are released and the stateful
node updates UE states in a remote key-value store.

When a UE starts the service request procedure, the first message
does not include mme_ue_slap_id and includes M-TMSI, which is
assigned as the same value of mme_ue_slap_id during an initial

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

attachment procedure for the UE explained in Section 4.3.3. SCTP
node detects the service request event using SIAP and MM header
decoders and extracts M-TMSI from the control message. The con-
trol message is forwarded to a stateful node using partition-aware
routing policy with M-TMSI. The stateful node has the UE states in
a local cache and re-assigns UE states released before. Note that the
same mme_ue_slap_id value is assigned for the UE again. Thus, the
next control messages which always include mme_ue_slap_id are
forwarded to the same stateful node. After completing the service
request procedure, the stateful node updates UE states in a remote
key-value store.

5.3.3 Intra S1 and X2 Handovers. Handover happens when a
UE moves from a source eNB to a target eNB due to better radio
signal from the target eNB. The first control message (i.e., handover
required message) from the source eNB is forwarded to a stateful
node which has UE states in a local cache. The stateful node in-
cludes the currently used mme_ue_slap_id for the UE and sends
the handover request message to the target eNB. Since the handover
request message should be sent to the SCTP node which has an
SCTP connection with the target eNB, the stateful node cannot
use initial source worker ID to deliver a response control message.
Instead, the stateful node needs to know the SCTP ID and the target
eNB IP address. The stateful node maintains a map table <eNB ID,
List of <SCTP ID, eNB IP address>>, when eNB is first connected
(i.e., S1-Setup procedure). The stateful node can find SCTP ID and
eNB IP address from the map table since handover required message
includes target-eNB ID, and uses destination-aware routing with
the SCTP ID. Thus, the response control message is forwarded to
the right SCTP node.

A control message from the target eNB is forwarded to the state-
ful node since it has the same mme_ue_slap_id. The stateful node
needs to send a response control message to the right SCTP node
which has an SCTP connection with the source eNB. Since currently
serving eNB ID information (i.e., source eNB) is stored from the ini-
tial attachment procedure in UE states, the stateful node can find the
source eNB information with the same approach. The stateful node
updates UE states in the remote key-value store after completing
intra S1 handover.

Note that the designed stream control plane application also
supports intra X2 handover. A source eNB sends currently assigned
mme_ue_slap_id to a target eNB during X2 handover procedure.
When target eNB sends a control message (i.e., SIAP Path Switch
Request to a core network component (i.e., MME in 4G networks)),
it uses received mme_ue_slap_id as SIAP-id. Therefore, intra X2
handover works like other events.

6 MOBILESTREAM USE CASES

In this section, we introduce several stream control plane applica-
tions “derived from” the basic stream EPC control plane application
shown in Figure 5. This illustrates how MobileStream enables users
to build different use cases without significant modifications of the
stream EPC control plane application.

6.1 Event-based Node

Fat-proxy [64] proposes a logic-based Network Function (NF) seg-
regation instead of an instance-based NF segregation to optimize

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

‘ —b> SCTP ——=e TCP — TCP (Round-robin) ——> TCP (P ——a TCP (D ‘

SECURITY Node

NAS Node
Securty
header
decoder

Database server (i.¢., HSS)

SCTP Node p
STAP/MM

hener
d

Stateful Node

S1AP Security
Global variables || header
allocator decoder
UE states manager v

AuC Node

Remote key-value storage

Figure 7: Stream Fat-Proxy-like control plane application

three mission critical mobile events (i.e., service request, handover,
and paging). It combines the logic from multiple control plane com-
ponents (i.e., MME, S/P-GWs) and creates one instance to handle
only one critical mobile event. With MobileStream, users can build
a stream control plane application which is functionally similar to
Fat-proxy. Event-based node can be created to process a specific
mobile event by consolidating multiple building blocks in one node.
The control messages for a specific mobile event can be forwarded
to the event-based node using header decoder blocks.

The topology shown in Figure 7 adds a new Service Request
node including SIAP and MM building blocks to the stream EPC
control plane application shown in Figure 5 to process service
request events. Since SCTP node can know that the request control
message is a service request by using SIAP and MM header decoder
blocks, the service request message is forwarded to Service Request
node which is responsible for the completion of the service request
procedure.

6.2 Join Streams

Fat-proxy [64] parallelizes control message execution for differ-
ent protocols (e.g., STAP and GTPv2-C messages) in mobile event
procedures to reduce event completion time. While a stream EPC
control plane application shown in Figure 5 does not take the same
approach due to an architectural difference (i.e., Fat-proxy keeps all
3GPP protocols, but stream EPC is a refactored architecture), Mo-
bileStream can leverage a similar optimization using multiple data
tuple transmissions at the same time and join streams to speed-up
mobile event procedures.

In case a NAS control message is integrity protected, it is simulta-
neously forwarded to SECURITY and NAS nodes from the stateful
node. When the stateful node sends a data tuple to SECURITY node,
it includes the ID of NAS node to which the stateful node sends the
data tuple. After SECURITY node finishes its computation, it sends
the results of the integrity check to the NAS node which receives
the same NAS message using destination-aware routing with the
ID of NAS node shown in Figure 7, instead of round-robin routing.
In the NAS node, two outputs from both nodes are merged with
mme_ue_slap_id. The same approach can be used to parallelize
integrity and cipher computations for control messages.

6.3 Mobile Edge Networks

ACACIA [33] proposes a new mobile edge network architecture
in 4G networks. It supports selective traffic offloading for specific
services (e.g., VR, AR) to mobile edge computing (MEC) servers
close to a UE by leveraging QoS bearer framework (i.e., a dedicated
bearer procedure) and split versions of S/P-GWs. A UE sends a

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

‘ —bt> SCTP ——e TGP — TCP (Round-robin) —> TCP (P ——a TCP (Desti

SECURITY Node

SCTP Node p”

o STAP/MM
SCTP heac D
decoder

MEC

Stateful Node

S1AP Security
Global variables || header
allocator decoder
UE states manager v

AuC Node

NAS Node
Securty
header

decoder

Database server (i¢., HSS)

Registration iy
Server

Remote key-value storage

Figure 8: Stream MEC control plane application

MEC connectivity request to mobile networks with its IP address
and a service type. LTE/EPC sets up a dedicated bearer for the
UE based on the IP address and the service type. After finishing
the procedures, the UE can start talking to the MEC server for the
service through the dedicated bearer.

MobileStream enables users to build a stream control plane ap-
plication shown in Figure 8 which is functionally the same as the
ACACIA mobile edge network architecture. Two components are
added to the stream EPC control plane application shown in Figure 5.
First, MEC Registration Server (MSR) node is added to get UE IP ad-
dress and a service type from a UE and manage the parameters (e.g.,
Traffic Flow Templates (TFT), QoS, etc.) for the requested service.
To find the states of requested UE with the IP address in the MSR
node, a stream control plane application needs to manage another
key-value store (i.e., key : UE IP address, value : mme_ue_slap_id).
To do it, UE state manager block in a stateful node is updated to
manage the new key-value store.

The stateful node including updated UE state manager block
needs to maintain the new key-value store when an initial attach-
ment procedure happens. When the MSR node gets a MEC con-
nectivity request from a UE, it can find mme_ue_slap_id with IP
address from the new key-value store. Then, it forwards parameters
for the service to the stateful node which has UE states in a local
cache using partition-aware routing. The rest of the procedures are
the same as a dedicated bearer procedure in LTE/EPC networks.

7 MOBILESTREAM PROTOTYPE

Basic building blocks: We have implemented basic building blocks
as C++ and Java classes. Currently, we implemented S1AP, MM,
SM, AuC and Integrity and Cipher blocks based on defined Mo-
bileStream interfaces described in Section 4. We reuse ASN.1 en-
coding and decoding control message logic and security functions
from srsLTE [37] written in C++. Since Storm natively supports
Java/Clojure, we have implemented some building blocks as Java
classes to avoid expensive JNI calls. As Java classes, we implemented
SCTP transport channel to communicate with eNB using the Netty
framework [14], SIAP, MM and Security header decoder blocks to
know a type of mobile event and security from control messages.
UE states: We use language-neutral Google protocol buffers [15]
to define UE states shown in Table 1. After defining UE state ob-
jects with Google protocol buffers’s script, Google protocol buffers
generates the right data structures (e.g., class) for each language. It
also provides small, fast and simple (de)/serialization mechanism
for the defined data structure. Since UE states are needed for build-
ing blocks written in C++ and Java, we generate C++ and Java
classes for UE states using Google protocol buffers. It makes UE
state exchange easy between C++ and Java layer as JNI function

J. Cho, R. Stutsman, and J. Van der Merwe

parameters after serialization of UE states. In addition, since UE
states are serialized as byte data to store them in a remote key-value
store, a light serialization overhead from Google protocol buffers is
beneficial.

UE states management: We use Redis [16] which is an in-memory
data structure store as a remote key-value store. We implement
ueStateManager as a Java class to manage a local cache and Redis
key-value store. We use Jedis [10], which is a Java client library
for Redis, to manage UE states. UE states are stored in Redis after
serializing them as byte data with Google protocol buffer’s serial-
ization.

Stream control plane application: We use Apache Storm [69] as a
realtime stream processing framework to run stream control plane
applications. It provides common runtime facilities (e.g., centralized
job scheduler and coordinator, per-host daemon) and programming
APIs which are highly flexible for users to specify routing policy,
degree of parallelism, and tuple formats for defining a topology. In
addition, it allows users to build custom routing policies by imple-
menting a CustomStreamGrouping interface [18]. We implement
two routing policies (i.e., destination-aware and partition-aware
routing) by realizing CustomStreamGrouping interface. Since Storm
supports the clojure and Java languages, we implement wrapper
functions for each basic building block written in C++ using Java
Native Interface (JNI). We implement computation nodes using
BaseBasicBolt class in Storm for control plane applications and
they use basic building block libraries. We implement three stream
control plane applications described in Section 5 and Section 6.

Traffic generator: To evaluate stream control plane applications
for mobile events, a traffic generator is required to test large scale
control messages. We use an eNB emulator in OpenEPC [19] which
is LTE/EPC software implementation based on 3GPP standard. Since
the OpenEPC which we use does not support S1 release, service
request, intra S1 handover, we extend the eNB emulator to sup-
port them. We also refactor the commandline interface of the eNB
emulator to systematically trigger mobile events.

8 EVALUATION

In this section, we describe our functional and performance evalua-
tions with several stream control plane applications. We run Storm
on five physical machines in the PhantomNet testbed [29], each
with 32 cores, 64GB of memory and 10GB NICs. We use one ma-
chine for running the streaming manager and central coordinator,
and one machine for running the Redis key-value store. The rest
of the machines are used for running stream control plane appli-
cations. In all experiments, we use Storm’s default configurations
except for the memory allocation per node (i.e., 2GB) with a round-
robin topology scheduler which evenly deploys nodes in a physical
topology into three physical machines.

8.1 Mirco-benchmarks

8.1.1 Validating Standards Compliance. We verify standards
compliance of the stream control plane application shown in Fig-
ure 5 by testing its inter-operability with several open source
projects and commercial hardware. It is tested with commercial
closed source and standards based UEs (i.e., Nexus 5, One+ One) and
eNB (i.e., ip.access small cell [13]), using several mobile events (i.e.,

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

initial attachment, detach, S1 release, service request, tracking area
update (TAU), dedicated bearer setup and S1 intra handover). The
MobileStream implementation worked correctly in all these tests.
We also test OpenAirInterface (OAI) [57] and srsLTE [37] open
source projects using SDR as UE and eNB except for a dedicated
bearer setup, S1 intra handover and TAU since these stacks do not
support the events yet. In addition to commercial and SDR-based
UEs and eNBs, we also test the stream control plane application
with OAI and OpenEPC emulators. Our results show the standards
compliant operations of the stream control plane applications based
on MobileStream primitives.

8.2 Performance Evaluation

For performance evaluations, we use the stream control plane appli-
cation shown in Figure 5 with different configurations and measure
time to complete an event. In addition, due to limited availability
of real UEs and eNBs to evaluate large scale experiments, we use
emulated eNBs in OpenEPC as traffic generators.

Basic AUG nod — /o consolidation —

asic + AuC node = z ith consolidation [—]
Basic + Security node — g 2
Basic + AuC&Security nodes — B

2350 ERL]

2 300 2 16

£ 250 g

g 3 12

£ 200 £

§15(J 2 8

& 100 & 0

% g 4

E 50 ’—l—‘ ' 2 500 1000 2000

Z 0 (1500) (3000) (6000)

Initial h (4000 control message: The number of UEs (total msgs)

(a) Node parallelism (b) Node consolidation

Figure 9: Node configuration impact

8.2.1 Node Configuration Evaluation. We conduct experiments
to show the impact of scaling building blocks independently. In
Figure 9(a), Basic means no parallelism for all nodes (i.e., one sctp,
slap, nas, auc, and security node). We compare Basic against the
topologies which add more workers to Basic when one eNB gen-
erates 500 initial attachment events (i.e., 4,000 messages) for one
second. Figure 9(a) shows the average initial attachment execution
time. Assigning one more Security node to Basic topology (denoted
as Basic + Security node in Figure 9(a)) shows 3.1x execution time
reduction compared to Basic topology since it avoids a bottleneck
from heavy and frequent mathematical computations (i.e., integrity
check) in the topology. However, increasing AuC node does not
show high benefit even though the AuC node also performs heavy
mathematical computations to generate an authentication vector
since it is executed once per UE.

Figure 9(b) shows the impact of logic consolidation (explained
in Section 6.1 Event-based Node) to handle service request events
according to different number of UEs. In w/o consolidation, S1AP
and MM blocks are physically separated, which means that they run
on different JVM processes to process service request events. In with
consolidation, SIAP and MM blocks run on the same JVM process.
The consolidation case shows short execution time since it does
not require extra computations (e.g., data tuple serialization) and
network traverse. The consolidation case reduces service request
event execution time by 70% compared to the w/o consolidation
case in case of 2000 UEs.

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

8.2.2 Comparison with OpenEPC. We compare Default topol-
ogy consisting of 6 nodes (i.e., one sctp, slap, nas and auc node, and
2 security nodes) against OpenEPC. To allow for a fair comparison,
we measure execution time to perform the control plane part only,
excluding setting up data path in data plane components (i.e., S/P-
GWUs) from control plane components (i.e., S/P-GWCs). For this
experiment, we use the split version of OpenEPC which separates
S/PGWs into GWCs and GWUs. We set up one MME, S/P-GWCs
and HSS in each physical machine for OpenEPC configuration. We
use one eNB to generate from 100 up to 500 events for one second.
With 100 UEs, OpenEPC shows better performance than the De-
fault topology, especially, initial attachment and intra S1 handover.
However, since P-GWc in OpenEPC is limited over 100 UEs, we
cannot proceed with the rest of the experiments. The advantage
of the Default topology is that it decreases execution time for ser-
vice request and intra s1 handover as the number of UEs increases.
For initial attachment events, it shows stable execution time even
though the number of messages increase 5 times. Note that while
OpenEPC shows better performance compared to Default topology
in case of 100 UEs, our node consolidation optimization shown
in Figure 9(b) shows better results for service request event than
OpenEPC. It shows that MobileStream can optimize performance
by customizing a topology for specific events.

8.2.3 MobileStream Optimization Evaluation. We conduct ex-
periments to show the scalability of the stream control plane appli-
cations with multiple eNBs. We use 3 eNBs as a traffic generator
and each generates 500 events (i.e., 12,000 (8x1500) for initial attach
events and 4,500 (3x1500) for service request events) for one second.
We configure different amounts of parallelism in the topologies
based on Default topology (i.e., one sctp, slap, nas and auc node,
and 2 security nodes). Double and Triple mean the number of multi-
plication of nodes in the Default topology except for the SCTP node.
Figure 11(a) shows the result for initial attachment events. While
the Default topology takes average 85 ms to complete an initial
attachment event in case of 500 UEs shown in Figure 10(a), it takes
over 700 ms on average in case of 1500 UEs shown in Figure 11(a).
It shows that the performance significantly drops as traffic load
increases. Double and Triple shows 6.2x and 9.4x execution reduc-
tion compared to Default in the best case due to optimizations (i.e.,
parallelism, even load distributions to stateful and stateless nodes)
described in Section 5. Figure 11(b) shows the result for service
request events. Both Double and Triple show 13% execution time
reduction compared to Default. Since service request events are
relatively light compared to initial attachment events, both Double
and Triple shows similar improvement.

9 DISCUSSION AND FUTURE WORK

We presented the design and implementation of a mobile core
control plane platform. There are several interesting aspects for
further investigation from the proposed platform.

Dynamic reconfiguration: Since control traffic in mobile net-
works is time-varying traffic [12], dynamic scaling for running
stream applications is important. As shown in Figure 11, the per-
formance is highly related to the number of nodes assigned to a
stream application. In addition, adding or removing building blocks
on the fly helps support new services. Since MobileStream uses

CoNEXT 18, December 4-7, 2018, Heraklion, Greece

J. Cho, R. Stutsman, and J. Van der Merwe

Default 535
100 OpenEPC

80

9]
S
me (m:
B
S

£
a
£
£ £25
£ 60 220
Z 40 §15
o 10
& 20 2
))
< 100 200 300 400 500 < 100 200
(800) (1600) (2400) (3200) (4000) (300) (600)

The number of UEs (Total msgs)
(a) Initial attachment

(900) (1200) (1500)
The number of UEs (Total msgs)
(b) Service request

z
Default mmm—m ;38 Default mmm—
OpenEPC E 60 OpenEPC o
£50
240
230
320
=0
5
400 500 e 100 200 300 400 500

(900) (1800) (2700) (3600) (4500)

The number of UEs (Total msgs)
(c) Intra S1 handover

Figure 10: Comparison against OpenEPC

Average execution time (ms)
Average execution time (ms)

Best Median ~ Worst Best Median ~ Worst

(b) Service request events

(a) Initial attach events

Figure 11: MobileStream optimization impact

Storm which does not support a dynamic reconfiguration (e.g., dy-
namic scaling, adding or removing building blocks), it also does
not support the dynamic reconfiguration. However, since some
stream frameworks like Apache Apex [6] already support the dy-
namic reconfiguration and our design does not rely on specific
functions from Storm, the limitation is not fundamental. In addition,
our design (e.g., one stateful node in a topology and externalizing
states to a remote key-value store to make most of the nodes in
a topology stateless) makes the dynamic reconfiguration easy. To
make a dynamic scaling decision for running stream applications,
MobileStream can leverage the detailed metric information from
stream frameworks (e.g., Storm provides the number of sending
and receiving tuples, various tuple processing time, etc. [27]).

User plane extension: We do not currently support data plane
functionality within the MobileStream framework. However, de-
signing control and data planes as a stream application based on
MobileStream will be ideal to realize network slicing. Like a modu-
lar approach to design a control plane in MobileStream, multiple
data plane operations (e.g., packet forwarding, QoS, policy, etc.) in
mobile networks can be designed as a pipeline and the data plane
nodes in the pipeline are managed by control plane nodes (e.g., a
stateful node). Since the time requirement to process data plane traf-
fic is different from control plane traffic, MobileStream requires high
performance packet processing frameworks (e.g., DPDK [5]) for
data plane extension. However, the massive machine type commu-
nications (mMTC) for IoT and M2M in 5G networks can be readily
supported in MobileStream because devices for mMTC sparsely
send a very small amount of data with relaxed latency require-
ments. Especially, control plane CIoT EPS optimization [24], which
encapsulates the data from IoT devices in NAS control messages,
can be realized to augment MM block or create a new node in
MobileStream.

Stream framework tuning: Storm is designed based on mul-
tiple threads in one worker and queues to transfer data between
threads and other workers through networks. Several parameters
(e.g., buffer size, batch size, flush frequency, etc.) to manage the
queues are configurable and are related to latency and throughput
of a stream application [28]. We will explore performance impact
according to different parameter configurations as future work.

MobileStream design in other platforms: Stream frame-
works (e.g., Storm [69], Flink [31], Spark [31], and Apex [1]) have
different characteristics in terms of latency and throughput [32],
internal state management [31], fault-tolerant, and dynamic re-
configurations based on their main design principles. Since the
design of MobileStream does not depend on specific functions in
Storm, it is interesting to adapt and evaluate MobileStream with
other stream frameworks. Serverless computing [2, 8, 25, 38, 40, 52]
has emerged as a new cloud-computing execution model. It is an
event-driven computing based on stateless functions running on a
container. Considering that control messages are generated based
on UE events and time-varying traffic [12], and the application
design between serverless computing and MobileStream is similar,
it is an interesting direction to explore and adapt the MobileStream
design to serverless platform.

10 CONCLUSION

We identify scalability and programmability challenges for future
control planes in mobile networks. To address these challenges,
we propose MobileStream, a scalable, programmable and evolvable
mobile control plane platform. MobileStream enables users to build
distributed control plane architectures as stream control plane appli-
cations. To build stream control plane applications, MobileStream
provides a set of refactored building blocks and leverages a real-
time stream framework to assemble and execute them in a scalable
manner. In addition, we introduce key design principles to optimize
stream control plane applications and several stream control plane
applications given the programmability of MobileStream.
Acknowledgements: We would like to thank our shepherd and
the anonymous reviewers for their feedback on earlier versions of
this paper. This work is supported in part by the National Science
Foundation under grant numbers 1305384 and 1827940.

REFERENCES

[1] Apache Apex. https://apex.apache.org.

[2] Apache OpenWhisk is a serverless, open source cloud platform. http://openwhisk.
apache.org/.

[3] Apache Samza. http://samza.apache.org.

https://apex.apache.org
http://openwhisk.apache.org/
http://openwhisk.apache.org/
http://samza.apache.org

A Scalable, Programmable and Evolvable Mobile Core Control Plane Platform

[10
[11]
[12]

[13
[14
[15]
[16]
[17]

[18]
[19]
[20]

[21
[22]
[23]

[24]
[25]
[26]
[27]

[28

[29

[30

[31]

[32]

[33]

[34]

[35

[36]

[37]

[38]
[39]

[40]

[41]

Bullet at Yahoo. https://yahoo.github.io/bullet-docs.

Data Plane Development Kit. http://dpdk.org.

Dynamic Application Modifications. https://apex.apache.org/docs/apex/
application_development/#scalability-and-partitioning.

Evolution of the Netflix Data Pipeline. https://medium.com/netflix-techblog/
evolution-of- the- netflix- data- pipeline- da246ca36905.

Functions as a Service (FaaS). https://blog.alexellis.io/functions-as-a-service/.
How Spotify Scales Apache Storm. https://labs.spotify.com/2015/01/05/
how-spotify-scales-apache-storm.

Jedis. https://github.com/xetorthio/jedis.

JSTORM. http://jstorm.io/.

Managing LTE Core Network Signaling Traffic. https://www.nokia.com/en_int/
blog/managing-lte- core-network-signaling- traffic.

nanoLTE Access Points (E-40 Access Point). http://www.ipaccess.com/en/lte.
Netty. https://netty.io/.

Protocol Buffers. https://developers.google.com/protocol-buffers/.

Redis. https://redis.io/.

Service-Based Architecture for 5G Core Networks. https://www.3g4g.co.uk/5G/
5Gtech_6004_2017_11_Service-Based- Architecture-for-5G-Core-Networks_
HR_Huawei.pdf.

Storm grouping. http://storm.apache.org/releases/current/Concepts.html.
OpenEPC. http://www.openepc.com/, 2015.

White Paper, Designing 5G-Ready mobile core networks. https://tinyurl.com/
yaok5lbo, 2016.

3GPP Ref #: 23.501. System architecture for the 5g system, stage 2, 2018.

3GPP Ref #: 23.502. Procedures for the 5g system, 2018.

3GPP Ref #: 23.714. Study on control and user plane separation of EPC nodes,
2015.

3GPP Ref #: 23.720. Study on architecture enhancements for Cellular Internet of
Things, 2015.

AMAZON. AWS Lambda - Serverless Compute.
lambda/.

X. An, F. Pianese, I. Widjaja, and U. Giinay Acer. Dmme: A distributed Ite mobility
management entity. Bell Labs Technical Journal, 17(2):97-120, 2012.

Apache Storm. Metrics.md. https://github.com/apache/storm/blob/master/docs/
Metrics.md.

Apache Storm. Performance.md. https://github.com/apache/storm/blob/master/
docs/Performance.md.

A. Banerjee, J. Cho, E. Eide, J. Duerig, B. Nguyen, R. Ricci, J. Van der Merwe,
K. Webb, and G. Wong. Phantomnet: Research infrastructure for mobile net-
working, cloud computing and software-defined networking. GetMobile: Mobile
Computing and Communications, 19(2):28-33, 2015.

A. Banerjee, R. Mahindra, K. Sundaresan, S. Kasera, K. Van der Merwe, and S. Ran-
garajan. Scaling the Ite control-plane for future mobile access. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and Technologies,
page 19. ACM, 2015.

P. Carbone, S. Ewen, G. Fora, S. Haridi, S. Richter, and K. Tzoumas. State man-
agement in apache flink®: consistent stateful distributed stream processing.
Proceedings of the VLDB Endowment, 10(12):1718-1729, 2017.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z. Liu,
K. Nusbaum, K. Patil, B. J. Peng, et al. Benchmarking streaming computation
engines: Storm, flink and spark streaming. In Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International, pages 1789-1792. IEEE, 2016.

J. Cho, K. Sundaresan, R. Mahindra, J. E. van der Merwe, and S. Rangarajan.
Acacia: Context-aware edge computing for continuous interactive applications
over mobile networks. In CoNEXT, 2016.

Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2016-2021 White Paper. https://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html.

A. C. De Melo. The new linux perf tools. In Slides from Linux Kongress, volume 18,
2010.

G. Fabio et al. Mec deployments in 4g and evolution towards 5g. ETSI White
Paper No. 24, 2018.

I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C. Cano, and
D.J. Leith. srslte: an open-source platform for Ite evolution and experimentation.
In Proceedings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization, pages 25-32. ACM, 2016.
Google. Google Cloud Functions. https://cloud.google.com/functions/.

G. Hampel, M. Steiner, and T. Bu. Applying software-defined networking to the
telecom domain. In INFOCOM, 2013 Proceedings IEEE, pages 3339-3344. IEEE,
2013.

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Serverless computation with openlambda. Elastic,
60:80, 2016.

J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close
examination of performance and power characteristics of 4g Ite networks. In
Proceedings of the 10th international conference on Mobile systems, applications,

https://aws.amazon.com/

[42

[43]

[44

[45

‘o
S

[63

[64]

[65

o6]

[69]

CoNEXT ’18, December 4-7, 2018, Heraklion, Greece

and services, pages 225-238. ACM, 2012.

HUAWEI White Paper, Service-Oriented 5G Core Networks. https://tinyurl.com/
y73y5d4z, 2017.

A.P.Iyer, L. E. Li, and L Stoica. Celliq: Real-time cellular network analytics at
scale. In NSDI, pages 309-322, 2015.

A. P. Iyer, I Stoica, M. Chowdhury, and L. E. Li. Fast and accurate performance
analysis of lte radio access networks. arXiv preprint arXiv:1605.04652, 2016.

J. Kempf, B. Johansson, S. Pettersson, H. Lining, and T. Nilsson. Moving the
mobile evolved packet core to the cloud. In Wireless and Mobile Computing,
Networking and Communications (WiMob), 2012 IEEE 8th International Conference
on, pages 784-791. IEEE, 2012.

J. Khalid and A. Akella. Streamnf: Performance and correctness for stateful
chained nfs. arXiv preprint arXiv:1612.01497, 2016.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The click modular
router. ACM Transactions on Computer Systems (TOCS), 18(3):263-297, 2000.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 239-250. ACM, 2015.

L. E. Li, Z. M. Mao, and J. Rexford. Toward software-defined cellular networks. In
Software Defined Networking (EWSDN), 2012 European Workshop on, pages 7-12.
IEEE, 2012.

Y. Li, Z. Yuan, and C. Peng. A control-plane perspective on reducing data access
latency in Ite networks. In ACM MobiCom, 2017.

H. Lindholm, L. Osmani, H. Flinck, S. Tarkoma, and A. Rao. State space analysis
to refactor the mobile core. In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, pages 31-36. ACM, 2015.

Microsoft. Azure Functions. https://azure.microsoft.com/en-us/services/
functions/.
A. Mohammadkhan, K. Ramakrishnan, A. S. Rajan, and C. Maciocco. Cleang:

A clean-slate epc architecture and controlplane protocol for next generation
cellular networks. In Proceedings of the 2016 ACM Workshop on Cloud-Assisted
Networking, pages 31-36. ACM, 2016.

M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck. Softbox: A customizable,
low-latency, and scalable 5g core network architecture. IEEE Journal on Selected
Areas in Communications, 36(3):438-456, 2018.

NEC. White Paper, Making 5G a Reality. https://tinyurl.com/yd5p74wt, 2018.
L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed Stream Computing
Platform. In Proc. IEEE International Conference on Data Mining Workshops, 2010.
N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet.
Openairinterface: A flexible platform for 5g research. ACM SIGCOMM Computer
Communication Review, 44(5):33-38, 2014.

NOKIA. White Paper, Designing Cloud-Native 5G Core Networks, 2017.

L. Osmani, H. Lindholm, B. Chemmagate, A. Rao, S. Tarkoma, J. Heinonen, and
H. Flinck. Building blocks for an elastic mobile core. In Proceedings of the 2014
CoNEXT on Student Workshop, pages 43-45. ACM, 2014.

A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker. Netbricks:
Taking the v out of nfv. In OSDI, pages 203-216, 2016.

M. Pozza, A. Rao, A. Bujari, H. Flinck, C. E. Palazzi, and S. Tarkoma. A refactoring
approach for optimizing mobile networks. In Communications (ICC), 2017 IEEE
International Conference on, pages 1-6. IEEE, 2017.

G. Premsankar, K. Ahokas, and S. Luukkainen. Design and implementation of
a distributed mobility management entity on openstack. In Cloud Computing
Technology and Science (CloudCom), 2015 IEEE 7th International Conference on,
pages 487-490. IEEE, 2015.

Z. A. Qazi, M. Walls, A. Panda, V. Sekar, S. Ratnasamy, and S. Shenker. A high
performance packet core for next generation cellular networks. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication, pages
348-361. ACM, 2017.

M. T. Raza, D. Kim, K.-H. Kim, S. Lu, and M. Gerla. Rethinking lte network
function virtualization. In IEEE ICNP, 2017.

S.Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Discovering
fine-grained rrc state dynamics and performance impacts in cellular networks.
In Proceedings of the 20th annual international conference on Mobile computing
and networking, pages 177-188. ACM, 2014.

S. B. H. Said, M. R. Sama, K. Guillouard, L. Suciu, G. Simon, X. Lagrange, and
J.-M. Bonnin. New control plane in 3gpp lte/epc architecture for on-demand
connectivity service. In Cloud Networking (CloudNet), 2013 IEEE 2nd International
Conference on, pages 205-209. IEEE, 2013.

M. R. Sama, S. Beker, W. Kiess, and S. Thakolsri. Service-based slice selection
function for 5g. In Global Communications Conference (GLOBECOM), 2016 IEEE,
pages 1-6. IEEE, 2016.

Y. Takano, A. Khan, M. Tamura, S. Iwashina, and T. Shimizu. Virtualization-
based scaling methods for stateful cellular network nodes using elastic core
architecture. In Cloud Computing Technology and Science (CloudCom), 2014 IEEE
6th International Conference on, pages 204-209. IEEE, 2014.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jack-
son, K. Gade, M. Fu, J. Donham, et al. Storm@ twitter. In Proceedings of the 2014

https://yahoo.github.io/bullet-docs
http://dpdk.org
https://apex.apache.org/docs/apex/application_development/#scalability-and-partitioning
https://apex.apache.org/docs/apex/application_development/#scalability-and-partitioning
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://medium.com/netflix-techblog/evolution-of-the-netflix-data-pipeline-da246ca36905
https://blog.alexellis.io/functions-as-a-service/
https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-storm
https://labs.spotify.com/2015/01/05/how-spotify-scales-apache-storm
https://github.com/xetorthio/jedis
http://jstorm.io/
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
https://www.nokia.com/en_int/blog/managing-lte-core-network-signaling-traffic
http://www.ipaccess.com/en/lte
https://netty.io/
https://developers.google.com/protocol-buffers/
https://redis.io/
https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
https://www.3g4g.co.uk/5G/5Gtech_6004_2017_11_Service-Based-Architecture-for-5G-Core-Networks_HR_Huawei.pdf
http://storm.apache.org/releases/current/Concepts.html
http://www.openepc.com/
https://tinyurl.com/yaok5lbo
https://tinyurl.com/yaok5lbo
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://github.com/apache/storm/blob/master/docs/Metrics.md
https://github.com/apache/storm/blob/master/docs/Metrics.md
https://github.com/apache/storm/blob/master/docs/Performance.md
https://github.com/apache/storm/blob/master/docs/Performance.md
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://cloud.google.com/functions/
https://tinyurl.com/y73y5d4z
https://tinyurl.com/y73y5d4z
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://tinyurl.com/yd5p74wt

CoNEXT 18, December 4-7, 2018, Heraklion, Greece J. Cho, R. Stutsman, and J. Van der Merwe

ACM SIGMOD international conference on Management of data, pages 147-156.
ACM, 2014.

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 2-2. USENIX Association,
2012.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Mobile Networks
	3.2 RealTime Stream Frameworks

	4 MobileStream Design
	4.1 Design Goals
	4.2 MobileStream Overview
	4.3 MobileStream Primitives

	5 MobileStream Application Design
	5.1 Challenges in Designing a Stream Application
	5.2 Optimizations for a Stream Application
	5.3 MobileStream Application Operations

	6 MobileStream Use cases
	6.1 Event-based Node
	6.2 Join Streams
	6.3 Mobile Edge Networks

	7 MobileStream Prototype
	8 Evaluation
	8.1 Mirco-benchmarks
	8.2 Performance Evaluation

	9 Discussion and Future Work
	10 Conclusion
	References

