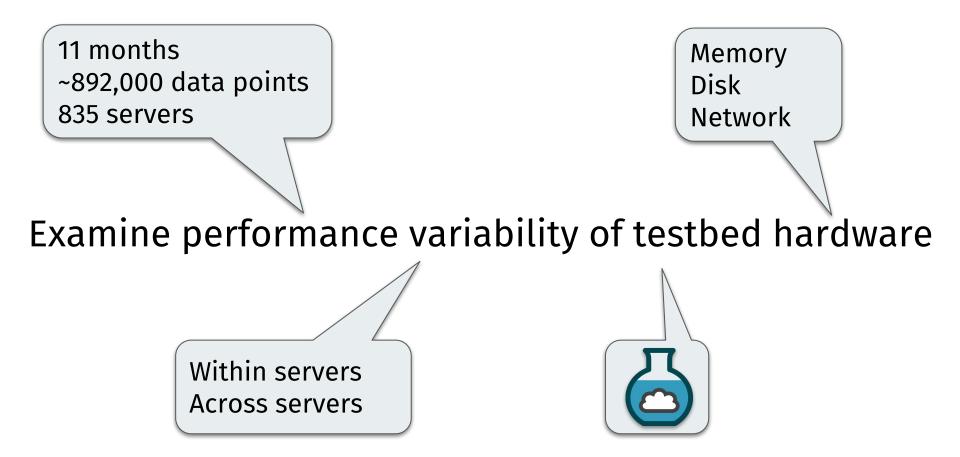
Taming Performance Variability

Aleksander Maricq* Dmitry Duplyakin* Ivo Jimenez[†] Carlos Maltzahn[†] Ryan Stutsman* Robert Ricci*


* University of Utah† University of California Santa Cruz

Motivation: Performance Variability

How confident should I be that my results are correct?

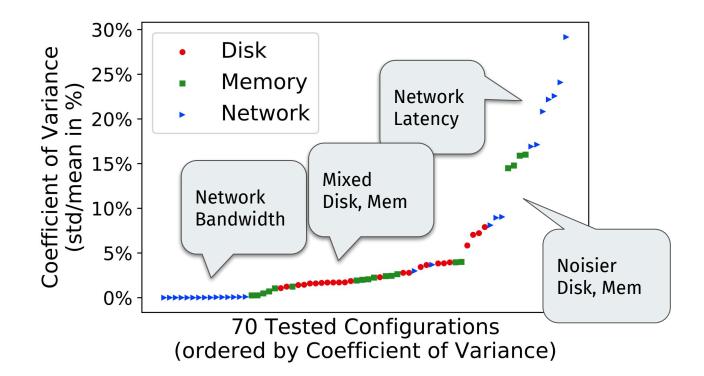
How many times do I need to run my experiments?

CloudLab As a testbed builder, how can I help users figure this out?

ClaudLab

- 1,500 servers at three sites
 - Several distinct 'types' of identical servers
- Exclusive, raw access to hardware
 - No interference on servers from simultaneous users
 - Doesn't add virtualization overhead / variability
- Our experiments were run on servers allocated only to us
- Configuration: Combination of hardware type, workload, parameters

c220g1, single-threaded

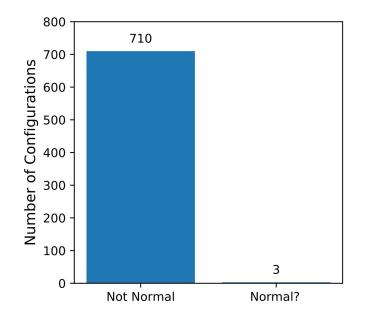

mem copy, dvfs off

m510, net bw,

rack-local

How confident can we be in the correctness of our results?

How much trouble are we in?


Confidence Intervals

- Range for your mean (different than stdev)
- Represents some % confidence (eg. 95%) the true mean lies between

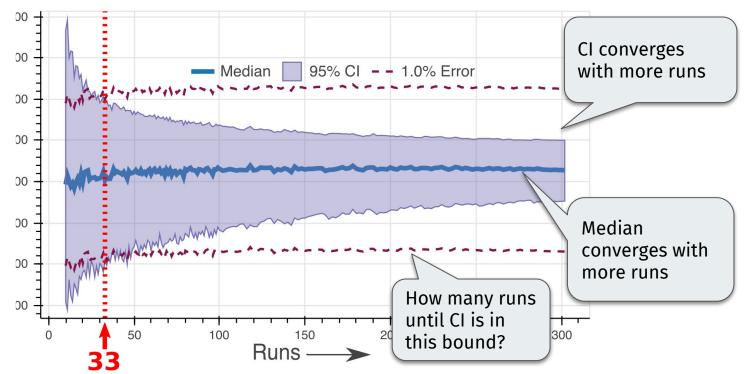
Testing Normality

- Many statistical models assume normal (gaussian) bell-curve
- Is our data normal? Shapiro-Wilk test (95% confidence)

Use Non-Parametric Statistics to Avoid Assumptions of Normality

How confident can we be in the correctness of our results?

- Some variation is unavoidable
- Results are often non-normal
- More runs \rightarrow more confidence


How many times should we run our experiments?

CONFIRM - CONFIdence-based Repetition Meter

- Uses all our collected data to build *estimates* of how many runs are needed
 - For configurations on a single server or group of servers
- Uses random sub-samples of historical data
 - Takes many sub-samples, computes mean and CI
- Calculating observed empirical CIs still necessary
- Integrated into CloudLab

CONFIRM

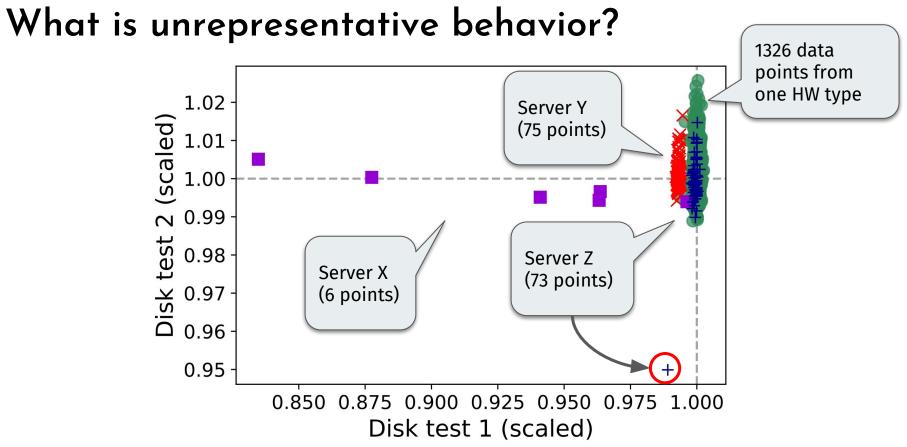
From past data, uses random subsets to model median and CI behavior for increasing numbers of runs

CONFIRM Recommendations

	CoV	Recommended Runs	
Mem Config A (c8220, ST copy, no dvfs, socket 1)	0.262	10	Trend: Higher CoV → More Runs
Disk Config B (c8220, /dev/sda4, seqwrite, iodepth 4096)	1.708	37	CoV and
Mem Config C (c220g1, ST copy, dvfs, socket 1)	6.139	74	recommended runs are not perfectly
Net Config D (m400, not rack-local, iperf3 (bw), forward)	6.309	10	correlated
Net Config E (m510, not rack-local, latency, forward)	8.086	230	Recommended runs rise fast with higher
Disk Config F (c8220, /dev/sda4, randread, iodepth 4096)	8.122	610	CoV

How many times should we run our experiments?

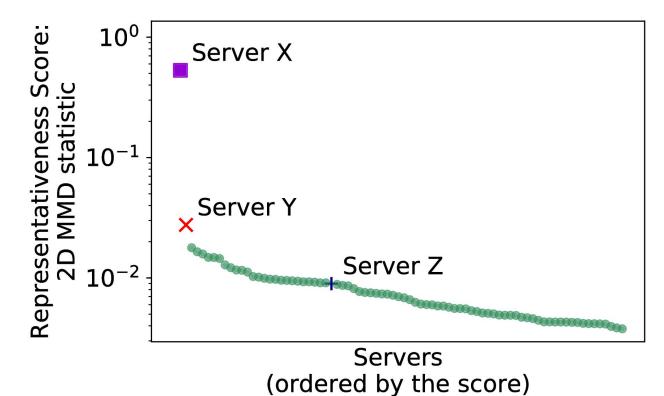
- Enough for target confidence
- Trend: high $CoV \rightarrow more runs$
- Use past data to estimate


Can the facility help?

Can The Facility Help?

• Provide indistinguishable resources

Indistinguishable:


Performance results gathered on any server should be representative of the population as a whole.

Detecting Unrepresentative Resources

- Kernel two-sample test based on Maximum Mean Discrepancy (MMD)
 - Provides a measure of similarity between two non-parametric distributions
- We compare:
 - Each server to all others of its type
 - ... using many dimensions: disk, memory, and network
- Remove servers that are statistically dissimilar from the rest

Removing Unrepresentative Servers

Can The Facility Help?

• Fix/remove < 2% of servers

Related Work

- Profiling
 - Cloud-scale (distributed) (Kanev et al., 2015, [1]) (Kozyrakis et al., 2010, [2])
 - Single-node (VM) applications (Yadwakar et al., 2014, [3])
- Quantifying Variability
 - Virtualized clouds (Iosup et al., 2011, [4])
 - Warehouse-scale computers (Dean and Barroso, 2013, [5])
- Other experimentation platforms
 - Baselining performance for Grid'5000 (Nussbaum, 2017, [6])

Summary

- How confident can we be in the correctness of our results?
 - Measure confidence with (non-parametric) CIs to account for unavoidable variability
- How many times should we run our experiments?
 - CONFIRM Pick a target CI width, estimate the number of runs using past performance data
- Can the facility help?
 - Provide statistically indistinguishable resources
- More results, experiences with pitfalls in the paper

Experiments	Storage - Docs
Your experimen	nt is ready!
Name:	forwarding
State: Profile:	ready manual-bridge
Started: Expires:	Oct 4, 2018 11:30 PM Oct 5, 2018 3:39 PM (in 16 hours)
Logs	Performance History Create Disk Image Copy Extend Terminate

https://confirm.fyi

Poster #7 CloudLab Users BoF: 9:30, Las Palmas II

References

[1]: Kanev et al., Profiling a warehouse-scale computer. ACM SIGARCH News, 2015.

[2]: Kozyrakis et al., Server engineering insights for large-scale online services. IEEE micro, 2010.

[3]: Yadwadkar et al., Predictable and faster jobs using fewer resources. SOCC'14.

[4]: Iosup et al, On the performance variability of production cloud services. CCGrid'11.

[5]: Dean and Barroso. The tail at scale. Communications of the ACM, 2013.

[6]: Nussbaum. Towards trustworthy testbeds thanks to throughout testing, IPDPSW'17.