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Motivation: Performance Variability

How confident should | be that my results are correct?

How many times do | need to run my experiments?

CleudLab

As a testbed builder, how can | help users figure this out?




11 months Memory
~892,000 data points Disk
835 servers Network

Examine performance variability of testbed hardware

Wlthln servers
Across servers




CleudLab

1,500 servers at three sites

c220g1, single-threaded

o Several distinct ‘types’ of identical servers mem copy, dvfs off

Exclusive, raw access to hardware

o No interference on servers from simultaneous users

m510, net bw,

o Doesn’t add virtualization overhead / variability rack-local

Our experiments were run on servers allocated only to us

Configuration: Combination of hardware type, workload, parameters



How confident can we be in the
correctness of our results?



How much trouble are we in?
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Confidence Intervals

e Range for your mean (different than stdev)

e Represents some % confidence (eg. 95%) the true mean lies between

| == Median [_] 95% Cl
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e More runs -> narrower Cl




Testing Normality

e Many statistical models assume normal (gaussian) bell-curve

e Isour data normal? Shapiro-Wilk test (95% confidence)
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How confident can we be in the e Some variation is unavoidable
correctness of our results? e Results are often non-normal

® More runs — more confidence



How many times
should we run our experiments?
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CONFIRM - CONFldence-based Repetition Meter

e Uses all our collected data to build estimates of how many runs are needed

o For configurations on a single server or group of servers

e Uses random sub-samples of historical data

o Takes many sub-samples, computes mean and CI

e Calculating observed empirical Cls still necessary

e Integrated into CloudLab
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CONFIRM
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for increasing numbers of runs
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CONFIRM Recommendations

Mem Config A

(c8220, ST copy, no dvfs, socket 1)

Disk Config B

(c8220, /dev/sda4, seqwrite, iodepth 4096)

Mem Config C

(c220g1, ST copy, dvfs, socket 1)

Net Config D

(m400, not rack-local, iperf3 (bw), forward)

Net Config E

(m510, not rack-local, latency, forward)

Disk Config F

(c8220, /dev/sda4, randread, iodepth 4096)

CoV

0.262

1.708

6.139

6.309

8.086

8.122

Recommended Runs
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Trend: Higher CoV -
More Runs

CoV and
recommended runs
are not perfectly
correlated

Recommended runs
rise fast with higher
CoV




How many times
should we run our experiments?

Enough for target confidence
Trend: high CoV — more runs

Use past data to estimate
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Can the facility help?



Can The Facility Help?

Provide indistinguishable resources
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Indistinguishable:

Performance results gathered
on any server should be
representative of the
population as a whole.
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What is unrepresentative behavior?

Disk test 2 (scaled)
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Detecting Unrepresentative Resources

e Kernel two-sample test based on Maximum Mean Discrepancy (MMD)
o Provides a measure of similarity between two non-parametric distributions
e We compare:

o Each server to all others of its type

o ...using many dimensions: disk, memory, and network

e Remove servers that are statistically dissimilar from the rest
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Removing Unrepresentative Servers

Representativeness Score:
2D MMD statistic
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Can The Facility Help?

Fix/remove < 2% of servers
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Related Work

e Profiling

o Cloud-scale (distributed) (Kanev et al., 2015, [1]) (Kozyrakis et al., 2010, [2])

o Single-node (VM) applications (Yadwakar et al., 2014, [3])
e Quantifying Variability

o Virtualized clouds (losup et al., 2011, [4])

o Warehouse-scale computers (Dean and Barroso, 2013, [5])
e Other experimentation platforms

o Baselining performance for Grid’5000 (Nussbaum, 2017, [6])
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Summary

e How confident can we be in the correctness of our results?

o Measure confidence with (non-parametric) Cls to account for unavoidable variability
e How many times should we run our experiments?

o CONFIRM - Pick a target Cl width, estimate the number of runs using past performance data
e Can the facility help?

o Provide statistically indistinguishable resources

e More results, experiences with pitfalls in the paper
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Experiments ~ Storage ~

Docs ricci v

Your experiment is ready!

Name: forwarding

State: ready

Profile: manual-bridge

Started: Oct 4, 2018 11:30 PM

Expires: Oct 5, 2018 3:30"P rs)

Performance History Create Disk Image
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Poster #7
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