
Taming Performance Variability

Aleksander Maricq* Dmitry Duplyakin* Ivo Jimenez† Carlos Maltzahn†

Ryan Stutsman* Robert Ricci*

*University of Utah, †University of California Santa Cruz

The performance of compute hardware varies: software
run repeatedly on the same server (or a different server
with supposedly identical parts) can produce performance
results that differ with each execution. This variation
has important effects on the reproducibility of systems
research and ability to quantitatively compare the perfor-
mance of different systems. It also has implications for
commercial computing, where agreements are often made
conditioned on meeting specific performance targets.

Over a period of 10 months, we conducted a large-
scale study capturing nearly 900,000 data points from
835 servers. We examine this data from two perspectives:
that of a service provider wishing to offer a consistent
environment, and that of a systems researcher who must
understand how variability impacts experimental results.
From this examination, we draw a number of lessons
about the types and magnitudes of performance variabil-
ity and the effects on confidence in experiment results.
We also create a statistical model that can be used to un-
derstand how representative an individual server is of the
general population. The full dataset and our analysis tools
are publicly available, and we have built a system to in-
teractively explore the data and make recommendations
for experiment parameters based on statistical analysis of
historical data.

1 Introduction
Variability is an unavoidable aspect of computer systems
performance. In the research community, rigorous com-
parison of systems requires understanding, analysis, and
control of system variability [45, 21, 12, 27]. In the
commercial space, understanding and controlling per-
formance variability is critical to providing good user
experience [14, 23] and to plan resource provisioning [1].

Large systems have many sources of performance vari-
ability (hereafter referred to as simply “variability”), but
one that cannot be avoided is the variability of hardware.
For this paper, we consider two types of variability: vari-
ability of the same physical system under repeated ex-
periments, and variance between different physical sys-
tems that are supposedly identical. Hardware can exhibit
variability due to temperature [17], variations in timings
and orderings, remapped storage blocks [44] or mem-
ory cells [52], variance in manufacture [65], “fail-slow”

hardware [25], and many more causes.
We present findings and recommend best practices

from two different perspectives: infrastructure-as-a-
service (IaaS) providers and their users. On the provider
side, we consider the amount of variability that can rea-
sonably be controlled by factoring out unrepresentative
servers, and how to reliably detect such devices. On the
user side, we consider the variability that remains, how to
cope with it when running experiments, and how to avoid
certain pitfalls. Our intention is to make experimentation
in the face of variability easier by demystifying its sources
and quantities and by making concrete recommendations.

We collected data from servers in CloudLab [60], a plat-
form for systems research that provides exclusive “raw”
access to compute and storage resources. CloudLab al-
locates an entire server to one user at a time; we ran our
benchmarks on servers when they were not allocated to
any other user. This enables us to report performance
numbers that users could reasonably expect to see in their
own applications, unaffected by other simultaneous users.
This data was collected on an IaaS provider that consti-
tutes research infrastructure (a “testbed”), but we believe
these lessons also apply to other settings in which there
is an agreement between providers and users to supply a
specific, measurable level of performance, such as clouds
and datacenters.

In this paper, we:
• Provide a refresher of statistical methods used to

assess confidence in performance results (§2) and
the impact of variability on experimentation
• Describe our testing framework, the servers we

tested, and the resulting dataset (§3)
• Analyze this dataset (§4) to understand the sources

and quantities of variability
• Present a new method for estimating how many repe-

titions of an experiment to run (§5) and CONFIRM,
our tool to aid experimenters in gathering statistically
significant results
• Devise methods for service providers to identify

servers with unrepresentative behavior (§6).
• Cover defensive practices (§7) that help avoid pitfalls

with respect to variability
Throughout, we identify specific findings (identified

with ♦) aimed at helping service providers provide more



consistent facilities and assisting users in understanding
and coping with the variability inherent in computer sys-
tems. We close with related work and future directions.

2 The Statistics of Performance Variability
The fundamental way variability impacts systems research
is that it affects our confidence in the statistical power of
our results and the correctness of conclusions that we
draw. When we run experiments and calculate statistics
(mean, median, etc.) we are producing empirical statistics
from a sample (a finite number) of a notional popula-
tion (an infinite number) of executions. As we run more
repetitions of an experiment, we can be more confident
that our empirical distributions are close to the population
distributions, and for key statistics such as the mean and
median, we can compute confidence intervals (CIs).

For a chosen confidence level α , a CI defines a range in
which we are α% sure that the population mean lies. For
example, a sample mean of 10.0, with a CI of 9.9−10.1
at 95% confidence indicates a 95% confidence that the
true mean lies within r = 1% of our estimate 10.0. In
order to make a strong statement that one sample mean
is higher than another, their CIs should not overlap [31];
if they do, it is possible that the true population means
have the reverse relationship. When an experiment is
analyzing a small effect (for example, a 5% performance
improvement), a wide CI may invalidate the conclusion.

♦ Perform enough repetitions to achieve tight
confidence intervals
Techniques from statistics provide robust
foundations for making strong statements about
performance differences between systems.

Statistical methods fit into two broad classes: para-
metric and nonparametric techniques. The former class,
which is more well-known, relies on the assumption that
the analyzed data stems from known probability distri-
butions, typically the Normal/Gaussian distribution. A
variety of closed-form expressions for statistics of in-
terest enable powerful parametric analysis. In contrast,
nonparametric techniques are used when the probability
distributions are unknown, and require fewer assumptions.
Nonparametric methods, which have fewer closed-form
equations, involve less powerful counterparts of popular
parametric techniques, e.g. the Kruskal-Wallis test [40]
instead of ANOVA. In nonparametric analysis, empiri-
cal mean and standard deviation can be computed, but
their interpretation is different compared to the parametric
case: rather then using them to fit distribution curves, they
reveal only high-level information about the shapes of
population distributions. The two most common metrics
of interest, the median and CI for the median, can be

used to compare pairs or sets of sampled nonparametric
distributions.

Many studies suggest that the normality assumption
does not hold for the data obtained in computer systems
experiments, especially when the data includes measure-
ments of performance. This applies both on a single
machine [34] and in parallel programs running on super-
computers [67]. Indeed, as we document in §4.3, most
data in our dataset does not follow the normal distribution.
Thus, we adopt nonparametric statistics for the remain-
der of this paper, and recommend that, for performance
experiments, these methods be used unless normality can
be demonstrated. In [27] and [13], the authors provide
advice for statistically sound performance analysis and
argue for applying robust nonparametric techniques.

In nonparametric analysis, one uses the median, rather
than the mean, as the measure of central tendency. To
get CIs for a set of measurements X , one first sorts
X . Then (as described in [41]), compute

⌊
n−z
√

n
2

⌋
and⌈

1+ n+z
√

n
2

⌉
, where n is the number of elements in X ,

and z is the standard score (or z-score) [31]. z depends
only on the desired confidence level, and is 1.96 for the
commonly-used level of α = 95%. These two numbers
are then used as indexes into the sorted X : the values at
those locations are the top and the bottom bounds of the
CI. Note that one of these numbers will be larger than
the median (at index

⌊ n
2

⌋
) and the other will be smaller,

and they will not necessarily be symmetric around the
median. These bounds tend to get tighter—to approach
the sample mean—with more repetitions. Typically, we
are concerned with the relative difference r% between the
CI bounds and the mean.

A natural question is how many repetitions of an ex-
periment are likely to be needed to achieve a sufficiently
narrow CI (e.g., indicating that the empirical median dif-
fers from the true median by no more than r = 1%) for a
given confidence level α (e.g. 95%): we want to be sure
to run enough repetitions to be confident in our results,
but don’t want to waste time running more than neces-
sary. We use E(r,α,X) to represent this value for a set
of experiment results X . The value of E can vary widely
depending on the data in X ; intuitively, the more variation
between measurements in X , the more runs it will tend
to take to narrow the CI to the target of r%. So that we
can compare values of E to each other, for the remainder
of this paper we adopt E(1%,95%,X) as our standard
target and denote it as Ě(X). It is important to note that
this is an estimate of what is required to get the desired
confidence: empirical CIs must still be computed from
the data gathered.

Finding Ě(X) for parametric models is straightforward,
as most such models have a closed-form equation that
uses an estimate of the variance of X , obtained by running



a handful of exploratory experiments. In the nonparamet-
ric case, this number is harder to find, since we cannot
make any assumptions about the distribution and there
is therefore no equation we can use. One of the major
contributions of this paper, covered in §5 is a resampling-
based technique for estimating Ě(X) for nonparametric
models, and a tool we have built that makes it easy for
experimenters to get these estimates.

3 Methodology
Over a period of 10 months, from May 20, 2017 to April 1,
2018, we collected performance measurements on servers
that are part of the three CloudLab [60] clusters. Our
experiments were run while servers were not allocated
to other users, meaning that they did not affect, nor were
they affected by, other users of the facility.

3.1 Testing Framework
Our testing framework is built with geni-lib [5], a
Python library for interacting with GENI-compatible
testbeds such as CloudLab. We wrote an orchestration
script which selects free servers, runs benchmarks, and
collects the results. In order to avoid consuming excessive
resources on CloudLab, this script runs at a fixed interval
every six to eight hours on each CloudLab cluster. Three
to five servers (depending on the size of the cluster) are
selected by fetching a list of the target cluster’s available
servers, checking them against our database of previous
runs, and prioritizing never-tested servers, followed by
least recently tested servers. Servers that have had a re-
cent failure are not re-tested for a week to avoid having
them remain at the highest priority.

Once the test servers are provisioned, the orchestration
script waits for the provisioning process to be completed,
logs into the server, and automatically runs the tests (de-
scribed below). A single run can take between 30 minutes
and 5 hours; the majority of this time is spent running
disk tests.

As a side effect of the way that the CloudLab alloca-
tion policies and usage patterns work, servers were not
sampled uniformly: some servers were unavailable for up
to months at a time, as they were part of long-running ex-
periments. In general, the more popular the type of server,
the more sparsely sampled it is. Times of heavy testbed
utilization, such as major deadlines, are also sparsely sam-
pled. This requires us to use analyses that are robust with
respect to different sample sizes.

3.2 Benchmarks
We selected a set of benchmarks to cover three key re-
sources: memory, storage, and networking. In our selec-
tion of benchmarks, we struck a balance between observ-
ing the performance of the hardware when pushed to the
limit (to detect degraded performance), and what might be

seen in a more typical application (to understand “typical”
behavior of the hardware). Hyper-optimized benchmarks
can often come at the expense of practicality, and often
make use of instructions, settings, and “tricks” that are
limited to specific processors or I/O devices. We also
required benchmarks that were portable across different
architectures, due to the presence of both x86-64 and
ARM machines in CloudLab. Our primary benchmarks
follow both principles, and we have some supplementary
x86-specific benchmarks that use intrinsics to maximize
performance. Memory and storage results have been col-
lected since the beginning of our study, and we started
collecting network benchmarks about 6 months later.

Memory We use two different benchmark suites for our
memory tests. First, STREAM [43] (a standard bench-
mark for HPC machines) gathers a simple set of single-
threaded and multi-threaded micro-benchmarks that per-
form basic operations such as memory copies and simple
mathematical manipulation of memory contents. Sec-
ond, we use a suite of micro-benchmarks by Alex W.
Reece [51, 50] for supplemental non-portable tests uti-
lizing Intel x86 intrinsics such as SSE and AVX. We
found that, while absolute numbers differed, these other
benchmarks did not alter our conclusions, so we discuss
only the STREAM benchmarks in this paper. All tests
use sufficient memory to minimize caching effects.

While we made no modifications to any timed portions
of the benchmarks, we did modify both benchmarks to
provide more complete reporting of statistics at the end of
their runs. In addition, we altered the overall STREAM
workflow to run a single-threaded test followed by a multi-
threaded test. In the case of Intel processors, we run tests
both with a standard frequency-scaling setting and with a
setting that disables turbo boost and sets the performance
governor to “performance.” In the case of multi-socket
machines, we test on each socket independently using
numactl to avoid bottlenecks with QPI. Both memory
benchmarks are built from source during each run us-
ing gcc with exactly the same compile flags every time;
this helps with our multi-architecture environment, and
means that gcc applies the optimizations appropriate to
that environment.

Storage We test storage by using fio [3] to issue direct
4KB asynchronous I/O requests to target raw block de-
vices. For the boot device, we run fio on the partition of
that device containing the remaining empty space. Oth-
erwise, we run fio on the entire device. We test both
sequential and random reads and writes independently,
and each workload is run both with a high and low num-
ber of I/Os issued to the device at any given time. A low
I/O depth (we use 1) is more sensitive to device latency,
whereas a high one (we use 4096) is more sensitive to
bandwidth and internal parallelism. In the case of SSDs,



Type # Model Processor S C RAM Boot Disk Other Disks
m400 315 HPE m400 ARM64 X-Gene 1 8 64 GB (8x4) SATA III SSD None
m510 270 HPE m510 Xeon D-1548 1 8 64 GB (4x8) NVMe SSD None
c220g1 90 Cisco c220m4 Xeon E5-2630v3 2 16 128 GB (8x8) SAS-2 HDD SAS-2 HDD &
c220g2 163 Cisco c220m4 Xeon E5-2660v3 2 20 160 GB (8x10) SAS-2 HDD SATA III SSD
c8220 96 Dell C8220 Xeon E5-2660v2 2 20 256 GB (16x16) SATA II HDD SATA II HDD
c6320 84 Dell C6320 Xeon E5-2683v3 2 28 256 GB (16x16) SATA II HDD SATA II HDD

Table 1: Server configurations. “S” is the number of sockets, and “C” is the total core count (across all sockets). RAM
is described as “(DIMM size x # DIMMs)”. SAS-2 HDDs are all 10k RPM, and SATA II HDDs are all 7.2k RPM.

we issue a TRIM to the device using blkdiscard before
we run any write workload. This clears certain block
state, allowing for more efficient write operations [26].
We install fio from the Ubuntu package repository.

Network For each site, we set a fixed destination server
that every server runs network tests against over a shared
VLAN. For latency tests, we use a simple ICMP ping

in flood mode. For Bandwidth tests, we use iperf3 [30]
with TCP and take measurements bidirectionally. Some of
servers we test are rack-local with the destination server,
and others require multiple layer-2 hops. Since CloudLab
makes its topology public, we know that all non-local
servers we are testing are three to four Ethernet hops
away, and we record switch-path information along with
each test. We install iperf3 from the Ubuntu package
repository, and ping is already bundled with the base
operating system.

3.3 Servers Tested
We gathered our results from CloudLab’s three primary
clusters: Utah, Wisconsin, and Clemson. Servers at each
site are divided into a small number of distinct homoge-
neous types; no sites currently have overlapping types.
All servers we tested are interconnected via a 10 Gbps
“experiment” network within each site. At the time of our
tests, each of these sites had two “dominant” types consist-
ing of tens to hundreds of servers. Some sites have types
with only a few instances containing specialized hardware
such as GPUs or many disks; we did not test these types
to avoid consuming CloudLab’s scarcest resources.

A summary of the server types we tested can be found
in Table 1. The two Utah types are designed on the low-
power and high-density Moonshot platform from HPE,
with 45 servers in each 4U chassis. The two Clemson
types are somewhat less dense, with four to eight servers
per 2U chassis, while the Wisconsin servers are in in-
dependent 1U chassis. The Wisconsin servers have the
most disks, with each server having a boot HDD, plus one
“extra” HDD and SSD each. More detailed information
regarding the experimented-upon server types, such as
specific component models, can be found on the Cloud-
Lab Hardware documentation pages [61, 59].

3.4 Software Consistency
While we focus on hardware-based variance in this paper,
we recognize that software differences can have a major
impact on performance. To this end, our testing frame-
work tracks, for each test, the version information of the
kernel, versions of key packages (such as the compiler),
and the revision of our repository containing our test
script and memory benchmark sources. The key software
remained at the same version throughout this test: the op-
erating system release (Ubuntu 16.04, standard CloudLab
image), the Linux kernel release (4.4.0-75-generic),
ping (iputils-s20121221), and iperf3 (3.0.11).
While our testing repository was updated several times
over the testing period, no modifications were made to
any timed areas of our memory benchmarks. Finally, al-
most all runs utilized the same gcc version (5.4.0) and
fio version (2.2.10). A very small percentage (< 1%)
of our runs used slightly earlier versions of both gcc and
fio, so to maintain software consistency we excluded
them while performing our analysis.

CloudLab released disk images with mitigations for
Spectre and Meltdown (which are known to affect per-
formance) on April 2, 2018; we intentionally use data
through April 1 so that we can focus on hardware vari-
ance in this paper. We are continuing to collect data, and
expect variance due to system software to be an interest-
ing topic for study in its own right.

3.5 Resulting Dataset
From the period of May 20th 2017 to April 1st 2018,
we collected 10,400 total runs from 835 total machines.
A complete breakdown of machines tested and runs by
hardware type can be found in Table 2. Since each run
involved execution of a multitude of benchmarks in differ-
ent configurations, we ended up with a total of 892,964
distinct data points over this period.

We use the term “configuration” to refer to the combi-
nation of hardware type, configuration, and benchmark
settings. For example, the possible memory configura-
tions come from varying hardware type, socket number,
single- or multi-threaded operation, frequency scaling,
and type of memory operation; this results in 590 pos-
sible configurations for memory. Similarly, there are



CloudLab
Site

Hardware
Type

Tested/
Total

Servers

Total
Runs

Mean/
Median
Runs

Utah m400

m510

223/315
221/270

3583
2007

16/8
9/7

Wisconsin c220g1

c220g2

88/90
125/163

800
1527

9/7
12/8

Clemson c8220

c6320

96/96
82/84

1742
741

18/12
9/8

Total 835/1,018 10,400 12/8

Table 2: Coverage of our dataset

Figure 1: CoV for a variety of configurations.

96 possible configurations for storage, and 27 possible
configurations for network tests. Each data point in the
dataset comes from executing one configuration.

4 Understanding Variability
We begin our analysis of the dataset with an exploration
of some of the key statistics computed from it. All data
used in this section has had measurements from servers
that are outliers removed, so it represents the unavoidable
variation that experimenters must cope with even when
the service provider does its best to provide consistently-
performing servers. The procedure that we developed for
removing unrepresentative servers is described in §6.

4.1 Unavoidable Variability
We first use our dataset to answer questions of importance
to experimenters and other users who need consistency
from the platforms they use. These stem from the basic
question “How much variability must I account for in my
experiments?”

Aiming to perform fair high-level assessment, we se-
lect a subset of 70 benchmark × hardware combinations
with relatively even distribution: 24 disk (all for boot
devices), 19 memory (variants of copy benchmark), and
27 network (both latency and bandwidth) configurations
being tested. We use coefficient of variance (CoV), the
ratio of the standard deviation to the mean, to compare
these configurations; absolute standard deviation cannot
be used here due to the difference in the scales and units
of compared measurements. Displayed in Figure 1 and
ordered by CoV, the analyzed configurations reveal the
following insights:

Networking Both top and the bottom of the list are
dominated by the network tests: primarily, latency tests
are at the top with CoV in the range [16.9%,29.2%], while
the bandwidth tests are at the bottom with CoV < 0.1%.
For the configuration with the largest CoV, we notice that
the standard deviation is 7.7µs is quite small in absolute
terms. However, it is a significant fraction of the empir-
ical mean for the latency at 26.3µs. This seems to stem
from a couple of sources: First, we are using standard,
unoptimized, tools to measure latency, and the timescales
are small enough that effects within the kernel networking
stack are noticeable (even loopback ping displays some
variation). Second, the granularity of timestamps reported
by ping is sufficiently coarse (1µs) that measurements
group into discrete bands instead of being continuously
distributed. In contrast, the 3.3×105 standard deviation
on most bandwidth tests corresponds to only 330kbps
out of the median of 9.4Gbps. We note that CloudLab
allocates network bandwidth in such a way as to attempt
to guarantee each experiment the full bandwidth it has
requested, free of interference from other users. The low
CoV in bandwidth tests suggests that it is effective in
doing so. Not all datacenters have similar bandwidth al-
location policies, and this result may vary in a different
setting.

c6320 Memory A block of memory tests for the c6320
servers stands out for having higher CoVs than other mem-
ory tests: they are in the range [14.5%,16.0%]. There is
no clear cause for this variability, but it is remarkable for
being the only set of configurations for which a particular
type of server is tightly grouped. The lesson we take from
this is that it it underscores the need to test all configura-
tions rather than assuming that similar types of resources
exhibit similar variability.

Clemson HDDs Clemson servers stood out in another
way as well: the HDDs on both Clemson types show
moderately high CoV for high-iodepth random I/O for
both reads and writes. These disks (which are the same
model on both types) are the only 7.2k RPM HDDs in
CloudLab, as well as the only SATA HDDs.

Bulk of the Tests The remaining block of 44 tests con-
sists of intermingled disk and memory configurations.
CoVs for this set of tests are in the range [0.3%,9.0%].
While this is a fairly wide range, there is no clear pattern
within it; for example, the data does not support the hy-
pothesis that disk bandwidth consistently exhibits more
variability than memory or vice versa. Also, unlike the re-
sults for c6320, individual server types show no grouping,
leading us to the conclusion that, on the whole, there is
little correlation between server type and CoV. Based on
this analysis, we expect CoV for hardware performance
metrics observed in practice to be roughly in this range
most of the time and, in rare cases, exceed the 10% mark.



HDDs@c8220 HDDs@c220g1 SSDs@c220g1

6.85% (rr, H) 5.66% (r, L) 9.86% (rr, L)
6.42% (rw, H) 3.68% (rr, H) 5.38% (r, L)
6.08% (rr, L) 1.93% (r, H) 4.65% (rw, L)
5.82% (r, L) 1.90% (w, H) 3.95% (w, L)
5.32% (rw, L) 0.99% (rw, L) 1.00% (w, H)
4.96% (w, L) 0.93% (rr, H) 0.68% (r, H)
1.27% (w, H) 0.58% (rr, L) 0.53% (rw, H)
1.20% (r, H) 0.14% (w, L) 0.09% (rr, H)

Table 3: Coefficient of Variance. Values are annotated
with the type of test and iodepth: read, write, randread,
randwrite. “L” and “H” denote iodepth 1 and 4096.

♦ Some amount of variation is unavoidable
Some degree of variation in hardware performance
is unavoidable, no matter what steps the facility
provider takes to provide consistent hardware.
Coefficients of Variance of up to 10% may be
attributed to hardware variability and considered
expected, while higher values may indicate room for
improvement from the measurement standpoint.

For the aforementioned CoV range, we determine that
the configuration with CoV = 0.3% is likely to require
only Ě(X) = 10 experiments in order to make the corre-
sponding CI sufficiently small. In contrast, this number
significantly increases, up to Ě(X) = 240, for the configu-
ration with CoV = 9.0%. This demonstrates the need for
careful experiment design that takes into account varia-
tion of the specific resources that are exercised, and we
present further analysis of the relationship between the
two metrics in §5.

4.2 Disk I/O
SSDs are well-known to have complex performance pro-
files [26] due to the write characteristics of flash and their
internal Flash Translation Layers (FTLs). In addition,
different types of HDDs have performance characteris-
tics based on their rotational latency, attachment protocol,
density, etc. We wanted to answer the question “Are SSDs
more consistent (lower CoV) than HDDs?”, so we look
at the variability for two different types of HDDs (one
model at Wisconsin and one at Clemson), and for SSDs
at Wisconsin. The devices at Wisconsin are higher-end:
10k RPM SAS-2 HDDs and enterprise Intel SSDs, while
the HDDs at Clemson are 7.2k RPM SATA III devices.

As shown in Table 3, the answer to our question de-
pends on the level of parallelism (iodepth) and the type
of HDD. With high iodepth, SSDs use their internal par-
allelism and demonstrate both much higher performance
and more consistency. The SSDs we tested are 2.3–2.4

Figure 2: Histogram of iodepth=1 randread on c220g1.

Figure 3: Testing normality of the collected data.

times faster on sequential tests than HDDs, and from
82.5 up to 262.3 times faster on random reads and writes.
CoVs for these tests were in the range [0.09%,1.0%] for
SSDs, lower than most HDD CoVs.

On HDDs, unsurprisingly, iodepth is not strongly cor-
related with CoV: these devices have less internal paral-
lelism, and it is harder to exploit due to the lack of an
abstraction layer as complex as the FTL. Because SSDs
have such high CoV on low-iodepth tests, some HDDs
are competitive in terms of CoV (if not absolute perfor-
mance). The reason for this can be seen in Figure 2, which
examines the case of random reads. HDDs have a per-
formance curve that is fairly compact: it is dominated by
seek time and rotational delay, and roughly bounded by
the maximum values of those two variables. This curve is
more compact for the higher-RPM SAS dives at Wiscon-
sin, which have lower CoV for most low-iodepth test than
the SSDs. The SSDs that we tested, on the other hand,
exhibit a bimodal pattern; the exact underlying cause is
difficult to ascertain because of the opaque nature of the
vendor’s FTL, but the effect on experiments is clear and
dramatic. The lower-RPM SATA HDDs at Clemson are
less competitive against the SDDs in terms of CoV; this
is likely due, in part, to their higher rotational latency.

4.3 Testing For Normality
The statistics commonly used to analyze the performance
of computer systems [31] tend to assume that measure-
ments are normally distributed. We use the Shapiro-Wilk
test [55] to test for normality in our dataset, and find that
benchmarks of individual configurations across different
servers are not normally distributed. We apply this test
to all configurations and show our results in Figure 3.
Each point, shown in the order of increasing p-values,
characterizes samples for a specific configuration. For
points above the threshold, we cannot reject the null hy-
pothesis (stating that the samples come from populations
which have normal distributions). For points below this



Figure 4: Testing stationarity of the collected data.

threshold, we reject the null hypothesis at this confidence
level (95% in this figure), and assume non-normality. Our
analysis shows that we should reject the null hypothesis
for over 99% of the configurations (710 out of 713). Intu-
itively (and confirmed by inspecting the underlying data),
when we measure maximum bandwidth of a device, there
is a practical maximum that cannot be exceeded except
by measurement error, and most measurements lie near
this maximum. On the other hand, some measurements
are significantly lower than the maximum, leading to a
skewed distribution with a compressed range above the
median and a much larger range below it. The situation is
reversed for latency tests. Considering the large number
of samples in the analyzed configurations, from 70 in the
smallest up to 3,571 in the largest, we reject the normality
hypothesis for tests across servers; hence, our focus on
nonparametric analyses in this paper.

♦ Use nonparametric confidence intervals to
avoid assumptions of normality.
Many computer systems performance results have
skewed distributions (longer tails on one side);
nonparametric confidence intervals are simple to
compute, and work for these distributions (as well as
normally-distributed results).

We also test normality for sets of data points that are all
drawn from the same server. We filter data by selecting
servers with at least 20 data points coming from memory
tests (this number coming from [55]). Given the way
we schedule tests, many servers have not executed more
than 20 tests and thus this subset corresponds to 42,680
data points. After applying Shapiro-Wilk to this subset,
roughly half of the points (26,695) can be considered to
be coming from a normal distribution. Intuitively, we can
assume normality in this subset because data points are
obtained by running a configuration on the same machine,
that is, the hardware and software are the same for all
points. This suggests that experimenters should proceed
with caution when analyzing results from a single server:
data may be normally-distributed and thus suitable for
analyses that assume normality, but a test such as Shapiro-
Wilk should be run to confirm or deny this assumption.

♦ For some configurations, single-server tests can
be assumed to be from a normal distribution.
Evaluating normality for tests run on a single server
can simplify the analysis since parametric statistics
can be employed for these single-server results.

4.4 Checking Stationarity
Most statistical tests—including confidence intervals—
assume stationarity: that is, that the properties of the
underlying distribution (such as median and variance)
do not change over time. In addition to affecting data
analysis, non-stationary distributions would harm repro-
ducibility: if performance is not stable over time, future
experiments cannot reliably be compared to past ones.
We use the Augmented Dickey–Fuller (ADF) [15] test to
check for stationarity in our data.

For all 70 configurations shown in Figure 1, we run
ADF and get a range of p values allowing us to accept
or reject the non-stationarity null hypothesis in each case.
These values, shown in Figure 4, indicate that nearly
all of the analyzed datasets present strong evidence for
stationarity: we can reject the hypothesis that they are
non-stationary with the confidence level α = 95% for
all points below the line. Among the handful of non-
stationary cases (above the line), we find several memory
(copy benchmark run on c220g1) and network bandwidth
(also run on c220g1) tests. Among the evaluated disk
tests there is more tendency towards non-stationarity in
the tests with iodepth = 1. Recall that our measurements
are not sampled from servers uniformly, as described in §3.
This appears to be a cause of some of the non-stationary
patterns we observe: during some periods, certain servers
are over-sampled, and, as they are slightly outside the
mean for the whole population, this produces a temporary
shift in the mean. These effects could be visible to Cloud-
Lab’s users, since during periods of heavy utilization,
users frequently creating and terminating experiments
could see the same set of servers repeatedly. Our remedy
to this, detailed in §6, is to find and remove servers that
have significant statistical departures from the rest of the
population.

5 CONFIRM: How Many Measurements
Are Enough?

Given that some amount of variability is inevitable, we
turn to a perennial question for experimenters: “How
many repetitions do I need to run in order to be confident
in my results?” As described in §2, given a set of mea-
surements and a desired confidence level (such as 95%),
we can compute a confidence interval (CI) for the mean
or median. A standard procedure is to “invert” this cal-
culation, and for a given desired confidence level and CI



0 200 400 600 800

Number of Samples

3680

3700

3720

3740

K
B

/s

12

(a) 88 HDDs at Wisconsin (c220g1),
random reads, iodepth=4096

0 200 400 600

Number of Samples

1700

1750

1800

1850

K
B

/s

121

(b) 82 HDDs at Clemson (c6320),
random reads, iodepth=4096

0 200 400 600

Number of Samples

580

600

620

640

660

K
B

/s

670

(c) 82 HDDs at Clemson (c6320),
random reads, iodepth=1

Figure 5: Nonparametric confidence intervals produced by CONFIRM. As the number of samples grows, 95% CIs
(filled areas) for the medians (thick blue lines) shrink and fit within the 1% error bounds (dashed lines). This stopping
condition is depicted with red lines and annotated with the numbers of recommended measurements Ě(X).

width, estimate how many repetitions are likely necessary
to achieve the desired confidence.

When assuming normality, there is a closed-form equa-
tion to calculate this estimate [31]; the main input to this
equation is an estimate of variance, typically obtained by
running a small number of trial runs. In the nonparamet-
ric space, there is no closed-form equation, so producing
such an estimate requires a more complex technique. We
have developed such a technique using resampling:

For a set of collected measurements X with n values,
we randomly select a subset of s ≤ n values for which
we estimate the bounds of the CI for the median as de-
scribed in §2. We shuffle X , select another subset of s
values, and obtain new estimates of the CI. After we re-
peat this process c times, we calculate the means of the
lower and upper CI bounds. Obtained using sampling
without replacement, each of these random selections or
“trials” represents a hypothetical scenario where a smaller,
partial subset of measurements was collected by an ex-
perimenter. The aforementioned averaging eliminates the
dependence of the results on the properties of a particular
subset and provides an aggregate view on the convergence
of the CI observed across many trials. The results pre-
sented in the rest of the paper are obtained using c = 200.
To estimate the recommended number of measurements
Ě(X), we start at s = 10, assuming that smaller subsets
are insufficient to estimate nonparametric CIs reliably and
should not be considered. Then, we increase s until s = n
or the mean CIs fit within the desired error bounds. In
the former case, we conclude that these n samples are
insufficient for meeting the stopping condition, while in
the latter case, we note that the experimentation could
have stopped after Ě(X) = s measurements according to
the selected allowed error and confidence level.

We have implemented this technique in a service we
call CONFIRM or CONFIdence-based Repetition Me-
ter. This dashboard imports our benchmarking datasets
and facilities interactive nonparametric analysis of CIs for
measurements collected from individual servers, groups

of servers, and entire hardware types available on Cloud-
Lab. We present three analyses here to demonstrate how
CONFIRM can help guide experimentation: looking at
the how variability affects experiments on different types
of HDDs; quantifying how much a single outlier can in-
crease the number of repetitions that must be run; and
looking at the relationship between variance and Ě(X).

HDD Variation In the first set of experiments, we com-
pare 88 HDDs at Wisconsin with 82 HDDs at Clemson,
revisiting results from §4.2 from the perspective of varia-
tion. CONFIRM produces visualizations of the CIs and
the Ě(X) estimates that are depicted in Figure 5. Fig-
ure 5 (a)-(b) show the difference of over 10× in Ě(X)
for two disk types running the same benchmark (random
reads, iodepth = 4096), with Clemson disks exhibiting
higher variance and wider CIs. A similar benchmark—
random reads, iodepth = 1—demonstrates an even more
severe case, as shown in Figure 5 (c). For the same set of
Clemson HDDs we have to use as many as 670 samples
(almost all of the measurements we have collected) in
order to fit the CI within the same 1% error bounds. If we
were to select a set of servers based on reproducibility of
disk-heavy workloads, the Wisconsin servers would be
the clear choice; conversely, if our experiments must be
run on the Clemson servers, we will need to be careful to
run many repetitions to get statistically significant results.

Effects of Outliers In the second set of experiments,
we start with a randomly selected set of 9 c220g2 servers
at Wisconsin, add one more “badly” performing server
of the same type (one that will be eliminated using the
method in §6), and analyze CIs for memory tests with and
without this outlier. We run CONFIRM on the combi-
nation of the selected servers and four variations of the
copy memory test and record obtained Ě(X) estimates
in Table 4. We can see that inclusion of this server re-
sults in a 2.1–5.9× increase in the recommended number
of repetitions. Our analysis shows that the distribution
of the performance data obtained on these 10 servers is
highly skewed, with the “long tail” caused by the low-



Memory test /
frequency-scaling /

tested socket
9 servers

10 servers
(same 9 +

1 “outlier” server)

copy / no / 0 18 63
copy / no / 1 10 58
copy / yes / 0 33 68
copy / yes / 1 10 54

Table 4: Recommended number of measurements Ě(X)
for 9- and 10-server sets. Estimates are produced using
CONFIRM for Wisconsin c220g2 servers.

Figure 6: Relationship between CoV and Ě(X).

performance measurements. In this and similar cases, not
only we are less confident about the value of the statis-
tic of interest—in this case, sample median—but we are
likely to make poor conclusions using insufficient number
of measurements. Thus, further analysis of the data shown
in Table 4 confirms that if we stop after 10 measurements
in the 10-server case, our reported median values will be
outside of the 95% CIs around the medians reported after
the recommended 58-68 measurements.

♦ Use low-variance hardware whenever possible
The higher the performance variance of the
underlying hardware, the more repetitions must be
run to establish statistical significance; conversely, if
not enough repetitions are run, there is a greater
chance that the conclusions are incorrect.

CoV vs. Ě(X) Figure 6 shows the relationship between
the CoV and the number of repetitions recommended by
CONFIRM for the bulk of the configurations from §4.1.
This figure is generally favorable for experimenters: most
configurations up to about 4% CoV require only tens of
repetitions to reach the target of r = 1% for CIs. Some
configurations, however, are extreme outliers, requiring
hundreds of experiments to reach this level of confidence.
These outliers do not show a consistent pattern in either
the type of configuration nor the relationship between
CoV and Ě(X). The reason that the CoV and Ě(X) are
not perfectly correlated is that they react differently to
outliers and multi-modal distributions. Outliers can skew
means and standard deviations quite a bit, but the median

is less sensitive to them, and nonparametric CIs effec-
tively take into account the presence of points outside the
CI but not their magnitudes. For extreme multi-modal
distributions, such as the one seen in Figure 2, the mean
and standard deviation have no problem computing val-
ues “in the middle” where no points actually lie, but the
median and nonparametric CIs can only pick from points
actually in the dataset, making it take much longer for
them to converge—or preventing them from converging at
all. This figure shows the importance of a tool like CON-
FIRM: our intuitions about variance, confidence, and the
number of repetitions are not always correct, and actual
measurements are needed to inform rigorous experiment
design.

♦ Base experiment design on past measurements
The relationship between variance and the number
of repetitions required is complex; good estimates of
the latter require significant prior data.

Using CONFIRM We run CONFIRM as a service
at https://confirm.fyi/ to help users of CloudLab
plan their experiments. The tool itself is open-source, so
it can be applied to any other facility for which similar
data can be collected. We note than when using CON-
FIRM to estimate the number of repetitions needed for
an experiment, it should be used as an initial estimate,
by selecting the resource(s) that the performance of the
experiment is most likely to depend on. Once data is
collected, empirical CIs should be computed for the col-
lected data (as described in §2) to ensure that the target
allowed error range has been met; the level of variability
in a higher-level system may be higher or lower than those
found in the low-level benchmarks that CONFIRM uses
to compute its estimates.

6 Detecting Unrepresentative Servers
We now turn our attention to the provider’s perspective:
given what we have seen about the effects of variance on
users, what can a provider do to provide resources with
consistent performance? As we have seen, some variance
is unavoidable, so we pursue the goal of having a set of
servers where every server is representative of the whole.
Put another way, in a distribution drawn from all servers,
if we draw samples from a particular server, we should not
be able to distinguish those samples from the complete
population. This is a strong analysis, as it gets directly
at the goal of a testbed or service provider that it should
not matter which server(s) an experiment uses: all should
provide results that are statistically indistinguishable.

https://confirm.fyi/


(a) Identifying outlier servers. All values
are normalized by the medians.

Servers
(in the order of decreasing randread & randwrite test)

10 2

10 1

100

101

2
D

 Q
u
a
d
ra

ti
c 

M
M

D

randread & randwrite
(iodepth=4096)

read & write
(iodepth=4096)c220g2-011323

c220g2-011003

(b) Ranking servers based on 2D MMD.
First two – servers with consistent

performance degradation shown in (a).

(c) Using 8 benchmarks (4 disk +
4 memory), we exclude unrepresentative
servers for each of the hardware types.

Figure 7: MMD-based server evaluation for c220g2 (a-b) and outlier elimination for all tested hardware types (c).

♦ Provide indistinguishable resources
When servers—even those that are supposedly
identical—exhibit performance differences that can
be detected reliably through statistical tests,
reproducible experimentation is more difficult.

Statistical distributions can be compared based on in-
dependent samples using the Mann-Whitney U-test [42].
Unlike its parametric counterpart, the t-test, the nonpara-
metric U-test does not assume normality of the compared
distributions. As reviewed in [33], many authors have
focused on this problem and offered various sophisticated
approaches. Appearing in the recent machine learning
literature, a kernel1 two-sample test based on maximum
mean discrepancy (MMD) [24] offers a powerful solution
that is suitable to large-scale datasets and naturally sup-
ports multivariate comparisons. This kernel-based testing
can be summarized as follows:

The test compares samples X = {x1, . . . ,xn} and Y =
{y1, . . . ,ym} from distributions P and Q, where n and m
do not need to be equal. No assumption is made about
P and Q, and the robustness of this test with different n
and m is important for our setting, since we will be using
it to compare the samples for an individual server to the
rest of the population. MMD provides a measure of sim-
ilarity (or dissimilarity) between P and Q, expressed as
a distance between their embeddings in the reproducing
kernel Hilbert space (RKHS) [6]. Abstract in its formula-
tion, this distance metric is still straightforward to use in
practice. Similar to many statistical tests, the univariate
values obtained using MMD can be compared against
thresholds calculated for a given confidence level α and
used to estimate probabilities of P and Q being the same
distribution given the analyzed samples. The test comes
with the quadratic-time and linear-time (w.r.t. m+n) es-
timation variants. The former is a more powerful test as

1A kernel or a kernel function in this context refers to the dot product
of features of compared objects.

it uses every measurement to the maximum effect, while
the latter is more suitable to online processing where the
analysis is performed as the data becomes available.

We use the quadratic test implemented in Shogun [57],
an open-source machine learning library for Python. One
important aspect of MMD testing is kernel selection:
we chose a meaningful range of kernel parameters and
found that the results of our analysis are not sensitive
to particular parameters selected, so we use a common
smooth kernel function, a Gaussian kernel,2 with the band-
width parameter σ ∈ [5%,50%] of the analyzed measure-
ments. Designed to be robust to individual outliers, MMD
tests can point out distribution differences, including pro-
nounced skew and frequent outliers, that are statistically
significant.

Based on the MMD statistic, we develop the following
method for identifying unrepresentative servers:

Use multiple benchmarks to characterize servers of
a particular type. To increase robustness to outliers and
avoid bias caused by uneven magnitudes of values in
different dimensions, we divide all values by the medians
in each dimension prior to kernel testing. Figure 7 (a)
demonstrates how such scaled data looks for two disk
benchmarks (random read and write tests). In this figure,
it is possible to visually identify outlier servers, but it
would not be possible to eliminate the outliers cleanly
using a simple threshold as the observed distributions
overlap (for red and green clusters). In this case, we
notice two servers that are unrepresentative—with a small
consistent degradation (red) and a larger spread of outlier-
like measurements (purple)—in one of the dimensions
and a representative server with a single outlier (blue) in
the other dimension.

Rank servers: Using the selected benchmarks, we run
MMD tests that compare an individual server’s samples
against samples from all other servers of the same type.
This statistic, which represents a measure of dissimilarity,

2Gaussian kernel functions facilitate comparison of non-Gaussian
distributions and detect differences between multivariate clusters.



is the highest for the least representative servers. In the
disk example, the unrepresentative servers end up at the
top of the sorted list, as shown in Figure 7 (b). We also
observe an expected yet nontrivial result: the same proce-
dure with two different disk benchmarks (sequential tests
instead of random), points at performance issues with
the same two servers. The exact server ordering in the
ranking that uses these sequential tests would be different,
but both rankings demonstrate the same elbow-shaped
decreasing pattern. At the same time, we confirm that the
single-outlier server (blue in Figure 7 (a)) does not show
up at the beginning of either ranking as the majority of its
samples appear unquestionable.

Eliminate consistent outliers: Actionable insights
provided by these dissimilarity rankings allow us to ex-
clude the least representative servers from the pool avail-
able to users. We remove them iteratively, one at a time,
starting with the least representative server; this ensures
that the MMD statistics for the remaining servers are not
skewed by the inclusion of the removed servers. Results
obtained during such elimination are shown in Figure 7
(c). The elbow-shaped curves indicate that the largest
reduction of dissimilarity comes from excluding a few
servers at the beginning: from two to seven, representing
only 2% of the overall population. Subsequent server
elimination provides diminishing returns (note the log
scale of the figure).

We have tested this elimination procedure in a variety
of settings—in 2D, 4D, and 8D, with each “dimension”
being a different configuration—and conclude that the de-
scribed procedure helps identify the servers with nontriv-
ial performance abnormalities for all analyzed hardware
types. The MMD statistic that this test uses is abstract,
and does not directly correspond to units in the original
space (Gbps, µs, etc.), but this is a necessary side-effect
of simultaneously testing metrics that are measured with
different units and have different scales; nonetheless, the
shape of the curve makes it very clear which servers are
not representative. Testbed or service providers can use
this procedure to investigate the most unrepresentative
servers and take appropriate actions. This method can
also help users understand how representative or unrepre-
sentative the servers they use are by revealing their ranks
within relevant populations.

7 Steering Clear of Pitfalls

While performing analyses, we ran into situations that
resulted in surprising or counter-intuitive results. The
potential set of such pitfalls is large, and we have certainly
not uncovered all of them, even within the CloudLab
environment. However, we can recommend defensive
practices that help steer clear of them and likely others.

7.1 ♦ Randomize experiment orderings
Unexpected differences appeared in the memory band-
width measurements on the two server types at CloudLab
Wisconsin: we expected similar results, but the older
c221g1 servers outperformed the newer c220g2 servers
by a factor of nearly 3 (about 36 GB/s versus 12 GB/s)
in multi-threaded benchmarks. After a long search, we
traced this problem to an unbalanced DIMM configuration
in the c220g2 servers: as a result of their larger mem-
ory, the first memory channels were populated with two
DIMMs, while the others all had one DIMM. When we
had the extra DIMMs removed from one of the c220g2
servers, memory performance jumped to expected lev-
els. This imbalance appears to interact poorly with a
combination of Intel’s memory-striping algorithms [28],
Linux’s allocation of pages in sequential physical order,
and the nature of the STREAM benchmark. The result
is that STREAM’s memory appears to reside mostly or
completely on one memory channel, preventing the bench-
mark from using the hardware’s full bandwidth.

While tracking down the cause of this behavior, we
found an even more surprising effect: the order in which
we ran benchmarks had a dramatic effect on STREAM’s
performance. In the most extreme case, running a partic-
ular benchmark would cause subsequent STREAM runs
(until the server was rebooted) to increase their perfor-
mance by a factor of three, “recovering” approximately
the expected performance. Though the exact mechanism
behind this recovery is not clear, it appears that the way
one benchmark allocates memory—both the size of the
allocation and the specific pattern—has an effect on the
other’s layout on physical channels, so the order in which
we run these benchmarks matters. This is an effect that
we would not have noticed had we not tried a variety of
benchmarks in different orders. Trying to predict ahead of
time which orderings would reveal which types of effects
would be fruitless; thus a good defensive practice is to
randomize the order of experiments to expose effects
that they might have on each other. Others [48, 45]
have made similar observations for other benchmarks.

7.2 ♦ Check configuration sensitivity
The experience related in the previous section also raises
another important question: should it be considered a
“bug” for a facility like CloudLab to have hardware with
an unbalanced memory configuration? Placing blame
for the behavior is complex: In the Intel platform, this
configuration of DIMMs is legal, but results in fallback
to a lower-performance mode that is not widely known.
Linux’s physical page management policy could also be
blamed: FreeBSD does not allocate physical pages se-
quentially and we found that it exhibits full memory band-
width performance in this hardware configuration. Our
memory benchmarks could also be considered to be at



fault: while they use sufficient RAM to avoid caching
issues, they do not use enough to ensure that all DIMMs
get exercised. A facility like CloudLab aims to provide
servers that are representative of servers in the wider
world, and this is a configuration that is not unique to
CloudLab.

Ultimately, we believe the primary lesson is the fact
that experiments are more sensitive to small details of spe-
cific configurations than is commonly acknowledged, and
that both facility and user share responsibility for being
aware of this sensitivity. The service provider should aim
for the highest-quality resources possible. At the same
time, it cannot be aware of every interaction between hard-
ware configuration, system software, and workload. The
best defensive practice for users is to perform sensitivity
analyses with respect to the hardware configuration:
run experiments on hardware with multiple configura-
tions to understand the extent to which results depend on
a particular configuration.

7.3 ♦ Match hardware and software
When we first ran the STREAM benchmarks on the Wis-
consin and Clemson servers, we discovered variance
that was much higher than we expected. This was be-
cause these servers are dual-socket NUMA machines, and
STREAM is not NUMA-aware. Not only did this have
a deleterious effect on average performance (lowering it
20–25%), but it had an even more pronounced effect on
the CoV (raising it from about 80 MB/s to 8,000 MB/s—
two orders of magnitude). This problem was simple to
resolve: we bind STREAM to one socket at a time, and
test each socket separately.

Despite the ease of resolution, this points to a larger
problem in experimentation: mismatch between the prop-
erties of the hardware and what the software was prepared
to handle. Bigger and faster are not always better when it
comes to running experiments, and can be worse because
they typically imply greater complexity. Experimenters
should carefully consider whether they need features
like NUMA, hyperthreading, complex memory hier-
archies, etc. before selecting servers that have them.
Using hardware with features not supported in software
runs the risk of invalidating results by affecting absolute
performance and causing variability that harms the ability
to make solid claims backed by statistics.

7.4 ♦ Don’t assume independence: check
It is tempting to treat repeated experiments as indepen-
dent: that earlier experiments do not have an effect on the
outcomes of later ones. This is not always the case; one
particular instance of this seen in our dataset is the perfor-
mance of SSDs. Figure 8 shows performance results from
a single representative SSD on a c220g2 server over a pe-
riod of several months; a clear periodic pattern is present.

Figure 8: Periodic behavior on a c220g2 SSD over time
for sequential writes with iodepth 4096. Gaps between
successive points can represent different durations of time.

Recall that we run blkdiscard before every one of these
experiments: in theory, this should return the drive to a
“clean” state. This periodic behavior seems to be present
for two reasons. First, there is likely some sort of “lazy”
process that does not do the work of blkdiscard all at
once but saves part of it for later, resulting in noticeable
performance artifacts. Second, this SSD does not seem
to be heavily used by other experimenters (it is not the
boot disk) so each time we run a new experiment, we are
picking up where we left off in the disk’s lifecycle.

The effect is that earlier experiments can affect later
ones, such as through the quantity of data they write
or where they write it, and this effect can persist many
weeks later through multiple reboots. Effects may have
been even worse if we had not run blkdiscard, since
this would have left more FTL state from previous exper-
iments. If we assumed independence between runs, we
might very well come to incorrect statistical conclusions,
as many techniques assume IID (Independent, Identically
Distributed) results. This provides more motivation for
randomizing the order of experiments, since the sets of
experiments that affect one another is not the same for
every run. To test for independence, we can compare
the samples in their original order with with a shuffled
version. These comparisons can be done using the Mann-
Whitney test or the kernel-based MMD test, similar to the
nonparametric two-sample testing we described in §6.

7.5 ♦ Be careful on shared infrastructure

Some experimenters, by choice or necessity, run exper-
iments on virtualized resources in shared environments
such as clouds. The most prominent issue with operating
in a shared environment is the potential for the presence
of “noisy neighbors,” whose behavior can impact exper-
imental results, and into which the experimenter has no
visibility. Prior work [58, 49, 62, 8] has shown that work-
loads run by one tenant can affect other tenants in a shared
environment. This has implications for variations on three
different scales:

• Competing workloads increase variability during
their runtime, affecting the variability seen during
individual experiments.



• Competing workloads may come and go on
timescales from minutes to days, causing experi-
ments to get different results on the same VM at dif-
ferent times, or changing results during long-running
experiments.
• Noisy neighbors may be more prevalent on some

hosts than others, making different VMs perform
differently.

This poses a problem for ensuring accurate experiment
results—every bit of additional variance makes it harder
to present results with high confidence. In some sense, the
presence of a noisy neighbor is analogous to the addition
of an “outlier” server as presented in Table 6. To get an
intuition for how added variance can affect confidence
in results, consider the data reported in Figure 5 (a): this
configuration has a CoV of 1.0%, and requires 12 repe-
titions to achieve the desired confidence. A seemingly
modest increase in CoV to 5.0% (Figure 5 (b)) results
in a 10× increase in the number of repetitions required
(to 121), and a further increase to 8.1% (Figure 5 (c))
requires 670 repetitions (55×). It is also important to note
that these calculations assume a stationary distribution:
that the distribution from which performance results are
pulled does not change over time. Clearly, this is not
the case with transient noisy neighbors, requiring even
more careful experimentation techniques to detect and/or
compensate for changing performance characteristics.

Studies have found high CoVs in commercial
clouds [18, 29]—particularly for network and disk
operations—and the long performance tails in clouds are
well-known [14]. Farley et al. [18] found CoVs on EC2
from 0.35% to 25.4% for network bandwidth (average
4.4%), and from 0.5% to 40.9% (average 9.8%) for stor-
age performance. They also found significant differences
in performance (typically around 1.2×, but as high as
3.7×) from different VM instances of the same “type”
(eg. m1-small). Compared with the CoVs found in this
study—0.004% CoV for network bandwidth, and average
3.3% CoV (max. 9.86%) for disk I/O—experimenters
are likely to require many more repetitions to gain high
confidence.

Another issue with running on shared infrastructure
is that virtualization adds a layer of abstraction. Even if
there are no noisy neighbors to contend with, there is still
the presence of the hypervisor. Other studies [49, 62, 56,
11] have explored the extent to which the hypervisor layer
impacts the performance of various workloads, including
increasing variance.

It is important to note that, as we have explored in this
paper, running on non-shared, non-virtualized resources
does not shield the user entirely from variability: even
“bare” hardware has complex, opaque behavior, and the
OS kernel can introduce variability just as the hypervisor
does. The additional variance from shared resources does

not make it impossible to run good experiments, but it can
make it much harder. Earlier work has looked to address
issues with running workloads in shared environments.
Some solutions [46, 10, 7] focus on the perspective of the
provider, and seek to manage these interference effects
by varying virtual machine placement or resource alloca-
tion. Others [69] approach this from the perspective of the
client and try to find the “best” type of virtual machine.
The common thread between these solutions, however,
is the reality that performance interference effects must
be managed and cannot be entirely avoided. To achieve
statistical confidence, the experimenter is likely to have
to run many more experiments, and to consider sources of
variation that are not stationary, which makes experiment
design far more complex. Conversely, experiments run
in this environment that do not account for increased and
more complex variance run a larger risk of coming to in-
correct conclusions: for a fixed number of runs, the more
variance is present, the wider the confidence intervals.
The wider the confidence intervals, the larger the effect
that can be potentially misreported.

Our overall recommendation is to run experiments
in a shared (and therefore, likely high-variance) envi-
ronment only if it is unavoidable. If experiments must
be run in such an environment, design them in ways that
help compensate for variability: run many more repeti-
tions, run on many different VMs and at different times to
avoid over-measuring artifacts from particular neighbors,
and ensure that the experiment design does not introduce
systematic bias.

7.6 ♦ Plan experiments for uncertainty
It is not always practical to run a large number of repeti-
tions of an experiment. This can be due to factors such as
monetary costs, long execution times or both. Techniques
in Active Learning [53] and Bayesian Optimization [54]
help design sequences of experiments that efficiently “ex-
plore” available configurations. Generally speaking, the
former class of techniques focuses on reducing the uncer-
tainty about experiments’ outcomes, while the latter helps
find configurations corresponding to the maximums (or
minimums) of the objective functions studied via experi-
mentation. In contrast with classical (static) experiment
design, these iterative techniques train Machine Learning
models on the data available from existing experiments
and use the recommendations produced by these mod-
els to run subsequent additional experiments. There is
a wealth of literature describing optimizations for these
techniques, including [20] and [36], as well as specific
computer applications, such as [16], [22], and [4], among
many other studies. While these experimentation tech-
niques are mostly outside the scope of this study, as part
of our future work, we intend to equip CONFIRM with
the ability to recommend specific servers and specific



hardware and benchmark configurations for additional
experiments on the basis of high performance variability
and observed outliers.

8 Related Work
In [37], the authors present a profiling study of a
Warehouse-Scale Computer where they analyze 12 to
36 months worth of performance counter metrics for ap-
plications running on Google data centers. The study
focuses on microarchitecture-level statistics to identify
hotspots in distributed applications, main memory and
CPU cache latencies, among others. In contrast, we focus
on coarser-grained metrics such as runtime and band-
width of microbenchmarks with the goal of taking into
account the points of view of both system administrators
and users. Similar studies have focused on other cloud
platforms such as Microsoft’s Azure [39]. Other related
profiling efforts have the goal of improving the schedul-
ing of applications on shared infrastructure by identifying
and reducing contention between applications [35, 70].
More recently, in [25], the authors present a study of the
impact of slow failures (i.e. “hardware that is still run-
ning and functional but in a degraded mode, slower than
its expected performance”) found in large-scale cluster
deployments in 12 institutions.

In [48] the authors describe a suite of tests composed of
of microbenchmarks that run continuously over the entire
Grid5000 infrastructure. The heuristic to decide which
tests to run and where is similar to ours, but in our case
we prioritize testbed coverage. In [47] a set of open ques-
tions for experimental testbeds are outlined, with respect
to reproducibility of experiments. In particular, the topic
of “Respective Responsibilities of Testbeds and Experi-
menters” poses the questions of “How far should testbeds
go with providing advanced services to experimenters?
What should be left as a burden for experimenters?” As
part of our work, we have introduced the foundation for a
new service that aids experimenters in getting a better un-
derstanding of the variability of the underlying platform
with respect to the performance of basic subcomponents
(CPU, memory bandwidth, network and storage).

Another two broad topics that relate to our work
are anomaly detection [9, 64, 63] and straggler analy-
sis [14, 2, 68]. In the former, runtime metrics are ana-
lyzed either offline or online in order to identify events
that do not conform with the performance expectation of
the operator, either at hardware or software levels. Strag-
gler analysis deals with identifying a small proportion of
subjobs that cause significant degradations on the parent
job. We see our work as complementary to these two
topics and envision the methodology and analysis pre-
sented here as a way of generating a baseline on which
new techniques and approaches in both can be evaluated.

DCBench [32], CloudSuite [19], TailBench [38] and

BigDataBench [66] are benchmarking suites whose goal
is to recreate workloads that run on cloud infrastructures.
In our case, our goal was to target any type of workload
running on CloudLab and thus we ended up selecting a
generic (and simple) workload for our study.

9 Conclusion and Future Work
In this paper, we have explored the types and magnitudes
of hardware performance variation that are an inevitable
part of measuring the performance of computer systems.
The method we developed for finding unrepresentative
resources can be used to provide more consistent envi-
ronments, and the CONFIRM system can help to design
better experiments. These results demonstrate valuable
properties of a large, shared experimentation platform:
scale is required in order to determine which servers are
representative and which are not, and measurement and
analysis done once can be used for many experiments.

In this study, we have deliberately focused on the set
of hardware resources whose performance is of the most
interest in the CloudLab testbed. Differences due to sys-
tem software and libraries—kernels, compilers, memory
allocators, etc. should not be discounted, and there are
many more hardware metrics that are of interest. We hope
to expand our study to include these factors in the future.

Code and Data
Raw Data and Analysis Code:

doi:10.5281/zenodo.1435969

CONFIRM: https://gitlab.flux.utah.edu/

emulab/confirm

Benchmarks: https://gitlab.flux.utah.edu/

emulab/cloudlab-benchmarks

Benchmark Orchestration: https://gitlab.flux.

utah.edu/emulab/cloudlab-orchestration

Specific versions within the git repositories used for
this paper are identified with the osdi18 tag.

Acknowledgments
We would like to thank Jeff Phillips for suggesting the
Kernel 2-sample MMD test for our evaluation, as well
as providing valuable assistance in understanding it. We
are grateful to the faculty and staff of the Flux Research
Group for their feedback prior to submission, and to
the anonymous OSDI reviewers as well as our shep-
herd, Justine Sherry, for their feedback and suggestions
during the review and shepherding process. This work
was made possible by the CloudLab testbed, supported
by the National Science Foundation under Grant Nos.
CNS-1419199 and CNS-1743363. This work was also
partially supported by NSF Grant No. OAC-1450488
and the Center for Research in Open Source Software
(https://cross.ucsc.edu).

https://doi.org/10.5281/zenodo.1435969
https://gitlab.flux.utah.edu/emulab/confirm
https://gitlab.flux.utah.edu/emulab/confirm
https://gitlab.flux.utah.edu/emulab/cloudlab-benchmarks
https://gitlab.flux.utah.edu/emulab/cloudlab-benchmarks
https://gitlab.flux.utah.edu/emulab/cloudlab-orchestration
https://gitlab.flux.utah.edu/emulab/cloudlab-orchestration
https://cross.ucsc.edu


References
[1] J. Allspaw. The Art of Capacity Planning: Scaling Web

Resources. O’Reilly Media, Inc., 2008.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica.
Effective straggler mitigation: Attack of the clones. In
NSDI, volume 13, pages 185–198, 2013.

[3] J. Axboe. Flexible I/O tester. https://github.com/

axboe/fio, 2006-2018.

[4] P. Balaprakash, R. B. Gramacy, and S. M. Wild. Active-
learning-based surrogate models for empirical perfor-
mance tuning. In Cluster Computing (CLUSTER), 2013
IEEE International Conference on, pages 1–8. IEEE, 2013.

[5] Barnstormer Softworks, Ltd. Welcome to geni-lib’s doc-
umentation! http://docs.cloudlab.us/geni-lib/

index.html, 2016.

[6] A. Berlinet and C. Thomas-Agnan. Reproducing kernel
Hilbert spaces in probability and statistics. Springer Sci-
ence & Business Media, 2011.

[7] F. Caglar, S. Shekhar, and A. S. Gokhale. Towards a per-
formance interference-aware virtual machine placement
strategy for supporting soft real-time applications in the
cloud. In REACTION, 2014.

[8] G. Casale, S. Kraft, and D. Krishnamurthy. A model of
storage I/O performance interference in virtualized sys-
tems. In Proceedings of the 2011 31st International Con-
ference on Distributed Computing Systems Workshops,
ICDCSW ’11, pages 34–39. IEEE Computer Society,
2011.

[9] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):15,
2009.

[10] X. Chen, L. Rupprecht, R. Osman, P. Pietzuch, F. Fran-
ciosi, and W. Knottenbelt. Cloudscope: Diagnosing and
managing performance interference in multi-tenant clouds.
In 2015 IEEE 23rd International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommuni-
cation Systems, pages 164–173, Oct 2015.

[11] L. Cherkasova and R. Gardner. Measuring CPU overhead
for I/O processing in the Xen virtual machine monitor. In
Proceedings of the USENIX Annual Technical Conference,
ATC ’05, pages 24–24. USENIX Association, 2005.

[12] C. Curtsinger and E. D. Berger. Stabilizer: statistically
sound performance evaluation. In ACM SIGARCH Com-
puter Architecture News, volume 41, pages 219–228.
ACM, 2013.

[13] A. B. de Oliveira, S. Fischmeister, A. Diwan,
M. Hauswirth, and P. F. Sweeney. Why you should care
about quantile regression. In Proceedings of the Eigh-
teenth International Conference on Architectural Support
for Programming Languages and Operating Systems, AS-
PLOS ’13, pages 207–218, New York, NY, USA, 2013.
ACM.

[14] J. Dean and L. A. Barroso. The tail at scale. Communica-
tions of the ACM, 56(2):74–80, 2013.

[15] D. A. Dickey and W. A. Fuller. Distribution of the estima-
tors for autoregressive time series with a unit root. Journal
of the American Statistical Association, 74(366a):427–431,
1979.

[16] D. Duplyakin, J. Brown, and D. Calhoun. Evaluating
active learning with cost and memory awareness. In 2018
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 214–223, May 2018.

[17] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A.
Hwang, and B. Schroeder. Temperature management in
data centers: why some (might) like it hot. ACM SIG-
METRICS Performance Evaluation Review, 40(1):163–
174, 2012.

[18] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D.
Bowers, and M. M. Swift. More for your money: Ex-
ploiting performance heterogeneity in public clouds. In
Proceedings of the Third ACM Symposium on Cloud Com-
puting, Oct. 2012.

[19] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Al-
isafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ail-
amaki, and B. Falsafi. Clearing the clouds: A study of
emerging scale-out workloads on modern hardware. In
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVII, pages 37–48, New
York, NY, USA, 2012. ACM.

[20] W. Fu, M. Wang, S. Hao, and X. Wu. Scalable active
learning by approximated error reduction. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1396–1405.
ACM, 2018.

[21] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous java performance evaluation. In Proceedings of
the 22Nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications, OOP-
SLA ’07, pages 57–76, New York, NY, USA, 2007. ACM.

[22] R. B. Gramacy and H. K. Lee. Adaptive design and
analysis of supercomputer experiments. Technometrics,
51(2):130–145, 2009.

[23] B. Gregg. Systems Performance: Enterprise and the Cloud.
Prentice Hall Press, Upper Saddle River, NJ, USA, 1st
edition, 2013.

[24] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf,
and A. Smola. A kernel two-sample test. Journal of
Machine Learning Research, 13(Mar):723–773, 2012.

[25] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sun-
dararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti,
C. McCaffrey, G. Grider, P. M. Fields, K. Harms, R. B.
Ross, A. Jacobson, R. Ricci, K. Webb, P. Alvaro, H. B.
Runesha, M. Hao, and H. Li. Fail-slow at scale: Evidence
of hardware performance faults in large production sys-
tems. In 16th USENIX Conference on File and Storage
Technologies (FAST 18). USENIX Association, 2018.

[26] J. He, S. Kannan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. The unwritten contract of solid state drives.

https://github.com/axboe/fio
https://github.com/axboe/fio
http://docs.cloudlab.us/geni-lib/index.html
http://docs.cloudlab.us/geni-lib/index.html


In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 127–144. ACM,
2017.

[27] T. Hoefler and R. Belli. Scientific benchmarking of par-
allel computing systems: Twelve ways to tell the masses
when reporting performance results. In Proceedings of
the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, page 73. ACM,
2015.

[28] Intel Corporation. Intel R© 64 and IA-32 Architectures Op-
timization Reference Manual, 248966-040 edition, April
2018. Section 2.4.6.

[29] A. Iosup, N. Yigitbasi, and D. Epema. On the performance
variability of production cloud services. In Proceedings
of 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 104–113,
2011.

[30] iPerf3 Authors. iPerf - the ultimate speed test tool for TCP,
UDP and SCTP. https://iperf.fr/.

[31] R. Jain. The Art of Computer Systems Performance Anal-
ysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. Wiley- Interscience, Apr. 1991.

[32] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo. Charac-
terizing data analysis workloads in data centers. In IEEE
International Symposium on Workload Characterization
(IISWC), pages 66–76. IEEE, 2013.

[33] J. Jurečková, J. Kalina, et al. Nonparametric multivariate
rank tests and their unbiasedness. Bernoulli, 18(1):229–
251, 2012.

[34] T. Kalibera, L. Bulej, and P. Tuma. Benchmark precision
and random initial state. In Proceedings of the 2005 Inter-
national Symposium on Performance Evaluation of Com-
puter and Telecommunication Systems (SPECTS), pages
484–490, 2005.

[35] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim. Mea-
suring interference between live datacenter applications.
In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analy-
sis. IEEE Computer Society Press, 2012.

[36] K. Kandasamy, J. Schneider, and B. Póczos. Bayesian
active learning for posterior estimation. In Twenty-Fourth
International Joint Conference on Artificial Intelligence,
2015.

[37] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks. Profiling a
warehouse-scale computer. In ACM SIGARCH Computer
Architecture News, volume 43, pages 158–169. ACM,
2015.

[38] H. Kasture and D. Sanchez. Tailbench: A benchmark
suite and evaluation methodology for latency-critical ap-
plications. In IEEE International Symposium on Workload
Characterization (IISWC). IEEE, 2016.

[39] C. Kozyrakis, A. Kansal, S. Sankar, and K. Vaid. Server
engineering insights for large-scale online services. IEEE
micro, (4):8–19, 2010.

[40] W. H. Kruskal and W. A. Wallis. Use of ranks in one-
criterion variance analysis. Journal of the American statis-
tical Association, 47(260):583–621, 1952.

[41] J.-Y. Le Boudec. Performance evaluation of computer and
communication systems. EPFL Press, 2011.

[42] H. B. Mann and D. R. Whitney. On a test of whether one
of two random variables is stochastically larger than the
other. The Annals of Mathematical Statistics, pages 50–60,
1947.

[43] J. D. McCalpin. Memory bandwidth and machine balance
in current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 19–25, Dec. 1995.

[44] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A large-scale
study of flash memory failures in the field. In ACM SIG-
METRICS Performance Evaluation Review, volume 43,
pages 177–190. ACM, 2015.

[45] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.
Producing wrong data without doing anything obviously
wrong! In Proceedings of the 14th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIV, pages 265–
276, New York, NY, USA, 2009. ACM.

[46] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
Managing performance interference effects for qos-aware
clouds. In Proceedings of the 5th European Conference on
Computer Systems, EuroSys ’10, pages 237–250. ACM,
2010.

[47] L. Nussbaum. Testbeds support for reproducible research.
In Proceedings of the Reproducibility Workshop, pages
24–26. ACM, 2017.

[48] L. Nussbaum. Towards trustworthy testbeds thanks to
throughout testing. In 2017 IEEE International Paral-
lel and Distributed Processing Symposium Workshops,
IPDPS Workshops 2017, Orlando / Buena Vista, FL, USA,
May 29 - June 2, 2017, pages 1571–1578, 2017.

[49] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and
Y. Cao. Who is your neighbor: Net I/O performance
interference in virtualized clouds. IEEE Transactions on
Services Computing, 6(3):314–329, July 2013.

[50] A. W. Reece. Achieving maximum memory band-
width. http://codearcana.com/posts/2013/05/

18/achieving-maximum-memory-bandwidth.html,
May 18 2013.

[51] A. W. Reece. Memory bandwidth demo. https:

//github.com/awreece/memory-bandwidth-demo,
May 19 2013.

[52] B. Schroeder, E. Pinheiro, and W.-D. Weber. Dram errors
in the wild: a large-scale field study. In ACM SIGMET-
RICS Performance Evaluation Review, volume 37, pages
193–204. ACM, 2009.

[53] B. Settles. Active learning literature survey. Technical
report, University of Wisconsin-Madison, 2009.

https://iperf.fr/
http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html
http://codearcana.com/posts/2013/05/18/achieving-maximum-memory-bandwidth.html
https://github.com/awreece/memory-bandwidth-demo
https://github.com/awreece/memory-bandwidth-demo


[54] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and
N. de Freitas. Taking the human out of the loop: A re-
view of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2016.

[55] S. Shapiro and M. Wilk. An analysis of variance test for
normality (complete samples). Biometricka, 52:591–611,
Dec. 1965.

[56] R. Shea, F. Wang, H. Wang, and J. Liu. A deep investiga-
tion into network performance in virtual machine based
cloud environments. In IEEE Conference on Computer
Communications (INFOCOM), pages 1285–1293, April
2014.

[57] S. Sonnenburg, H. Strathmann, S. Lisitsyn, V. Gal, F. J. I.
Garcı̀a, W. Lin, S. De, C. Zhang, frx, tklein23, E. Andreev,
JonasBehr, sploving, P. Mazumdar, C. Widmer, P. D. .
Zora, G. D. Toni, S. Mahindre, A. Kislay, K. Hughes,
R. Votyakov, khalednasr, S. Sharma, A. Novik, A. Panda,
E. Anagnostopoulos, L. Pang, A. Binder, serialhex, and
B. Esser. Shogun 6.1.0, Nov. 2017.

[58] J. Taheri, A. Y. Zomaya, and A. Kassler. vmbbprofiler:
A black-box profiling approach to quantify sensitivity of
virtual machines to shared cloud resources. Computing,
99(12):1149–1177, Dec. 2017.

[59] The CloudLab Team. CloudLab hardware. https://www.
cloudlab.us/hardware.php, 2018.

[60] The CloudLab Team. The cloudlab testbed. https://

cloudlab.us/, 2018.

[61] The CloudLab Team. Hardware. http://docs.

cloudlab.us/hardware.html, 2018.

[62] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell. Mod-
eling virtual machine performance: Challenges and ap-
proaches. SIGMETRICS Perform. Eval. Rev., 37(3):55–60,
Jan. 2010.

[63] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan. On-
line detection of utility cloud anomalies using metric dis-
tributions. In Network Operations and Management Sym-
posium (NOMS), pages 96–103. IEEE, 2010.

[64] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Sat-
terfield, and K. Schwan. Statistical techniques for online
anomaly detection in data centers. In Integrated Network
Management (IM), 2011 IFIP/IEEE International Sympo-
sium on, pages 385–392. IEEE, 2011.

[65] G. Wang, L. Zhang, and W. Xu. What can we learn
from four years of data center hardware failures? In
Dependable Systems and Networks (DSN), 2017 47th An-
nual IEEE/IFIP International Conference on, pages 25–36.
IEEE, 2017.

[66] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, et al. Bigdatabench: A big data
benchmark suite from internet services. In High Perfor-
mance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, pages 488–499. IEEE, 2014.

[67] N. J. Wright, S. Smallen, C. M. Olschanowsky, J. Hayes,
and A. Snavely. Measuring and understanding variation in

benchmark performance. In DoD High Performance Com-
puting Modernization Program Users Group Conference
(HPCMP-UGC), 2009, pages 438–443. IEEE, 2009.

[68] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz.
Wrangler: Predictable and faster jobs using fewer re-
sources. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC). ACM, 2014.

[69] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, B. Smith,
and R. H. Katz. Selecting the best VM across multiple
public clouds: A data-driven performance modeling ap-
proach. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, pages 452–465. ACM, 2017.

[70] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes. CPI 2: CPU performance isolation for
shared compute clusters. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 379–
391. ACM, 2013.

https://www.cloudlab.us/hardware.php
https://www.cloudlab.us/hardware.php
https://cloudlab.us/
https://cloudlab.us/
http://docs.cloudlab.us/hardware.html
http://docs.cloudlab.us/hardware.html

	Introduction
	The Statistics of Performance Variability
	Methodology
	Testing Framework
	Benchmarks
	Servers Tested
	Software Consistency
	Resulting Dataset

	Understanding Variability
	Unavoidable Variability
	Disk I/O
	Testing For Normality
	Checking Stationarity

	CONFIRM: How Many Measurements Are Enough?
	Detecting Unrepresentative Servers
	Steering Clear of Pitfalls
	 Randomize experiment orderings
	 Check configuration sensitivity
	 Match hardware and software
	 Don't assume independence: check
	 Be careful on shared infrastructure
	 Plan experiments for uncertainty

	Related Work
	Conclusion and Future Work

