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Abstract

In-memory key-value stores that use kernel-bypass net-

working serve millions of operations per second per ma-

chine with microseconds of latency. They are fast in part

because they are simple, but their simple interfaces force

applications to move data across the network. This is inef-

ficient for operations that aggregate over large amounts of

data, and it causes delays when traversing complex data

structures. Ideally, applications could push small func-

tions to storage to avoid round trips and data movement;

however, pushing code to these fast systems is challeng-

ing. Any extra complexity for interpreting or isolating

code cuts into their latency and throughput benefits.

We present Splinter, a low-latency key-value store that

clients extend by pushing code to it. Splinter is designed

for modern multi-tenant data centers; it allows mutually

distrusting tenants to write their own fine-grained exten-

sions and push them to the store at runtime. The core

of Splinter’s design relies on type- and memory-safe ex-

tension code to avoid conventional hardware isolation

costs. This still allows for bare-metal execution, avoids

data copying across trust boundaries, and makes granular

storage functions that perform less than a microsecond of

compute practical. Our measurements show that Splin-

ter can process 3.5 million remote extension invocations

per second with a median round-trip latency of less than

9 µs at densities of more than 1,000 tenants per server.

We provide an implementation of Facebook’s TAO as an

800 line extension that, when pushed to a Splinter server,

improves performance by 400 Kop/s to perform 3.2 Mop/s

over online graph data with 30 µs remote access times.

1 Introduction

Today’s model of separated compute and storage is

reaching its limits. Fast, kernel-bypass networking has

yielded key-value stores that perform millions of re-

quests per second per machine with microseconds of la-

tency [22, 37, 45, 55, 71]. These systems gain much of

their speed by being simple, allowing only lookups and

updates. However, this simplicity results in inefficient

data movement between storage and compute and costly

client-side stalls [6, 51]. To efficiently exploit these new

stores, applications will be under increasing pressure to

push compute to them, but the granularity at which they

can do so is a concern. At microsecond timescales, even

small costs for isolation, containerization, or request dis-

patching dominate, placing practical limits on the granu-

larity of functions that applications can offload to storage.

We resolve this tension in Splinter, a multi-tenant in-

memory key-value store with a new approach to pushing

compute to storage servers. Splinter preserves the low re-

mote access latency (9 µs) and high throughput (3.5 Mop-

s/s) of in-memory storage while adding native-code run-

time extensions and the dense multi-tenancy (thousands

of tenants) needed in modern data centers. Tenants send

arbitrary type- and memory-safe extension code to stores

at runtime, adding new operations, data types, or storage

personalities. These extensions are exposed so tenants

can remotely invoke them to perform operations on their

data. Splinter’s lightweight isolation lets thousands of un-

trusted tenants safely share storage and compute, giving

them access to as much or as little storage as they need.

Splinter’s design springs from the intersection of three

trends: in-memory storage with low-latency networking,

which is driving down the practical limits of request gran-

ularity; massive multi-tenancy driven by the cloud and the

efficiency gains of consolidation; and serverless comput-

ing, which is already training developers to write stateless,

decomposed application logic that can run anywhere in

order to gain agility, scalability, and ease of provisioning.

Together, these trends drive Splinter’s key design goals:

No-cost Isolation. Since extensions come from un-

trusted tenants, they must be isolated from one another.

Hardware-based isolation is too expensive at microsec-

ond time scales; even a simple page table switch would

significantly impact response time and throughput.

Zero-copy Storage Interface. Extensions interact with

stored data through a well-defined interface that serves

as a trust boundary. For fine-grained requests, it must be

lightweight in terms of transfer of control and in terms

of data movement. This effectively requires extensions

to be able to directly operate on tenant data in situ in the

store, while maintaining protection and preventing data

races with each other and the storage engine.

Lightweight Scheduling for Heterogeneous Tasks.

Extensions are likely to be heterogeneous. Some

extensions might involve simple point lookups of data

or constructing small indexes; others might involve

expensive computation or more data. Preemptive

scheduling involves costly context switches, so Splinter

must avoid preemption in the normal case, yet maintain

it as an option to contain poorly-behaving extensions.

It must also be able to support high quality of service

under heavy skew, both in terms of the tenants issuing

requests at different rates and extensions that take

different amounts of time to complete.



Adaptive Multi-core Request Routing. With multiple

tenants sharing a single machine, synchronization over

tenant state can become a bottleneck. To minimize con-

tention, tenants maintain locality by routing requests to

preferred cores on Splinter servers. We can’t, however,

use a hard partitioning, as we don’t want high skew to

create hotspots and underused cores [58]. Routing deci-

sions can’t get in the way of fast dispatch of requests [7].

These goals give rise to Splinter’s design. Developers

write type-safe, memory-safe extensions in Rust [2] that

they push to Splinter servers. Exploiting type-safety for

lightweight isolation isn’t new; SPIN [8] allowed appli-

cations to safely and dynamically load extensions into its

kernel by relying on language-enforced isolation. Simi-

larly, NetBricks [56] applied Rust’s safety properties to

dataplane packet processing to provide memory safety

between sets of compile-time-known domains compris-

ing network function chains. Splinter combines these

approaches and applies them in a new and challenging

domain. Language-enforced isolation with native per-

formance and without garbage collection overheads is

well-suited to low-latency data-intensive services like in-

memory stores — particularly, when functionality must

be added and removed at runtime by large numbers of

fine-grained protection domains.

Splinter’s approach allows it to scale to support thou-

sands of tenants per machine, while processing more than

3.5 million tenant-provided extension invocations per sec-

ond with a median response time of less than 9 µs. We

describe our prototype of the Splinter key-value store

and its extension and isolation model. We evaluate it on

commodity hardware and show that a simple 800 line

extension imbues Splinter with the functionality of Face-

book’s TAO [10]. On a single store, the extension can

perform 3.2 million social graph operations per second

with 30 µs average response times, making it competitive

with the fastest known implementation [22].

2 Motivation

Splinter’s key motivation is the desire to support complex

data models and operations over large structures in a fast

kernel-bypass stores. Existing in-memory stores trade

data model for performance by providing a simple key-

value interface that only supports get and put. Many real

applications organize their data as trees, graphs, matrices,

or vectors. Performing operations like aggregation or

tree traversal with a key-value interface often requires

multiple gets. Applications are usually disaggregated

into a storage and compute tier, so these extra gets move

data over the network and induce stalls for each request.

Figure 1 illustrates this problem with a storage client

that traverses data logically organized as a tree. The

client must first issue a get to retrieve the tree’s root node.

Next, it must perform a comparison and move down the

Application

Storage

get()/put()

fn find_in_tree(n: &Node, key: u64)
-> Option<Value>

{
if n.key == key { // Found correct value
Some(n.value)

} else {
// Traverse left or right
let next = if key < n.key { n.left }

else { n.right };
if let Some(next) = next {

// Fetch each node from storage
find_in_tree(get(next), key)

} else {
None // Break if dead end

}
}

}

Figure 1: Tree traversal using get() operations over a key-

value store. Each step requires a lookup at the storage layer,

which is latency-bound and expensive for deep traversals. If

multi-tenant stores could be safely extended this function could

avoid remote access stalls and request processing costs.

tree by issuing another get. It must repeat this for ev-

ery step of the traversal. Each get incurs a round trip

that fetches a single node from storage; since the control

flow is dependent on the data fetched, the client can only

issue one request at a time. The number of round trips

needed is proportional to the tree’s depth, and a significant

portion of the tree gets moved over the network. Even

with modern low-latency networking, latency still domi-

nates the client’s performance: network transmission and

processing takes tens of microseconds while the actual

comparisons take less than a microsecond [55].

One solution is to customize the storage tier of each

application to support specialized data types. However, to

improve efficiency and utilization, storage tiers are usually

deployed as multi-tenant services [14, 19], so they cannot

be customized for every possible data structure. SQL

could be used at the storage tier, but SQL is known to be

a poor fit for data types like graphs and matrices, does

not support abstract data types, and is too expensive at

microsecond timescales. Instead, Splinter takes a different

approach; it allows applications to push small pieces of

native compute (extensions) to stores at runtime. These

extensions can implement richer data types and operators,

avoiding extra round trips and reducing data movement.

2.1 The Need for Lightweight Isolation

Multi-tenancy at the storage layer makes running exten-

sions challenging; a tenant cannot be allowed to access

memory it does not own, starve others for resources, or

crash the system. The major challenge is that, at microsec-

ond timescales, context switches and data copying across

isolation boundaries significantly hurt performance.

To quantify the overhead of hardware isolation, we

simulated an 8-core multi-tenant store that isolates ex-

tensions using processes while varying the numbers of

tenants making requests to it. Simulated requests con-



Xeon Architecture Context switch delay (µs)

Pre KPTI KPTI

D-1548, Broadwell 1.60 2.40

E5 2450, Sandy bridge 1.50 2.48

Gold 6142, Skylake 1.40 2.16

Table 1: Context switch overhead for different Intel Xeon archi-

tectures as measured on CloudLab. Each number represents the

median of a million samples. Based on these measurements, we

chose 2.16 µs and 1.40 µs for the context switch overhead with

and without KPTI in our simulations.
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Figure 2: Simulated throughput versus the number of tenants.

With hardware isolation, even modestly increasing the number

of tenants to 16 (just twice the number of cores) leads to a

significant drop in throughput. “No isolation” represents an

upper bound where isolation costs are zero.

sume 1.5 µs of compute at the store; this is based on our

benchmarks of simple unisolated operations on Splinter

(§5.2); our numbers are similar to those reported by others’

kernel-bypass stores [55]. Different context switch costs

are simulated to show the overheads of hardware-based

isolation of tenant code. The simulation only accounts

for context switch costs; copying data across hardware

isolation boundaries has also been shown to have signif-

icant performance costs [56]. Nearly all extensions will

access data, which will force data copying when using

hardware isolation and hurt throughput further. Based on

measurements we made on different processor microar-

chitectures (Table 1), we simulate 1.40 µs of overhead

for a basic context switch and 2.16 µs for a KPTI [16]

protected kernel (which mitigates attacks that can leak the

contents of protected memory [46]). The request pattern

is uniform; all tenants make the same number of requests.

The results are similar with skew. The simulator is also

optimistic; whenever a request is made and an idle core

is available at the store that last processed a request from

the same tenant, the isolation cost is assumed to be zero.

Figure 2 presents simulated throughput at different ten-

ant densities. The baseline represents an upper bound

where extensions are run un-isolated at the storage sys-

tem. The simulations show that throughput with hardware

isolation (irrespective of KPTI) is significantly lower than

the baseline. Even at just 16 tenants, context switch costs

alone cut server throughput by a factor of 1.8.

Overall, for these types of fast stores, hardware iso-

lation limits performance and tenant density. The chal-

lenges that we face in Splinter, and our design goals, stem

from the need to (nearly) eliminate trust boundary cross-

ing costs, to keep data movement across trust boundaries

low, and to perform efficient fine-grained task scheduling.

3 Splinter Design

Each Splinter server works as an in-memory key-value

store (Figure 3). Like most key-value stores, tenants can

directly get and put values, but they can also customize

the store at runtime by installing safe Rust-based exten-

sions (shared libraries mapped into the store’s address

space) (Figure 3 1©). These extensions can define new

operations on the tenant’s data, including extensions that

stitch together new data models in terms of the store’s low-

level get/put interface. Each tenant-provided extension

is exported over the network, so a tenant can remotely

invoke the procedures it has installed into the store.

Tenants send requests to a Splinter store over the net-

work using kernel bypass ( 2©). Splinter currently only

supports a simple, custom UDP-based RPC protocol,

though other optimized transports may provide similar

performance [38]. Each tenant’s requests are steered to

a specific receive queue by the network card, improving

locality ( 3©). Each receive queue is paired with a sin-

gle kernel thread (or worker) that is pinned to a specific

core. Each worker pulls requests from its receive queue

and creates a user-level task for the requested operation.

Tasks provide an accounting context for resources con-

sumed while executing the operation, the storage needed

to suspend/resume the operation, and a unit of schedul-

ing. Each worker has a task queue of new and suspended

tasks, and it schedules across them to make progress in

processing the operations ( 4©). Scheduling is cooperative;

as tasks yield and are resumed, they store/restore their

state, so when a worker schedules a task no stack switch

is performed. As tasks execute user-provided logic, they

interact with the store through a get/put interface similar

to the one exposed remotely ( 5©); the key difference is

that the functions exposed to extensions take and return

references rather than forcing copies (Table 2).

Beyond fast kernel-bypass network request processing,

Splinter’s speed depends on exploiting the Rust compiler

in two key ways: first, to enable low-cost isolation and,

second, to enable low-cost task switching. The two are

intertwined. Splinter uses stackless generators to suspend

and resume running extensions, which require compiler

support. That is, the Rust compiler analyzes extension

code, determines the state that needs to be held across

extension cooperative-yield/resume boundaries, and gen-

erates the code to suspend and resume extension opera-

tions. No separate stack is needed, and the code needed

to yield/resume is transparent to the extension.
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Figure 3: Overview of Splinter. Tenant data is stored in memory,

and tenants can invoke extensions they have installed in the

store ( 1©). Extensions are type safe, but compile to native code.

The NIC uses kernel bypass for low latency ( 2©) and assists

in dispatch by routing tenant requests to cores ( 3©). Each core

runs a single worker kernel thread that uses a user-level task

scheduler to interleave the execution of tenant requests ( 4©).

These lightweight tasks are key, but Splinter’s care-

ful attention to object lifetimes, ownership, and memory

safety make them effective, since otherwise full context

switch would be needed between tasks for isolation. A

key challenge in Splinter is ensuring its fine-grained tasks

from different trust domains—compiled to native code,

and mapped directly into the store’s memory—remain

low-overhead while still operating within Rust’s static

safety checks. Low-overhead trust boundary crossings

are essential to Splinter’s design; they enable easy and

inexpensive task switching, dispatch (§3.3), and work

stealing (§3.4), which keep response latency low and

CPU utilization high across all the cores of the store.

Another key challenge is that extension invocations

introduce more irregularity into request processing than

a simple get/put interface. By avoiding hardware con-

text switches, Splinter keeps task switch costs down to

about 11 nanoseconds, but the difficult tradeoff is that

this forces it to handle these variable workloads without

traditional preemptive scheduling. At the same time, it

cannot use fully cooperative scheduling, since the store

does not trust tenants to supply well-behaved extensions.

Splinter’s per-worker task scheduler resolves this tension

by multiplexing long-running and short-running tasks to

build mostly-cooperative scheduling. This is backed up

by having an extra thread that acts as a watchdog for the

others to support preemption when needed.

3.1 Compiling and Restricting Extensions

The Splinter store cannot directly load native code pro-

vided by tenants. Code must be compiled and type

checked to ensure its safety before it can be loaded into

a store, and extensions face some extra restrictions that

must be enforced at compile time. The compiler is trusted

and must be run by the storage provider. Tenants must not

be able to tamper with the emitted extension, so it must

be loaded directly into the store by the provider or the

provider must ensure its integrity in transit between the

trusted compiler and the store. Aside from Rust’s stan-

dard type and lifetime checks (§3.1.2), Splinter extensions

have the following static restrictions:

No Unsafe Code. Unsafe code could skip compiler

checks resulting in memory unsafety. So, our wrapper

over rustc disallows unsafe code in extensions (§3.1.3).

Module Whitelist. Code from external dependencies

could include unsafe code, and that unsafe code

shouldn’t be incorporated into untrusted extensions un-

less it is trusted. Even beyond memory safety, such

unsafe blocks could, for example, make syscalls. So, our

wrapper restricts external dependencies to modules that

are re-exported by a Splinter library that includes many

standard functions and types. This restriction applies

to the standard library (std) as well: the wrapper only

exposes whitelisted std functionality to extensions.

These checks combine with three other runtime guaran-

tees to ensure isolation: the store only accepts or provides

references to insert/fetch a value under a key if the same

tenant owns both the extension and the key (§3.2); it pre-

vents uncooperative extensions from dominating CPU

time and stack, heap, or record memory (§3.3); and it

catches panics (runtime exceptions) and stack overflows

that occur while executing an extension operation (§3.3).

Next, we describe what guarantees this gives the storage

provider and its tenants; the runtime checks are described

later along with details about the execution model.

3.1.1 Trust Model

There are two stakeholders for a Splinter store: the stor-

age provider and storage tenants. Splinter should protect

tenants from each other and the provider from the tenants.

Tenant misbehavior could be unintentional, in the form of

bugs or unexpectedly high application load, or it could be

malicious, in the form of tenants attempting to read others’

data, deny service, or use an unfair fraction of resources.

We consider threats from “within” the store; threats from

“without” such as an attacker gaining root access to the

machine by exploiting other services running on it should

be dealt with using standard security best practices.

Aside from providing good quality of service to tenants,

service providers have one key concern: protecting the

secrecy and integrity of tenants’ data. Extensions don’t

share state with one another, and Splinter provides no

means for inter-extension communication. So, no com-

plex sharing policies are needed; Splinter’s only goal is

extension isolation. Rust references act as capabilities;

they ensure that extensions cannot fabricate arbitrary ref-

erences to storage state or to other tenants’ state (§3.1.2).

Like any database, Splinter’s Trusted Computing Base

(TCB) includes the libraries, compilers, hardware, etc. on



which it is built; while this code is not directly exposed

to tenants, vulnerabilities in it can still lead to exploits.

Dependencies include LLVM [42], the CPU, the network

card (NIC) and its kernel-bypass libraries (DPDK [20]).

Splinter’s design provides a larger attack surface rela-

tive to other databases in some ways, but decreases the

attack surface in others. Because it allows execution of

tenant code, Splinter’s safety depends on the soundness

of Rust’s type system, which is not proven. While some

soundness issues in the compiler have been found [34],

progress is being made in proof efforts [35], and Splinter

automatically benefits from such progress. If extensions

cannot violate Rust’s safe types, the remaining avenue

for attack is unsafe code in the system; extensions cannot

supply unsafe code, but they can indirectly call it in the

interfaces and libraries that Splinter explicitly exposes to

extensions. On the plus side, extensions must break one

of these layers of protection before they can attack other

code: they do not have direct access to system libraries,

system calls, etc. and can only gain it by breaking out of

Rust’s safe environment.

Splinter decreases the attack surface with respect to

the virtual memory system – both hardware and kernel

components. Because it doesn’t rely on virtual address

translation for isolation, recent Meltdown speculation at-

tacks don’t affect its design [46]; however, Spectre-based

speculation attacks do affect Splinter [40, 41]. Like any

system that runs untrusted code or operates on untrusted

inputs, Splinter would require special steps to mitigate

these side channels. It already limits them in part because

it doesn’t provide explicit timing functions to extensions.

Full protection will require compiler support [13], hard-

ened storage interfaces (like the Linux kernel [17]), and

hardened libraries for extensions. The measurements in

this paper do not include these mitigations.

3.1.2 Memory Safety

Rust’s memory safety (and data race freedom) is guaran-

teed through a strong notion of ownership that lets the

rustc compiler reason statically about the lifetime of each

object and any references to it. The compiler’s borrow

checker statically tracks where objects and references are

created and destroyed. It ensures that the lifetime of a

reference (initially determined by its binding’s scope) is

subsumed by the lifetime of its referent. Rust separates

immutable and mutable references; an immutable refer-

ence is a reference that when held restricts access to the

underlying object to be read-only. The compiler disallows

multiple references (of either type) to an object while a

mutable reference exists, which prevents data races.

Often, the lifetime of an object cannot be restricted to

a single, static scope. This is especially true in a server

that processes requests across threads, where the lifetime

of many objects (RPC buffers, extension runtime state)

Store Operations for Extensions

get(table: u64, key: &[u8]) → Option〈ReadBuf〉
Return view of current value stored under 〈table, key〉.

alloc(table: u64, key: &[u8], len: u64) → Option〈WriteBuf〉
Get buffer to be filled and then put under 〈table, key〉.

put(buf: WriteBuf) → bool

Insert filled buffer allocated with alloc.

args() → &[u8]

Return a slice to procedure args in request receive buffer.

resp(data: &[u8])

Append data to response packet buffer.

Table 2: Extensions interact with the store locally through an

interface designed to avoid data copying.

is defined by request/response. Rust provides various

accommodations for this, such as moving ownership be-

tween bindings and runtime reference counting that is

safe but implemented in unsafe Rust. Splinter efficiently

handles these issues while working within rustc’s static

safety checks (§3.2.2). Unlike C/C++ pointers, Rust refer-

ences cannot be fabricated or manipulated with arithmetic;

they always refer to a valid, live object. Rust supports

pointers but their use is restricted for safety.

3.1.3 Restricting Unsafe Rust

An important extra restriction that Splinter imposes be-

yond Rust is that extension code must be free from unsafe

Rust, a superset of the language that allows operations that

could violate its safety properties. For example, unsafe

code can dereference pointers, perform unsafe casts, omit

bounds checks, and implement low-level synchronization

primitives. All unsafe code in Rust requires an unsafe

block, which Splinter disallows in extension code.

Extensions cannot implement unsafe code, but they can

invoke it indirectly. This is often desired. For example,

extensions execute some unsafe code when they ask the

store to populate a response packet buffer. In some cases

it is not desired. For example, file I/O can be induced

through the Rust standard library. To prevent this, Splinter

restricts extensions to use a subset of the standard library

that doesn’t include I/O or OS functionality.

Our experience has been that safe Rust combined with

basic data structures from its standard library are suffi-

cient to write even complex imperative extensions like

Facebook’s TAO [10]. In cases where unsafe code could

provide a performance benefit, the store can provide that

functionality if it is deemed safe to do so, since it is trusted

and can include unsafe code (§3.2.3).



3.2 Store Extension Interface

The interface that extensions use on the server to interact

with stored records is similar to the external, remote inter-

face that clients use in any conventional key-value store

(Table 2). The main differences are in careful organization

to eliminate the need to copy data between buffers.

All persisted records are stored in a table heap. Keep-

ing records in a identifiable region will be essential to

support replication, recovery, and garbage collection as

Splinter’s implementation evolves.

3.2.1 Storing Values

Extensions can put() data they receive over the network

or new values that they produce into the store. When an

extension invocation request is received from a tenant, the

store invokes the indicated operation. Incoming data is

in a packet buffer that is registered with the NIC. Those

buffers cannot be used for long-term storage because the

NIC must use them to receive new requests; data that

must be preserved needs to be copied into the store.

Splinter tries to ensure that data can be moved from

NIC buffers into the store with a single copy. This requires

put() to be split into two steps. First, an extension calls

alloc(table, key, length) to allocate a region in the

table heap for a record. The extension receives a bounded

slice (a view) to the underlying allocated memory. Then,

it copies data from the request’s receive buffer, unmar-

shalling as it does so, if needed. Extensions use args()

to directly access data (by reference) in the receive buffer

to perform this copy. An extension may produce its own

data values as part of this process either from input argu-

ments or together with values read from the store. Once

the allocated region is properly populated, it is inserted

into the table with put(), which takes ownership of the

buffer and inserts it into a hash table.

Problems like use-after-free are prevented by Rust’s

borrow checker; extensions cannot hold references to a

buffer once ownership is transferred to the store, elimi-

nating the need for copying data into the store for safety.

The receive packet buffer has the same guarantee. Rust’s

borrow checker ensures references to it cannot outlast the

life of the RPC, eliminating the need to copy received

arguments or data into the extension for safety.

Values stored by put() must be allocated from the ta-

ble heap; extensions should not be able to pass arbitrary

(heap or stack allocated) memory to put(). Splinter en-

forces this so that it can optimize record layout; keys

and values can be forced into a single table heap alloca-

tion, which eases heap management and eliminates cache

misses for hash table lookups. As a result, Splinter wraps

allocations with a type (WriteBuf) that extensions cannot

construct, ensuring they can only pass buffers acquired

from alloc(). WriteBuf has a method to get a reference

to the underlying buffer, so extensions can fill it.

1 fn aggregate(db: Rc<DB>) {

2 let mut sum = 0u64;

3 let mut status = SUCCESS;

4 let key = &db.args()[..size_of::<u64>()];

5

6 if let Some(key_lst) = db.get(TBL, key) {

7 // Iterate KLEN sub-slices from key_lst

8 for k in key_lst.read().chunks(KLEN) {

9 if let Some(v) = db.get(TBL, k) {

10 sum += v.read()[0] as u64;

11 } else {

12 status = INVALIDKEY;

13 break;

14 }

15 }

16 } else {

17 status = INVALIDARG;

18 }

19 db.resp(pack(&status));

20 db.resp(pack(&sum));

21 }

Listing 1: Example aggregate extension code. The extension

takes a key as input (directly from a request receive buffer),

looks it up in the store, and gets a reference to a value that

contains a list of keys. It looks up each of those keys, it sums

their values, and directly appends the result to a response buffer.

3.2.2 Accessing Values

Extensions can interact with stored data in a similar way,

requiring only one copy into a response buffer to return

values from the store. When an extension procedure is

invoked, it is also provided with a response buffer that

can be incrementally filled via resp(). On each extension

procedure invocation, the store pre-populates the response

buffer’s packet headers; extensions can only append their

data after these headers. All response buffers are pre-

registered with the NIC for transmission.

Extensions call get(table, key), and they receive

back a reference to the underlying portion of the table

heap that contains the value associated with key. No copy-

ing is needed at this step; the store tracks this reference

and prevents the table heap garbage collector from freeing

the buffer while an extension has a live reference to the

data. Since values are never updated in place, extensions

see stable views of values. Extensions can compute over

the value or many values concurrently (by calling get()

multiple times), and they can copy portions of the data

they observe or any results they compute directly into the

response buffer. Once the extension procedure has popu-

lated the response buffer, Intel’s DDIO [32] transmits the

data directly from the L1 cache, which avoids the cost of

memory access for DMA of stored data.

Listing 1 and Figure 4 show an example of how this

works for a simple extension that sums up a set of values
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let key = &db.args()[..size_of::<u64>()];

if let Some(key_lst) = db.get(TBL, key) {
for k in key_lst.read().chunks(KLEN) {

if let Some(v) = db.get(TBL, k) {
sum += v.read()[0] as u64;

...

Reference

Table Heap &

Hash Map

Figure 4: References during aggregation. All data accessed by

the extension in Listing 1 is by reference whether that data is

part of the arguments in the receive buffer or part of a record

in the store. References work in reverse for the response; the

extension passes references to data to the store, and the store

copies that data into the response buffer.

stored under keys that are listed as part of another stored

value without any extra data copying. In Line 4, the

extension obtains a reference to its transmit buffer to find

which key it should look up in order to find a list of keys

that will be aggregated over. Line 6 passes a reference

to that same location to the store in order to obtain a

reference to the value that contains the key list. In Line 8,

still without copying, the extension iterates over that value

in chunks equal to the length of the keys stored in the

value. Each step of the iteration produces a reference that

the extension uses to get() references to values for each

of the stored keys, one at a time (Line 9). Using each of

those references, it extracts a field that it adds to sum, a

local variable. Finally, the extension passes references to

status and sum to append them to the response buffer. In

all, data copying is only forced where it is needed, so the

compiler has flexibility in optimizing extension code.

The store’s get() call returns a ReadBuf rather than

a plain slice (&[u8]) in order to satisfy Rust’s borrow

checker. Calling get() cannot return an immutable refer-

ence or slice to a stored value, because the borrow checker

wouldn’t be able to statically verify that the reference

would always refer to a valid location. For example, the

compiler couldn’t be sure that the store wouldn’t garbage

collect the value while the reference still exists. Further-

more, extension invocations are generators, and they must

yield regularly (§3.3). Yielding marks the end and start of

a new static scope, so each time the generator is resumed,

the calling scope could vary. Any obtained references

to a stored value couldn’t be held across yields, because

the borrow checker wouldn’t be able to verify that those

references would still be valid on reentry.

The ReadBuf returned by get() solves this. It is a smart

pointer that maintains a reference count to ensure the

underlying stored object isn’t disposed, and it allows the

extension code to (re-)obtain a reference to the underlying

object data. Once a ReadBuf is returned to a generator, it

is stored within the generator’s local state, so the generator

owns this ReadBuf. Extensions cannot hold references

between yields, but by working with the ReadBuf it can

(transparently) re-obtain a reference to the data without

performing another get(). Rust’s Arc smart pointer does

the same; ReadBuf hides its constructor from extensions

and disallows duplication. This prevents extension code

from creating ReadBufs that persist beyond the life of a

single request/response, which could otherwise hold back

table heap garbage collection.

3.2.3 Avoiding Serialization and De-serialization

Allowing extensions to interact directly with receive

buffers, transmit buffers, and table heap buffers elimi-

nates copying for opaque data, but Rust’s safety makes

avoiding some copies harder. Extensions cannot perform

unsafe operations, otherwise they could thwart Rust’s

memory safety guarantees. Unfortunately, this means

safe Rust code cannot cast an opaque byte array to/from

different types to avoid the need to serialize/de-serialize

data. For example, if args() returned an 8-byte slice an

extension may desire to treat that slice data as a 64-bit

unsigned value. Safe Rust disallows this.

For small arguments, extensions can convert between

formats with arithmetic, but for richer data models, ar-

guments, stored values, and responses will have more

complex, structured formats. To accommodate this, Splin-

ter’s interface provides a mechanism for extension code

to convert between byte slices and references to a small

set of types. If a slice (&[u8]) is naturally aligned to the

desired type, Splinter allows conversion to a reference

of that type (&T), where T is limited to signed/unsigned

integers and compound types built from them.

These casts are safe, but they are meaningless across

architectures. As a result, they can only be used between

a client and the store when they have the same underlying

platform (e.g. x86-64). Similarly, they can only be used

with extensions’ get/alloc/put interface if all stores in

the system (e.g. before/after recovery, source/destination

for migration) have matching hardware platforms.

3.3 Cooperatively Scheduled Extensions

Splinter is designed to work well regardless of whether

tenant-provided extensions are short and latency-sensitive

or long-running and compute- or data-intensive. In fact,

the best mix of tenants will mix these operations, keeping

CPU, network, and in-memory storage better utilized than

would be possible with a single, homogeneous workload.

Even so, latency-sensitive operations can easily suffer

under interference from heavier operations.

This means Splinter must multiplex execution of tenant

extension invocations not only across cores but also within



a core. Long-running procedures cannot be allowed to

dominate CPUs, but preemptive multitasking is too costly

even when page table switching can be avoided.

Rust’s lightweight isolation is part of the solution, since

calls across trust domains have little overhead. Splinter

already relies on rustc for safety, but it can also rely on

it to help minimize task switching costs. When a new

request comes into the store, Splinter calls into the re-

sponsible extension to allocate a stackless coroutine (a

generator) that closes over the state needed to process

the request. Generators support a yield statement that

suspends execution and enables cooperative scheduling;

extension code is expected to periodically call yield to al-

low other tasks to run. rustc produces generators specific

to the extension, so the cost to create them and switch

between them is low. Splinter invokes the created genera-

tor. Whenever it yields, Splinter’s per-core task scheduler

runs another generator task. Since yielding requires no

costly hardware boundary crossing and no stack switch,

it is fast and inexpensive to yield frequently.

Like other similar systems, to avoid jitter due to kernel

thread context switches and migrations, Splinter runs the

same number of worker threads as cores in the system

(Figure 3), and each is pinned to a specific core. Genera-

tors are invoked on the worker’s stack, avoiding a stack

switch. Note that the compiler generates the structure to

hold a suspended task’s state across yields. Consequently,

a worker’s stack never concurrently contains state for dif-

ferent tenants (or even tasks); furthermore, whenever a

task yields or completes, the worker’s stack contains no

extension state. This makes it easier to handle uncoopera-

tive extensions (§3.3.1) and load imbalance (§3.4).

3.3.1 Uncooperative and Misbehaving Extensions

All calls through the store interface include an implicit

yield, so extensions can only dominate CPU time with

infinite or compute-intensive loops. Nonetheless, such

behavior can disrupt latency-sensitive tasks and constitute

a denial-of-service attack in the limit.

To solve this, Splinter uses ideas from user-level thread-

ing for latency-sensitive services [59] and adapts them

for untrusted code. An extra (mostly idle) thread acts as

a watchdog. If a task on a core fails to yield for a few

milliseconds, the watchdog remedies the situation. First,

the worker thread on the core with the uncooperative task

is re-pinned to a specific core that is shared among all

misbehaving threads and low-priority background work

that the store performs. Second, a new worker kernel

thread is started and pinned to the idle core left behind

after the misbehaving thread was re-pinned. Finally, the

new worker steals the tasks remaining in the scheduler

queue for the re-pinned worker and resumes execution for

these tasks. Note, this is safe in part because all of the

state of a suspended task is encapsulated. Tasks only have

state on a worker’s stack if they are running, so the misbe-

having task is the only one the new worker cannot steal.

Whenever a misbehaving task finally yields, the scheduler

on that worker realizes that it has been displaced, and the

worker thread terminates along with the task.

Hence, misbehaving tasks don’t block other requests,

but they can still cause disruption. Creating and migrating

kernel threads is expensive, so there must be a disincentive

against forcing watchdog action. Tenants that run uncoop-

erative tasks will experience poor quality of service, since

they must share a core with other disruptive work. Fur-

thermore, when a worker is re-pinned the watchdog also

takes away access to its receive and transmit queues, so

tenants cannot get responses from bad requests and, thus,

benefit from their misbehavior. Even so, billing policies

should ensure such behavior is unprofitable.

Aside from infinite loops, the store must also pro-

tect against other things that cannot be prevented with

compile-time checks. For example, Rust doesn’t have

general exceptions, but extensions can raise exceptions

with operations like division by zero that raise a panic.

Splinter must “catch” these panics or they would termi-

nate the worker, since panics unwind the call stack and

worker threads call extension code on their own stack.

Fortunately, Rust provides a mechanism to do this, and

Splinter catches panics and converts them to an error re-

sponse to the appropriate client. Stack overflows and

violation of heap quotas are handled similarly.

3.4 Tenant Locality and Work Stealing

The Splinter store avoids any kind of centralized dispatch

core to route requests to cores, since this can easily be-

come a bottleneck [55]. At the same time, it needs to

balance requests across cores, while still trying to exploit

locality to avoid cross-core coordination overheads. To

do this, clients route each tenant’s requests to a particular

core. This provides cache locality, it reduces contention,

and it improves performance isolation. Splinter configures

Flow Director [31] so that the NIC directly stores packets

with a specific destination port number in a specific re-

ceive queue. Each receive queue is paired to a single task

dispatcher owned by a worker thread (pinned to a core).

As a result, tenants can steer requests to specific cores by

placing their tenant id in the UDP destination port field.

However, this approach alone can leave cores idle under

imbalance, and, as a multi-tenant store, it is important for

the system to deliver good resource utilization. Whenever

the scheduler on a core has no incoming requests in its

local receive queue, it attempts to steal requests from a

neighbor’s receive queue (Figure 5). Transmit queues

aren’t bound to specific (server-side) source ports, so the

response can be sent directly from the core that stole the

request. This simple form of soft affinity works well, and,

since tasks are lightweight, it is also relatively easy for



In-progress
Tasks

Requests
(Receive Queues)

Steal

Figure 5: Dispatch tasks on each core steal requests from the

receive queue of the core to their right whenever they have no

requests in their own receive queue. As a result, work from

overloaded cores get redistributed without generating high con-

tention. Here, core 1’s in-progress tasks were induced by re-

quests stolen from core 2’s queue.

CPU 2×Xeon E5-2640v4 2.40 GHz

10 cores (20 hardware threads) per socket

RAM 1 TB 2400 MHz DDR4

NIC Mellanox CX5, 40 Gbps Ethernet

OS Ubuntu 16.04, Linux 4.4.0-116,

DPDK 17.08, 16×1 GB Hugepages,

Rust 1.28.0-nightly

Table 3: Experimental configuration. Evaluation used one ma-

chine as server and one as client. Only the NIC-local CPU

socket was used on the server.

Splinter to take advantage of idle compute in the system

without costly thread migration.

4 Implementation

The Splinter store is implemented in 7,500 lines of Rust. It

uses the NetBricks network function virtualization frame-

work [56] as a wrapper over the DPDK [20] packet pro-

cessing framework. Splinter also includes 1,100 lines of

Rust that provide the store interface to extensions. Exten-

sions import it and compile against it. The store also im-

ports the interface, since it defines how the store interacts

with extensions to create a new generator for an invoca-

tion. Splinter is open and freely available on github1.

The store needn’t be written in Rust, but doing so has

advantages. It prevents data races and segmentation faults

within the store, but it also lets the store use Rust’s type

system and lifetimes to ensure that mistakes aren’t made

with lifetimes of objects and references handed across

trust boundaries, which an adversary could exploit.

5 Evaluation

We evaluated Splinter on five key questions:

1. What is Splinter’s isolation overhead?

2. Does Splinter support high tenant densities?

3. How does Splinter perform under operations with

heterogeneous runtimes?

4. Do representative extensions see latency and

throughput benefits?

5. When does performing operations client-side outper-

form extension-based operations?

1https://github.com/utah-scs/Sandstorm/
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Figure 6: Comparison of YCSB-B performance using native

and extension-based get() and put() operations at a tenant

density of 1,024. When using extensions, the server saturates

at 4.3 million operations per second. In comparison, native

operations are about 23% more efficient, saturating at 5.3 million

operations per second.

5.1 Experimental Setup

All evaluation was done on two machines consisting

of one client and one storage server on the CloudLab

testbed [60] (Table 3). Both used DPDK [20] over Ether-

net using Mellanox NICs for kernel-bypass support. The

server was configured to use only one processor socket;

out of the ten hardware cores, eight were used for request

processing, one was used for management and to detect

misbehaving extensions, and the last one was used to hold

all misbehaving extensions once detected.

To evaluate Splinter and its isolation costs under high

load and density, the client ran a YCSB-B workload [15]

(95% gets, 5% puts; keys were chosen from a Zipfian

distribution with θ = 0.99) that accessed tenant data on

the storage server. Unless stated otherwise, the client

simulates 1,024 total tenants. Tenant ids for each request

were chosen from a Zipfian distribution with θ = 0.1

(unless stated otherwise) to simulate some tenant skew.

Each simulated tenant owns one data table consisting of

1 million 100 B record payloads with 30 B primary keys

(totaling about 120 GB of stored data). The client always

offered an open-loop load to the server.

5.2 Isolation Overhead

Figure 6 compares the performance of YCSB-B under two

different cases. In one case (“Native”), the Splinter store

executes get and put operations like any other key-value

store would; none of Splinter’s extension functionality is

used. This case sets an upper-bound for Splinter’s perfor-

mance. In the other case (“Extension”), that same get or

put is executed as part of a tenant-provided and untrusted
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Figure 7: Storage server scalability at a tenant density of 1,024.

Points represent throughput when YCSB-B latency crosses

10 µs. Isolation overhead is consistently lower than 20%.

Splinter extension. This teases apart the isolation and dis-

patch costs for Splinter to run arbitrary tenant-provided

logic. For offered loads of less than 3.5 million operations

per second (Mops/s), median latency with and without

isolation are nearly identical (about 9 µs).

Splinter extensions have some overhead, so the store

saturates earlier when gets/puts are executed through ex-

tensions. With isolation, the median latency spikes above

4 Mops/s, reaching 59 µs at 4.3 Mops/s. Without isola-

tion, this spike comes at 5.3 Mops/s. Tail latency (99th-

percentile) begins to show a difference at 3 Mops/s. On

the whole, in this pessimal workload with extremely fine-

grained operations all invoked as extensions, Splinter’s

isolation costs still only impact throughput of the store by

about 19%. Compared to the 1.8× (simulated) penalty for

hardware-based isolation in Figure 2, this is a significant

improvement (a 1.2× penalty over native get/put).

Figure 7 compares YCSB-B scalability when the server

is approaching saturation (median latency > 10 µs) un-

der the native and extension-based cases. Invoking get

and put operations from extensions instead of directly

has no impact on scalability; scalability is near linear in

both scenarios. However, as pointed out above, it does

affect throughput. At one core, throughput is reduced by

200 Kops/s (18%), while at eight cores, the reduction is

700 Kops/s (17%). This shows that, though extensions

do increase the number of cycles each core spends pro-

cessing requests, it doesn’t come at the cost of significant

increased coordination between the cores.

5.3 Tenant Density

Figure 8 shows how varying the number of tenants sharing

the store impacts its throughput. As in the prior experi-

ments, tenants run YCSB-B under two cases: without iso-

lation (“Native”) and with isolation (“Extension”), so the

experiment captures extension isolation overheads. The

results show that Splinter can efficiently support high ten-

ant densities with minimal overhead. With isolation, the

throughput at 1,024 tenants is 3.3 Mops/s, only 700 Kop-
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Figure 8: Scaling tenants. Points represent server throughput

when YCSB-B latency crosses 10 µs. With isolation, increasing

the number of tenants only impacts performance modestly; mov-

ing from 8 to 1,024 tenants reduces throughput by 700 Kops/s.
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Figure 9: Latency with tenant skew. The server runs near

saturation at 4 Mops/s in each case. Without work stealing,

tail latency under high skew increases from 138 µs to 330 µs.

Without tenant locality, median and tail latencies are affected.

s/s less than the throughput at 8 tenants. Additionally, the

throughput with isolation is consistently within 22% of

the throughput without isolation.

In practice, offered tenant load will be skewed, since

some tenants are likely to have heavier workloads than

others. This results in a few heavy workloads that must

share the store with a long tail of many more passive ones.

We ran an experiment to show that Splinter can handle this

imbalance and that its work stealing and tenant locality

help maintain Splinter’s response times under high load.

Recall that Splinter routes requests for a tenant to a spe-

cific core, but cores steal work from each other to combat

imbalance. To gauge the benefits of this approach, we

compare it against a tenant-partitioned approach with no

work stealing and an unpartitioned approach that sprays

requests over all cores in a tenant-oblivious fashion. We

vary tenant skew, which affects all three approaches.
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Figure 10: Performance with a small fraction (15%) of cooper-

ative long running procedures that perform 128 gets. Yielding

frequently can help improve median latency from 38 µs to 22 µs.

However, yielding too frequently hurts median latency. The

storage server was offered a constant load of 1.1 Mops/s.

Figure 9 shows the results. These measurements are

with an offered load of 4 Mops/s, keeping the store close

to saturation. In each case, the store meets the offered load

by running at 4 Mop/s. Without work stealing, Splinter’s

tail latency suffers by a factor of 2 under high tenant skew

(0.9 and 0.99). In this case, partitioning helps through-

put due to locality and reduced contention (as evidenced

by its relatively consistent median response time), but

queues become imbalanced hurting tail latency. The un-

partitioned approach doesn’t respond as significantly to

tenant skew though it is slower overall, as expected. Un-

partitioned execution results in 42% to 86% worse median

latency with 38% to 155% worse tail latency.

5.4 Request Heterogeneity

Figure 10 investigates the impact of mixing short oper-

ations with cooperative longer-running operations. We

configured our client so that 15% of extension operations

performed 128 gets on the storage server. The rest of the

requests invoked an extension that performed one get. We

varied the number of gets made by the longer extension

per yield (frequency). These measurements were made at

an offered load of 1.1 Mops/s. Increasing the frequency of

yields improves median latency of the smaller operations

by 42% until a frequency of 8 gets per yield. Yields add

some overhead, and yielding more frequently pushes the

store to saturation in this case. As a result, all requests

see increased response times. Extensions should yield

frequently, but yielding too often is wasteful. Splinter

may be able to help with this in the future; Splinter could

provide extensions with a yield that is ignored if called

too quickly in succession, avoiding the full yield cost.
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Figure 11: Impact of uncooperative requests on performance.

System throughput stays constant at 3 Mops/s throughout. For

fractions of uncooperative requests greater than 1 every million,

tail latency is significantly affected (> 100 µs).

Figure 11 shows how uncooperative extensions impact

system performance. Here, the client invoked a small

fraction of extension operations that executed an infinite

loop. The remaining fraction of requests invoked a small

extension that performed a single get. Splinter performs

well in the presence of misbehaving extensions. Through-

put is steady at 3 Mops/s irrespective of the fraction of

misbehaving requests. Median latency isn’t shown, but

it is steady as well. Tail latency suffers as more requests

misbehave, though it is within 100 µs for fractions as high

as one in a million requests.

Note that one in a million requests (1e-6) is harsh. The

store can execute more than 4 Mop/s, so this represents a

misbehaving invocation starting every quarter second; at

1e-5 misbehavior starts about once every 25 ms.

5.5 Aggregation Extension

Online data aggregation is a common task for applications.

For example, a user might send a query demanding a

movie studio’s total earnings in the year 2017. With

a key-value data model, this would require two round-

trips to storage: one to fetch the list of movies made by

the studio and one to fetch the box-office earnings of

each of the movies. Splinter improves the user-facing

and server-side performance of these types of queries by

allowing applications to inexpensively embed their data

model (studios and movies) and operations (total earnings

aggregation) within storage.

Figure 12 compares a completely client-based and a

Splinter extension-based implementation of such an aggre-

gation over 4 records. Each of the store’s 1,024 tenants

owned a table with 300 K indirection lists pointing to

1.2 million records, totalling about 100 GB of stored data.
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Figure 12: Aggregation throughput versus latency. Aggrega-

tions combine 4 records. Under low load, the median latency of

a client-side implementation is 1.6× that of an extension-based

implementation. Using an extension also improves saturating

throughput from 1.2 M to 1.6 M aggregations per second.

The client-based implementation first performed a get()

to retrieve an indirection list followed by a multiget() (a

single RPC requesting values for multiple keys) to fetch

all of the records indicated in the indirection list. The

first field from each of the returned objects is summed up

into a single 64-bit result. The extension-based implemen-

tation invoked a Splinter extension called aggregate()

with the same functionality as the client-based approach.

Pushing the aggregation from the client to the server

has two key benefits. First, it improves performance from

the client’s perspective: the extension-based implementa-

tion reduces median latency by 38% (from 16 µs to 10 µs)

under low load with larger gains under higher loads. This

improvement is mainly due to a reduction in the num-

ber of round-trips; unlike the client-based extension, the

aggregate() extension doesn’t need to wait for the store

to return an indirection list before it can start aggrega-

tion. Second, it improves performance from the server’s

perspective as well. Splinter’s extension invocations are

more expensive than plain get() operations (§5.2), but

they eliminate some of the costly network and RPC pro-

cessing. Hence, saturating throughput improves from

1.2 M to 1.6 M aggregations per second.

Note, this improvement comes in a challenging case

for Splinter; at 40 Gbps, Splinter is never network limited.

These results show that even if a store is CPU-limited,

pushing compute to the store can still provide a through-

put benefit, since it can mitigate request processing over-

heads. On slower networks, Splinter would provide more

of a benefit since extensions can reduce network load.

Figure 13 shows the impact of the number of records

aggregated on the saturating throughput of the extension-

based and client-based implementation. In both ap-

proaches, increasing the number of records aggregated

increases the work the store has to do per request

(aggregate()/multiget()), and, hence, decreases the

overall throughput of the system. However, if that work
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Figure 13: Saturating throughput of aggregation versus the

number of aggregated records. The extension-based implemen-

tation outperforms the client-side implementation irrespective

of the number of records aggregated. The gains are highest

when aggregations are over two records (2.4 M versus 1.5 M

aggregations per second).
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Figure 14: Saturating throughput of the aggregation extension

versus the amount of compute per aggregation. After aggre-

gating 2 records, each operation raised the result to the power

n, implemented as n 64-bit multiplications (hence the x-axis).

Increasing the order (n) increases server-side compute in the

extension-based implementation, hurting throughput. At an

order of 5000, the client-side approach is 2× faster.

is simple (like summation) it is always better to aggre-

gate at the store. The gain in saturating throughput of the

extension-based aggregation is always more than 50%.

For compute-intensive operations, the extra CPU cost

of running extensions at the store can outweigh the gains

of fewer RPCs. Figure 14 explores this effect. After

adding the first field of two records, each operation raises

the result to the power n (with n 64-bit multiplications).

Using an extension, increasing n above 2,000 slows the

store and decreases saturating throughput from 1.8 M to

800 K aggregations per second. The client-side approach

can hold throughput constant at 1.6 M aggregations per

second; the client has enough idle CPU capacity to com-

pute the result. This shows that extensions are ideal for op-

erations with modest amounts of compute. For compute-

intensive operations over data stored on high-load servers,

clients should fetch data and perform operations locally.

5.6 TAO Extension

TAO [10] is a graph-oriented in-memory cache used at

Facebook to hold objects from the social graph and as-
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Figure 15: TAO extension throughput versus latency. With

60% object_get and 40% assoc_range operations, the TAO

extension can reach 2.8 Mop/s before saturating with an av-

erage latency of 30 µs. By using native get() operations for

object_get, the extension-based approach can outperform a

purely client-side implementation by 400 Kop/s.

sociations between those objects. TAO is well-suited to

Splinter. It is designed for interactive data, but it embeds

knowledge about Facebook’s workload to decrease round-

trips to the store, which eliminates client-side stalls and

improves server-side efficiency. We have implemented its

simple operations as an 800-line Splinter extension.

Full details of TAO are beyond the scope of this pa-

per, but the basics are simple. Aside from object put/get,

TAO’s association lists (e.g. user1’s “likes”) allow one ob-

ject to be associated to another via a typed, directed edges.

For example, user1’s “likes” may be represented as an

association list (user1, likes) → [post1, post32]. As-

sociation lists provide simple operations for adding, re-

moving, and counting associations. Entries in association

lists are timestamped, and range operations over associa-

tion lists to fetch subsets of them are common (“get the

first 10 entries in the (user1, likes) association list”).

Figure 15 shows Splinter’s performance under

three different configurations: an extension-based ap-

proach (Extension), a client-based approach (Native),

and a combined approach (Combined) that imple-

mented object_get using native get() operations, and

assoc_range using an extension. The workload was

configured to issue a mix of 60% object_get and 40%

assoc_range operations. We picked this ratio based on

Facebook’s reported TAO workload [10], which is domi-

nated by reads (99.8%) mostly from these two operations.

Each of the 1,024 tenants on the storage node owned a

graph with half a million objects and two million edges

(associations), totalling about 100 GB of stored data.

Since a significant fraction of requests are single round-

trip object_gets, the client-based approach has a better

saturating throughput than the extension-based approach.

However, combining the two improves saturating through-

put from 2.8 Mop/s to 3.2 Mop/s at a latency of 31 µs; the

native get() helps eliminate the isolation overhead while

executing an object_get, and the extension helps reduce

the number of round-trips required by an assoc_range.

This makes Splinter competitive with FaRM’s TAO

implementation which is the fastest known implementa-

tion. Interestingly FaRM, takes the opposite approach

of Splinter. On FaRM, TAO operations use multiple

RDMA reads and careful object layout. FaRM reported

6.3 Mops/s (about 200 Kop/s/core) with a 41 µs average

latency; Splinter performs about 400 Kops/s/core with

lower latency. Differences in hardware and experimental

setup likely account for some of the differences, but it

shows Splinter’s CPU-active server approach is competi-

tive against FaRM’s CPU-passive server approach. Fur-

thermore, Splinter maintains a simple, remote procedure

call interface, and the TAO extension enforces strong ab-

stract data types. Splinter TAO clients have no knowledge

of the internal layout of the stored data objects.

6 Related Work

Shipping computation to data and isolating untrusted code

are well-studied, and Splinter builds on prior work. How-

ever, prior work does not address multi-tenancy at Splin-

ter’s granularity and number of tenants; further, no work

addresses these issues with its throughput and latency

goals, which are far beyond most cloud storage systems.

Low-latency RDMA-based Storage Systems. Low-

latency, high-throughput key-value stores are now thou-

sands of times faster than conventional cloud storage by

exploiting RDMA, kernel-bypass, and DRAM [22, 23, 36,

44, 45, 55]. These systems are well-understood for small,

regular workloads, but their simple (get/put, read/write)

interfaces make them easy to optimize internally at the

expense of application efficiency, since they force clients

to make many round trips to storage and to compute lo-

cally [21]. RDMA lowers CPU overhead for transmit,

but it cannot make up for the fundamental inefficiency

of moving large amounts of data over the wire; receivers

must still perform the same computation on the data that

a server could have. Splinter eliminates this waste, while

still using efficient kernel-bypass networking. At 40 Gbps

a Splinter store is never network bound, so combining

Splinter’s approach with (one- or two-sided) RDMA verbs

could provide a benefit by freeing up additional compute

on store servers.

6.1 Pushing Computation to Storage

MapReduce [18] and Spark [73] ship code to data sets,

though latency is not a concern. Even when compute is

shipped to a storage (HDFS [63]) node, data is still copied

via interprocess communication. Untrusted extensions,

like those in Splinter, could eliminate these overheads.

Some distributed systems and frameworks support com-

posing internal storage abstractions to synthesize new ser-

vices [3, 4, 11, 28, 48, 62]. Malacology [62] claims stor-



age extensions have been popular in the Ceph distributed

file system, showing that extensions are useful to devel-

opers. In these systems, extensions are trusted, so they

don’t work for cloud storage; Splinter is also focused on

tight integration of fine-grained computation and storage

rather than on coarse composition of software services.

Comet [26] embedded sandboxed Lua extensions into a

decentralized hash table to allow application-specific ex-

tensions to get/put behavior. Lua’s entry/exit costs are

low; it is unclear how the performance of its just-in-time

(JIT) compiled runtime would compare to Splinter.

SQL. SQL may be the most widely used approach to

ship computation to data, and it also supports use as a

stored procedure language [50, 54]. In-memory databases

have placed pressure on performance, resulting in JIT

compilation for SQL [25, 53]. With JIT, queries run fast,

and calls back-and-forth between the database and user

logic are inexpensive. SQL is type safe, so it is also

easy to isolate. SQL’s main drawback is that it is declar-

ative. Often, this is a benefit, since it can use runtime

information for optimization, but this also limits its gen-

erality. Implementing new functionality, new operators,

or complex algorithms in SQL is difficult and inefficient.

Some have extended SQL for specific domains, like graph

processing [52], scientific computing [47, 57] and simu-

lation [12], showing that SQL by itself is insufficient for

many domains.

Native-code Extensions. The popular Redis [1] in-

memory store supports native extensions. In FaRM [22,

23], an RDMA-based in-memory store, applications are

written as native, storage-embedded functions that are

statically compiled into the server. These systems don’t

allow extensions to be loaded at runtime, and application

code is trusted so it does not work for multi-tenant cloud

storage. Similarly, H-Store [39], VoltDB [65], and Hazel-

cast [29] are in-memory stores that support Java-based

procedures, though none of them provide multi-tenancy.

6.2 Fault Isolation

Software-fault isolation (SFI) sandboxes untrusted code

within a process (or OS kernel [33, 61, 67]) with low

control transfer costs [9, 24, 27, 49, 72]. Both hardware

isolation [66] and SFI [69] were applied to Postgres [64],

which pioneered database extensions [68]. SFI still re-

quires protected data to be copied in/out of extensions,

since it relies on hardware paging or address masking that

can only restrict access to contiguous memory regions.

Language-level approaches to kernel extension [8, 30]

closely match Splinter’s design and goals. SPIN let

language-isolated extensions run as part of the kernel.

It eliminated runtime overheads (aside from garbage col-

lection), since extensions were compiled; it eliminated

control transfer overheads, since it didn’t require page

table switching; and it eliminated copying between pro-

tection domains, since type-safe pointers worked as ca-

pabilities. Like Splinter, where tenants must write Rust

code, a key downside of SPIN was that extensions had to

be written in Modula-3, not C, so legacy code couldn’t be

used. Java also “sandboxed” applets using type-safety and

specialized class loaders, which supported inexpensive

control transfer and data access between domains [70].

Using Rust for low-cost, zero-copy isolation has been

used for inexpensive software fault isolation both gener-

ally [5] and for network packet processing pipelines [56].

Splinter builds on these ideas, bringing them to storage

and moving beyond static domains to a runtime extensible

service. Tock [43] is an embedded OS that decomposes its

kernel into untrusted capsules by exploiting Rust’s safety.

Tock’s capsules are similar to Splinter’s extensions, but

they don’t protect against denial of service (infinite loops)

and capsules are static – they can’t be added to a running

kernel. These also differ from Splinter in that they assume

a small number of trust domains; they are targeted at soft-

ware decomposition. Splinter targets dense multi-tenancy

with no static bound on the number of trust domains.

7 Conclusion

In-memory storage can significantly accelerate data-

intensive applications, including those that need fine-

grained and real-time access to data. However, as Den-

nard scaling ends, future cloud storage must not only be

faster but also more efficient. Splinter shows that soon

legacy hardware isolation techniques will limit resource

provisioning granularity in the cloud, but it also provides

a way forward. Systems must evolve to support granu-

lar, low-overhead shipping of compute to storage, and

lightweight isolation between small compute tasks. Splin-

ter works toward that evolution by discarding hardware

isolation in favor of static safety checks. As a result,

it supports thousands of tenants that can all access data

in tens of microseconds while customizing storage op-

erations to their needs and while performing millions of

remote operations on modern multicore machines.
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