Harpocrates: Giving Out Your Secrets and Keeping Them Too

Rufaida Ahmed Zirak Zaheer Richard Li Robert Ricci
University of Utah
Abstract and networks that can deliver internet-based services

Content Distribution Networks (CDNSs) offer websites
and web services the ability to host content on servers
that are near the edge of the network, close to users.
Benefits of this arrangement include low latency, scal-
ability, and resistance to Denial of Service attacks.
Traditionally, CDNs have hosted primarily static con-
tent, but increasingly, there is an interest in pushing
active computation to the edge as well. This active
computation, which is similar in style to the “server-
less” computing becoming popular in clouds, offers a
wealth of new opportunities for web services to be-
come faster and more scalable. With this opportunity,
however, comes a much greater exposure to security
threats. One is leakage of secret materials (such as
keys, identities, etc.) that are accessed by these func-
tions. Another is the possibility that sensitive calcu-
lations are not executed faithfully in the CDN; e.g. a
modified version of the customer’s code is run.

In this paper, we present the design of Harpocrates,
a framework that allows active code to be pushed
from an origin webserver out to workers at the edge
of a CDN. Harpocrates makes use of Intel’s SGX
technology to keep data private, and presents an envi-
ronment similar to the JavaScript WebWorker API to
simplify the process of code that can run on either ori-
gin servers or the CDN. We use Harpocrates to design
a number of interesting services, including a service
that generates and checks secure cookies within the
CDN, and a framework that protects against denial-of-
service attacks in a way that is customized to a specific
website. We show that the framework performs well
enough to be deployable in practice.

1 Introduction

Content distribution networks (CDNs) are widely
used to enhance user experience, reliability, and secu-
rity through providing a system of distributed servers

to the user from locations at or near the network edge.
Many CDNs [26, 3 16} 22] work by “fronting” for an
origin webserver. In this configuration, DNS lookups
for the origin server resolve to IP addresses belong-
ing to the CDN rather than the origin server itself.
The CDN then acts as a reverse proxy or “man in the
middle,” processing all requests for the website and
deciding whether to serve pages out of its cache, relay
requests to the origin server, apply DDoS prevention
methods, etc.

While this model is simple for the origin server, and
provides strong protection against DDoS by hiding the
true IP address of the origin, it leads to a number of se-
curity problems such as leakage of tenant data [[19] and
sharing of private keys between the content provider
and the third-party hosting entity [[14]. It has also,
historically, been limited to static content, leaving the
actual application code running on origin servers or
in the cloud, where the latency benefits of caches at
the edge are not realized.

Computing, however, is starting to become avail-
able at the edge. Cloudflare JavaScript Workers [20]
are one example of “edge-computing” available in a
CDN. The basic principle behind Cloudflare Work-
ers is to allow origin servers to provide JavaScript
code which will be run within the Cloudflare CDN it-
self, reducing latency for dynamically-generated con-
tent, and offering the origin server a simple way to
scale. The high configurability offered with Cloud-
flare workers turns Cloudflare from justa CDN service
into an edge computing platform.

Another example of this type of edge computing
is AWS Lambda@Edge [9]. This service also allows
the client to push code to the edge, allowing it to be
closer to the end user to minimize latency. This code
will typically be triggered by events from the Amazon
CloudFront CDN. After pushing the code to the edge,
AWS will take responsibility of code management
duties such as replication, scaling and routing.

This arrangement increases security and privacy

concerns for the CDN’s clients. Generally, CDN
clients want to keep most of their code secured and
protected against both the CDN and possible mali-
cious entities access, and using such a facility requires
the client to distribute both code and potentially sen-
sitive data throughout the CDN’s network.

In this paper, we present Harpocrated'] a system
that allows origin servers to distribute sensitive code
and secret information throughout the world without
having to worry about it being leaked. This enables se-
cure computation at the edge, and will allow for faster,
more responsive, and more dynamic web services.
Harpocrates makes use of Intel’s Software Guard Ex-
tensions (SGX). It provides an abstraction based on
the JavaScript Worker model, which is widely used
on both the client and server side (Node.js) of web ap-
plications; this enables ease of offloading to the CDN
from either direction.

We claim that Harpocrates enables multiple inter-
esting applications that can help improve CDNs by
providing storage for more critical information on the
CDN without comprising the privacy and security of
data and code. To demonstrate the power of the frame-
work, we designed four such applications. The first
two use cases help keep the origin webserver avail-
able to legitimate users during Distributed Denial-
of-Service (DDoS) attacks. They check secure login
cookies set by the origin server to identify users who
have legitimately logged in to the service; they use a
secret provided by the origin server to establish the
authenticity of the login cookies, and use Harpocrates
to prevent compromise of that secret. The second ap-
plication goes beyond simple checking of an existing
cookie by adding an additional authentication step,
handled entirely in the CDN and using the user’s own
password for the website. Our third use case allows
aggregation of data from multiple sources to occur at
the edge of the network, in the CDN, for scalability
and latency reasons. The fourth is an adaptation of
the Keyless SSL [18] protocol to allow the CDN to
serve HTTPS requests for the origin without requiring
access to the latter’s private keys.

The rest of this paper is organized as follows: We
begin by giving background on the technologies that
we use in Section[2]and covering the related work. Our
threat model, in particular the details of the materials
that we seek to keep secret, is described in Section E}
The design of Harpocrates is covered in Section [}
followed by a description of several applications that

Harpocrates was the ancient Greek god of secrets and confi-
dentiality

it in enables in SectionBl Section [f] has some brief
notes on the implementation, and Section E] provides
an evaluation of the overheads associated with using
SGX in this setting and demonstrating the benefit to
website performance of moving active code to the
edge. We conclude and discuss future work in Sec-
tion[8]

2 Background and Related Work

In this section, we provide background on the tech-
nologies that we use and cover related efforts.

2.1 Intel SGX

Intel Software Guard Extensions (Intel SGX) is a set
of extensions to the Intel architecture that are designed
to provide integrity and confidentiality for application
running in ring 3 from parties running in the privi-
leged ring, including the operating system, BIOS, Vir-
tual Machine Manager, etc. This allows users to run
trusted code on untrusted servers. It gives users a high
level of confidence that private data will be as secure
in a Cloud or Edge Cloud as it would be running in a
local trusted environment.

An SGX application consists of two parts: an un-
trusted part and a trusted part. The trusted part is also
referred to as an “enclave”. An enclave is an execution
container instantiated by an untrusted application. Af-
ter being instantiated, the untrusted part can issue an
Enclave Call (ECALL) to switch into the enclave and
start the trusted execution. Similarly, the code inside
enclave can switch to the untrusted world by making
an Out Call (OCALL). An ECALL is a call made into
an interface function within the enclave, triggering
the enclave to execute a piece of code after necessary
security checking, while and OCALL allows code in
the enclave to make use of outside services like sys-
tem calls or other functions that requires privileged
permissions [23]].

Harpocrates mainly uses two features of SGX. One
is its secure execution environment: data belonging
to an enclave is presented as plaintext within the CPU,
but this data is encrypted with integrity protection ap-
plied when it is flushed from the cache to DRAM.
Because SGX flushes the CPU cache and other mem-
ory mappings when switching in or out of an enclave,
not even a privileged party, e.g. the kernel, can see the
plaintext of the enclave’s memory: it cannot see the
previous contents of the CPU’s cache, and can only

see the encrypted copy of the content in the memory[?}
Any modification to the encrypted content in physical
memory will lead to general protection fault when the
trusted entity get scheduled to run again.

The other SGX feature Harpocrates uses is remote
attestation. Because most trusted code requires some
set of secret data to operate on, there must be a way to
securely communicate that data to the enclave. Fur-
thermore, it is critical that the party sending this secret
data have a way to trust that it is indeed talking to spe-
cific, known, trusted code, and that this code is run-
ning in a real SGX enclave (and not, say, an emulation
of SGX that will allow the attacker to access the data).
SGX provides these facilities through a feature called
“remote attestation” that enables an enclave to “attest”
the identity and integrity of the code to a remote party.
The Harpocrates design uses this mechanism to trans-
fer secrets from the origin server into the enclave, and
to give the origin server confidence that its functions
are being faithfully executed.

2.2 TLS and Keyless SSL

The traditional TLS protocol is primarily designed
to secure end-to-end communication. This was ap-
propriate for older styles of web service when com-
munication was only between two parties: the client
(browser) and the webserver. However, when the con-
nection is terminated in an intermediate node (such
as a “reverse proxy”’ CDN) the security guarantees of
these protocols no longer apply. In the CDN world, in
order to provide HTTPS service, CDN providers that
“front” for their clients domains needs to imperson-
ate the original content provider by having the private
key at hand, which brings with it security problems
inherent in sharing a private key with a third party. To
mitigate the problems brought by key sharing, Key-
less SSL [[18]] was introduced by Cloudflare. Keyless
SSL exploits the fact that private key is only used
once in each TLS handshake to split the whole TLS
handshake geographically, with most of the handshake
work happening at the Cloudflare’s edge. The private
key itself remains on the origin server, which is con-
tacted once per SSL/TLS handshake to identify the
origin server. The security property of Keyless SSL
has attracted significant attention and has been suc-
cessfully applied in the wild [17]. However, Keyless

2Recently, Spectre-like attacks have been discovered against
SGX [15]. Like all other SGX-enabled applications, Harpocrates’
security will depend on the development of effective countermea-
sures against these attacks.

SSL suffers from significant performance degrada-
tion and limited scalability due to the extra round trip
from the CDN to Key Server in each handshake [35]].
Researchers have sought alternative solutions to this
problem and one of the main directions is using SGX
to enable the private-key-holding sever to run in or
near the CDN [35], eliminating the additional round
trip.

2.3 Related Work

There is significant other work on exploiting SGX ca-
pabilities to enable trusted computation in the Cloud
and Edge. For example, Haven [10], SCONE [7]
and Graphene-SGX [33]] make attempts to run entire
containers in a shielded environment. mbTLS [24]],
ShieldBox [32] and EndBox [21] use SGX to protect
middleboxes. This work makes all execution and data
within the enclave trusted, and essentially only uses
the third party infrastructure as a computation sup-
port. However, we argue that to make full use of the
benefits conferred by a CDN provider, a tenant needs
to expose some information to the CDN so that it can
help the tenant optimize their performance and secu-
rity, e.g. caching and DDoS prevention. Harpocrates
targets a different point in the design space in which
we do allow the CDN to see less-critical “derived se-
crets” while avoiding catastrophic incidents in which
“master secrets” are leaked.

Bhargavan et. al [11]] explore a means to optimize
Keyless SSL itself, but does not consider computa-
tion need at the edge. mcTLS [25]], Blindbox [29],
and Splitbox [8] explore different ways to keep se-
crets from untrusted parties, but they emphasize the
protection of content instead of of private key pro-
tection. STYX [35] does explore the space of key
management, using SGX to enhance key distribution.
Harpocrates differs from it in that we focus on pushing
execution of code from the origin server to the edge,
a broader use case than SSL key management.

3 Threat Model

The first element of our model is that the origin server
has a “master secret” from which other secrets are
generated, and that protecting this secret is higher pri-
ority than protecting the values that are derived from
it. This situation is common in modern web services.
For example, a master secret is often used to generate
cryptographically secure cookies. Theft of an indi-

vidual cookie is undesirable, as it allows the thief to
impersonate a user for the duration of the cookie’s va-
lidity or until the theft is discovered and the affected
user can have her cookie re-generated. Theft of the
master secret, on the other hand, is catastrophic, as it
allows the thief to generate correct cookies, and there-
fore impersonate any user, and it can only be remedied
by regenerating all users’ cookies. Similar situations
arise with TLS/HTTPS: leaking the key for a specific
session is problematic, but leaking the private key
used to authenticate the server is much worse. Our
goal in Harpocrates is to protect the master secret, as
it is not always possible to protect derived secrets and
still have the CDN do its job.

Second, we assume that the CDN needs to be able
to see requests and responses “in plaintext” to do its
job; without this, it cannot know whether to serve
responses from its cache, whether to send requests to
the origin server, whether to dispatch them to a secure
function, etc. All of these decisions are based on
information in the HTTP request, such as the request
URL and headers (particularly cookies). This is why
we only seek to protect master secrets: for example,
if a secure function sends a cookie to a client, that
cookie will be seen by the CDN in the next request
the client makes. We do assume that the connection
between the client and the CDN is, or can be made,
over HTTPS; techniques such as Cloudflare’s Keyless
SSL [18] make this possible while keeping the origin’s
private key secret (though they may leak session keys).

Third, we assume that the CDN may leak any in-
formation that it sees in plaintext; this includes the
contents of HTTPS connections that are decrypted by
the CDN through mechanisms like Keyless SSL. This
may be due to a bug, such as in the case of Cloud-
Bleed [[19], in which Cloudflare inadvertently leaked
memory belonging to one origin in bytes of connec-
tions for other origins’ clients. It could also be due to
a malicious insider at the CDN or a malicious third
party that has compromised the CDN.

Finally, we assume the correctness of Intel’s SGX
and remote attestation protocols. While there do exist
attacks against SGX [27], we assume that mitigations
are available or that they are closed in future revisions
of SGX.

4 Design

The fundamental element of security in Harpocrates
comes from leveraging Intel SGX. SGX supports code

secrecy by putting sensitive code and data into CPU-
hardened protected regions called enclaves. Intel also
provides a remote attestation mechanism which can
prove to others that they are really communicating
with the specific, known, code in a real SGX enclave,
and not an impostor. As part of this process, the
remote party can provide data (master secrets, in our
design) that can only be decrypted inside the enclave.

Harpocrates, following the SGX Developer
Guide [23]], splits code into two parts: untrusted code,
which runs outside of an SGX enclave, and trusted
code that runs inside of it. All entry points are in the
untrusted code: the CDN delivers requests that it re-
ceives from clients to untrusted functions, and expects
to receive a reply from an untrusted function as well.
Once invoked, an untrusted function may choose to
call a trusted one: for example, to perform operations
involving secret data.

We offer an API based on the JavaScript
WebWorker, an abstraction that allows a caller to start
a task by posting an event and registering a function to
receive the completion of that event. These two calls
map well to the ECall and OCall interface offered by
SGX. An ECall is made from untrusted code, and in-
vokes code inside of an enclave; this is analogous to
posting an event. An OCall is made by trusted code
inside an enclave, and calls the untrusted code regis-
tered to receive the completion. Another advantage
of adopting the WebWorker design is that it is fre-
quently used in server-side JavaScript in the Node.js
environment, and thus facilitates moving code from an
origin server to a CDN. It is also used in Cloudflare’s
Workers.

There are some differences between our design and
the “normal” WebWorker. We require the user to sup-
ply a function in the trusted code that will be called on
initialization of the enclave: typically, this code will
perform remote attestation with the origin server to
securely transfer a secret(s) into the enclave. In addi-
tion, the untrusted code cannot call arbitrary functions
when it posts an event: it can only call functions that
the customer has defined for the enclave and exported
to be available for ECalls. Untrusted code may still
register arbitrary functions to receive completions.

Figure[I]shows a typical CDN operating in “reverse
proxy” mode. Note that though we depict the CDN as
a simple “stack” of servers, in practice, it is typically a
set of servers distributed around the world, and clients
are directed to the closest one through DNS resolu-
tion or IP anycast. The basic goal of the CDN is to
use the path represented by the solid arrows for as

© °

Client

D LLTTTITTr e

Origin

Figure 1: Typical “reverse proxy” CDN. Solid lines
represent the CDN serving content out of its cache.
Dotted lines represent the CDN forwarding traffic to
the origin, and forwarding back the results.

2 Director

Untrused Code
_4

r I
| Enclave |

-

Cache

Figure 2: The design of Harpocrates. The client is to
the left, and the origin server is to the right.

many requests as possible: these are the requests for
which the CDN, sitting near the user at the edge of
the network, can respond out of its cache. The dotted
lines are essentially a fallback: when the content is
dynamic or not yet cached, the CDN must forward
the request to the origin server, and relay the response
back to the client.

Figure [2] shows the data flow within the CDN in
Harpocrates. Requests enter on the left from clients
(marked #1 in the diagram) and reach the director.
This director examines the HTTP request (acting as
the endpoint of the TLS session for HTTPS connec-
tions), and selects one of several options. First, for
static content, it may serve the content directly out of
the CDN’s cache (#2). Second, if the request URL be-
longs to an endpoint registered by the origin server’s
code, it forwards the request to the untrusted part of
the extension’s code (#3). This is the portion of the
code supplied by the user that does not run inside of
an SGX enclave and does not handle master secrets.
In some extensions, no secret data may be needed,
and this function returns data to the director (which
passes it back to the client) without calling into an en-
clave at all; this looks similar to Cloudflare’s Worker

model. For computations on secret data, the extension
calls into the enclave (#4) by posting a Secure Worker
event. Computation on the secret data—such as se-
cure cookie generation—occurs in the enclave, which
returns the data to the untrusted code, and from there,
back to the director and client. Finally, the director
still has the option of sending requests that cannot be
handed by either the cache or local code back to the
origin server (#5).

The CDN is responsible for deciding when and
where to bring up new instances of the customer’s
function, along with the associated enclave. Each en-
clave must have an initialization function; typically,
this function will contact the origin server, use re-
mote attestation to authenticate itself, and be given
the master secret through this secure channel. While
this bootstrapping procedure does put some additional
load on the origin server, it only needs to happen once
for each host in the CDN network, which is much
lower than the total number of end clients.

An important point that developer should keep in
mind is the fact that secrets and sensitive information
should not be statically compiled into the enclave,
and must only be securely transferred to the enclave
at runtime during remote attestation. Code and data
used to initialize an enclave are, by design, unen-
crypted in SGX. Any secret loaded before attestation
can possibly be inspected by the unauthorized CDN
or a malicious party.

S Example Applications

Using a content delivery network (CDN) to host
scripts, files, and even sensitive information that are
frequently accessed can improve the overall perfor-
mance of the origin website and conserve bandwidth.
But unfortunately, using CDNs also comes with a risk.
If an adversary gains access to these files he can inject
arbitrary malicious content to change or even replace
those files.

According to [14], it was reported that 76% of
all organizations that use third-party hosting services
such as CDNs share at least one of their private keys
with this entity. Sharing such crucial data is risky,
because the origin site has to trust not only the CDN’s
software, but also the CDN’s system administrators,
all those who have physical access to the provider’s
hardware, and any law-enfrocement body that might
have authority to access the origin site’s replicated
data in the provider’s physical location.

=

Client

Cookie -
Check

Enclave

CDN Origin

Figure 3: Simple checking of a login cookie in an
enclave in the CDN

We now describe four applications that could be
built using Harpocrates, the benefit they would have
to users and origin sites, and the way that they fit into
our security model.

5.1 Secure Cookie DoS Prevention

The most basic service that reverse proxy CDNs of-
fer to their customers—after caching—is the ability
to withstand denial of service attacks. Because end
hosts—including attackers—see the CDN’s IP ad-
dress, rather than the origin’s true location, all traffic,
benign and malicious, passes through the CDN. The
CDN aims to have enough capacity, in terms of band-
width and servers, to withstand any DoS attacks that
may be directed at its customers.

For static (cachable) content, the attack becomes
against the CDN’s resources and is up to the CDN
to handle appropriately. For dynamic content, how-
ever, the problem is trickier: normally, requests for
this content would be forwarded to the origin server,
which would customize the response for the session,
user, etc. Forwarding all requests for dynamic would
clearly expose the origin server to the DoS attack,
but the origin would often like to allow some class
of requests—such as those coming from logged-in
users—to be forwarded. Offloading these decisions
to the CDN is problematic, as in order to make them
securely, the CDN will need some way of identifying
valid requests through, e.g. a cookie set in the request,
and checking this cookie requires a secret.

In Harpocrates, this tension is resolved by allowing
the origin to write a function that checks login cook-
ies. These cookies are generated by the origin server
on successful login using a widely-used method of ap-
plying a cryptographic hash to a concatenation of the
username, a nonce, an expiration date, and a master
secret. These cookies are quick to generate and check;
all information other than the secret is sent in plaintext
in the request, so all that must be done to check the
validity of the cookie is to concatenate the secret and
check that the hash of this string matches the hash in

the request. This master secret can be generated on
the origin server, and shared with the enclaves run-
ning in the CDN. The untrusted code supplied by the
origin to the CDN can parse the request, extract the
necessary fields from headers, etc., and pass the ap-
propriate fields to the trusted code to test. The trusted
code, with access to the master secret, simply returns
success or failure depending on whether the cookie
validates, and the untrusted code takes the appropri-
ate action to block or forward the request. The path
of an individual request is shown in Figure[3]

5.2 Site-Specific DoS Authentication

The procedure above works so long as the adversary
does not have access to a legitimate, valid cookie. If he
does have one, such as by compromising a legitimate
client, he can distribute this cookie to all attackers
and pass the security check, allowing attack traffic
to reach the origin server. Our next scheme protects
against this case. When there is some indication that
a particular cookie might be involved in an attack
(e.g. evidenced by seeing the same cookie in many
requests), we can enter a more cautious mode in which
possessing alogin cookie is not enough: one must also
have a cookie that is tied to the user’s IP address to
prevent the same login cookie from being used by an
entire DDoS botnet.

Login cookies are not typically tied to a particular
IP address, because users are often on DHCP, behind
NAT, move between networks, move between mobile
and WiFi networks, etc. When one wants to verify
that the user behind a particular IP address is a per-
son, rather than a bot, a typical way to do so is is
through a CAPTCHA [34)]. In many cases, today’s
reverse-proxy CDNs issue CAPTCHA tests to clients
coming from IP addresses that they consider suspi-
cious. A major problem with this arrangement is that
this CAPTCHA test is essentially conducted “outside”
the website; e.g. it provides a confusing user experi-
ence by serving up a page from the CDN rather than
the origin website, asks the user to input information
that they are not used to providing the website, etc.

Our scheme works much more cooperatively with
the original website, as shown in Figure[d] When the
regular login cookie checking function at the CDN
decides that a login cookie might be being abused,
it serves the client a page—clearly coming from the
origin website, but served from the CDN—requesting
that the user re-enter their password. This is shown
as interaction #1 in the figure: the request contains

<

Client

—8

Origin

Figure 4: Exchanges when the enhanced protection
mode is enabled. For visual simplicity, individual
calls into the enclave are not shown.

a valid login cookie, but not an IP-binding cookie.
The login cookie is checked as in Figure [3] and if
it is correct, the worker in the CDN returns a page
asking the user to re-enter their password, instead of
forwarding the request to the origin server.

The user login database is shared from the origin
to the enclaves: enclaves can easily contain tens of
megabytes of memory, sufficient to hold login cre-
dentials for hundreds of thousands of users. The
user’s response is received by the origin’s function
on the CDN, where the password is checked inside
the enclave (here, the password database is the master
secret), and if successful, a new secure cookie, sim-
ilar to the one used for normal logins is generated.
This cookie, however, is tied to a particular client IP
address. Thus, any bots attempting to use it from
other IP addresses can be quickly and easily rejected
within the CDN; requests coming from the correct IP
address can be forwarded to the origin. If the user
does roam to a different IP address, they will simply
have the slight inconvenience of having to enter their
password again. This is shown as interaction #2 in the
figure: here, the request contains the user’s password,
the enclave checks that password, and, if the password
is correct, the worker returns the IP-bound cookie and
a redirect to the page the user was originally trying to
access. In interaction #3, the request now contains a
correct IP-bound cookie, and the function within the
CDN checks this cookie and forwards the request to
the origin.

Note that that this new authentication procedure
takes place within the CDN: the origin server sees
no additional load from the requests to re-enter pass-
words, whether successful or not. This solution there-
fore scales with the CDN, and this additional level of
protection comes without additional load on the ori-
gin. The end user only sees the additional password
dialog once (unless she or he changes IP address while
the attack is ongoing).

5.3 Content Aggregation at the Edge

One of the documented use cases for Cloudflare’s
workers is aggregating information from multiple
points within the CDN [16]. In this configuration, the
worker grabs information from multiple sources and
creates a unified page to serve back to the user. This
information can come from third-party APIs such as
weather, mapping, stock, and social media services.

In many cases, such services are accessed by having
an “API token” that belongs, in this case, to the origin
server, and which is used to authenticate to the API.
We treat this as a “master secret.” For some APIs—
particularly, those dealing with financial or personal
information—the information being handled is very
sensitive, and disclosure of the key can be very dan-
gerous. For example, consider a bank which has a
relationship with a credit reporting agency, which it
uses to display credit scores to the bank’s customers:
displaying this information within the bank’s website
is a valuable service, but the bank must take great care
to ensure that the key that it uses to authenticate itself
to the credit agency is not compromised.

In Harpocrates, the origin’s API keys can be kept
within the enclave; this allows the origin to benefit
from the latency and scaling advantages of aggregat-
ing information at the edge, without needing to worry
about compromise of the keys it uses to gather that
information.

5.4 Keyless SSL

Keyless SSL [18]] is a design that allows a CDN to
serve HTTPS connections with the origin’s SSL/TLS
certificate without needing to have access to the ori-
gin’s private key. It does so by having a small server
that runs (in the original design) on the origin, which
keeps the private key and is contacted during TLS
session establishment to perform the cryptographic
operations that authenticate the server. Others have
shown that the server holding the private key can be
run within an SGX enclave, and that there are substan-
tial latency and scalability benefits to doing so [33].
Harpocrates can be used as an alternate way to imple-
ment the keyless server.

6 Implementation

To implement Harpocrates, we use an existing pack-
age called SecureWorker [2] that allows JavaScript

workers to run inside the trusted environment pro-
vided by an Intel SGX enclave. The execution envi-
ronment outside of the enclave (for untrusted code)
is provided by Node.js, a popular engine for server-
side JavaScript. Node.js is much too large and has
too many dependencies to be practical for running in-
side of an SGX enclave, so SecureWorker uses the
Duktape [4] JavaScript engine to provides a familiar
Worker-like environment inside the enclave. Duk-
tape is designed to be embedded in other environ-
ments, and is therefore very lightweight and has few
dependencies. SecureWorker allows users to write
isometric code and use the same code on client, server,
and inside enclaves, it presents the secure workers
as just another, secure and trusted, component in
the JavaScript-based architecture. The SecureWorker
package provides a rich API in which we can start a
new worker, terminate it, receive and send messages
between the trusted and untrusted part of the system,
and even perform remote attestation services.

The original SecureWorker package provided
wrappers for a subset of the JavaScript webcrypto
API [5]; however, this subset was small, and only cov-
ered a few symmetric key ciphers and has functions
provided by early releases of the Intel SGX SDK. Be-
cause we expect cryptography to be the main use case
for trusted code, we extended these wrappers to cover
public key cryptography and a larger set of ciphers
and hashes from the OpenSSL library.

For the sake of this prototype, we focused on the
design aspect of the system and did not include the
full remote attestation in our implementation. The
full remote attestation process requires a license from
Intel, a signed certificate from a recognized certificate
authority, and a registered service provider ID [1];
this does not add to the proof-of-concept value of our
implementation.

7 Evaluation

We evaluate the feasibility of our approach by showing
that it does not cause undue overheads on worker
functions; showing the latency benefits that are to
be gained from moving these workers to the edge;
and showing the utility of the system by presenting a
detailed case study showing how to build a website-
specific DDoS defense mechanism.

Our evaluation was done in the CloudLab [31]
testbed. All hardware SGX evaluation was done using
an Intel 15-6260U processor.

7.1 Microbenchmarks

In general, small functions that do not use large
amounts of memory execute at a similar speed within
an SGX enclave with outside of ones [[13]. We found
this to hold for the types of functions needed for many
fingerprinting and secure cookie schemes: we ran a
SHA-256 hash of 20 bytes of data using the JavaScript
js-sha256 library. Outside of the enclave, this func-
tion was run in Node.js; inside, it was run using the
Duktape JavaScript engine. In both cases, the actual
hash implementation is native code. Outside of the
enclave, we found that it took, on average, 0.0017ms
(averaged over 10,000 repetitions) and 0.0029ms (av-
eraged over 100,000 repetitions), while the same hash,
run entirely within an enclave took only 0.0041ms
on average (averaged over 100,000 repetitions). We
found that the gap between the execution speed out-
side and inside the enclave gets smaller, in relative
terms, as we increase the input message size. From
this, we can conclude that for many small functions,
running inside SGX will not, itself, introduce over-
heads that are significant in comparison to network
RTTs.

There is, however, another source of overhead that
we must consider: crossing the trust boundary to en-
ter and exit an enclave does have a noticeable perfor-
mance effect. We assume that workers implemented
in our system will have two such boundary crossings:
one ECALL made when the untrusted code posts an
event that causes execution of the trusted code, and
one OCALL when the trusted code posts results back.
Under this assumption, the effect is still within rea-
sonable range compared to wide-area network delays:
when we re-factor the function above to put the testing
loop in the untrusted code and the hash itself in the
trusted code, the average time is 0.9ms. This is sig-
nificant, but still well under the typical network round
trip time between a client and origin server.

We do note that initialization of the enclave adds
additional latency: in our experiments, this amounted
to an extra 16ms, and would be much higher with fully
implemented remote attestation. This is a one-time
cost per CDN server, and CDNs have two choices for
how to handle it. One would be to implement SGX
enclave initialization on-demand and to shut down an
enclave after some period of inactivity. This would
keep overheads low by preventing the CDN from hav-
ing to maintain many enclaves, but would result in
occasional higher latencies seen by clients (e.g. the
first to use the origin from a particular geographi-

cal region). Another would be to proactively and
predictively bring up enclaves; this could reduce the
occasional latency spikes, but would require more so-
phisticated workload prediction and could mean more
resources spent maintaining inactive enclaves.

7.2 End-to-end Benchmark

For the deployed topology configuration, we emulated
link latencies for the user-to-CDN and CDN-to-origin
links. In [12]], the authors found that a typical round
trip time between a client and the Cloudflare CDN was
16ms; we approximate this in the emulated topology
using a 10ms (one-way) delay between the end user
and the CDN. (We do not model the time it takes
for the client to find the closest CDN server.) For
the link between the CDN and the origin server, we
used a 30ms (one-way) delay, approximating an inter-
continental link of about 9,000 km.

The function we used for this evaluation is a simple
one which calculates a secure one-time user cookie
for the end user. The primary computation done by
this function is the hash described above. The request
made for this experiment is minimal, as is the response
from the server.

From the client to the origin, passing through the
CDN, the time to retrieve the result averaged 118ms.
(This includes the time to set up the TCP connection,
send the request, compute the secure cookie, etc.)
When the function is moved to the CDN, the time
is only 38ms, a reduction of almost 2/3. The exact
benefit in practice will, of course depend on how close
the CDN is to the end user (the closer, the higher the
benefit), how close the origin server is to the CDN
(the farther, the greater the benefit), and the amount
of time the function takes to execute (long functions
may dominate network RTT).

7.3 Case Study

To illustrate how Harpocrates can be used to im-
plement one of the applications from Section [5] we
show snippets of code from our implementation of the
cookie-checking DOS protection.

Listing [I] gives the general sense of what the un-
trusted portion of the code for this function does.
Lines 1 and 2 set up the SecureWorker package,
loading in the binary (enclave.so) and Javescript
(cookies. js) that implement the trusted portion of
the cookie checker; recall that the binary run inside of

the enclave is the lightweight Duktape JavaScript en-
gine. Lines 4—10 are the function that will receive the
completion event from the untrusted code; we omit
the body of this function, which simply forwards the
request to the client or drops it depending on the mes-
sage sent by the trusted code. Line 13 is where the
message is posted to the secure worker; here, the user-
name, nonce (to prevent replays), and expiration are
available in plaintext in the request, as is the cookie.

Listing [2] shows the trusted code that runs in the
SGX enclave in response to the postMessage from
the untrusted code. Line 2 performs the concatenation
of the data passed in with the secret In a full imple-
mentation, this secret would be obtained (just once)
from the origin on enclave initialization via SGX’s
remote attestation; our prototype does not implement
remote attestation. Line 3 hashes this concatenated
value, and line 4 checks this concatenation against the
cookie sent by the client and sends a completion event
to the untrusted code via postMessage.

8 Conclusion and Future Work

In this paper, we have presented Harpocrates, a sys-
tem for moving computation from origin webservers
to nodes in a CDN network, which typically reside at
or near the network edge. Using SGX enclaves, our
system allows the origin webserver to place “master
secrets” in these enclaves, giving them strong assur-
ance that these secrets will not be leaked even if the
CDN needs to be able to “see” data derived from
them in order to do its job. By using JavaScript and
an API similar to the WebWorker API, we make it
easy for the CDN’s customer to move computation
from the server to the CDN. We demonstrate that the
overheads inherent in this arrangement are not high,
and that there is significant benefit to end users in the
origin being able to offload secure computations to
the CDN servers near them.

Harpocrates is designed for applications with small
amounts of trusted code and small master secrets.
This is due to the limited enclave size provided by
SGX and the costs associated with crossing the en-
clave boundary. These have performance implica-
tions for bigger applications, due to page swapping or
the need to build multiple enclaves with secure com-
munication channels between them. We look to other
work that has focused on running larger, more inten-
sive applications in SGX [28| [7] for ways to alleviate
this limitation in the future.

01NN AW =

—
W= oo

wn W=

Listing 1: Partial code listing for untrusted portion of cookie checking function

var SecureWorker
const worker

worker.onMessage (function (message) {
if (message.result) {
// Forward request to origin
} else {
// Drop request

}
I3
// Parse username, nonce, expiration,
worker.postMessage ({name: username, n:

require(’./lib/real.js’);
new SecureWorker(’enclave.so’,

’cookies.js’);

and cookie from request
nonce,

exp: expiration, c: cookie});

Listing 2: Partial code listing for trusted portion of cookie checking function

SecureWorker.onMessage (function (message) {

var hashstring

message.name.concat (message.n,message.exp, SECRET);

var hashvalue = crypto.subtle.digest({name: ’*SHA-256’'}, hashstring);
SecureWorker.postMessage ({result: hashvalue == meassage.c});
s
In the future, we propose to further improve per- References

formance by leveraging Intel QuickAssist Technol-
ogy (QAT) [30]. QAT-based accelerators can speed
HTTPS connection services by securely offloading
TLS operations on private keys to the NIC.

Although our proposed design improves overall
performance and scalability by eliminating the need
for the long distance connection to the origin server,
the scalability in the current prototype can present
a problem because of the need for a separate SGX
enclave for each origin server. This problem can be
mitigated with a method to guarantee clean separation
between different CDN’s clients data.

The use cases we present and possible applications
are to demonstrate the power of our proposed pro-
totype, but this prototype is certainly not limited to
those use cases. We also expect to implement ad-
ditional cloud-related applications that require both
secrecy and high performance.

Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant Numbers
CNS-1419199 and CNS-1314945, and a fellowship
from the University of Utah School of Computing.

10

[1] Intel software guard extensions remote attestation
end-to-end example. https://software.intel.
com/en-us/articles/intel-software-guard-
extensions-remote-attestation-end-to-
end-example, 2016.

[2] SecureWorker. https://github.com/

luckychain/node-secureworker, 2017.

(3]

Cloudflare - the web performance & security company.
https://www.cloudflare.com/, 2018.

[4] Duktape. http://duktape.org/, 2018.

[5] Web crypto API. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Crypto_API,

2018.

Amazon. Amazon CloudFront.
amazon.com/cloudfront/, 2018.

S. Arnautov, B. Trach, F. Gregor, T. Knauth,
A. Martin, C. Priebe, J. Lind, D. Muthukumaran,
D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Ey-
ers, R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE:
Secure Linux Containers with Intel SGX. In OSDI ’16,
pages 689703, GA, 2016. USENIX Association.

H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro,
M. A. Kaafar, and L. Mathy. Splitbox: Toward effi-
cient private network function virtualization. In Pro-
ceedings of the 2016 workshop on Hot topics in Mid-

(6] https://aws.

(7]

(8]

https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://github.com/luckychain/node-secureworker
https://github.com/luckychain/node-secureworker
https://www.cloudflare.com/
http://duktape.org/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudfront/

(9]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

dleboxes and Network Function Virtualization, pages
7-13. ACM, 2016.

AWS. Lambda@edge. https://aws.amazon.com/
lambda/edge/, 2018.

A. Baumann, M. Peinado, and G. Hunt. Shielding
applications from an untrusted cloud with Haven. In
OSDI ’14. USENIX — Advanced Computing Systems
Association, Oct. 2014.

K. Bhargavan, 1. Boureanu, P.-A. Fouque, C. Onete,
and B. Richard. Content delivery over TLS: A cryp-
tographic analysis of Keyless SSL. In Security and
Privacy (EuroS&P), 2017 IEEE European Symposium
on, pages 1-16. IEEE, 2017.

E. Bos. Analyzing the performance of Cloudflare’s
anycast CDN, a case study. In 27th Twente Student
Conference on IT, July 2017.

S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt,
M. Lorenz, C. Fetzer, P. Pietzuch, and R. Kapitza.
Securekeeper: confidential zookeeper using intel sgx.
In Proceedings of the 17th International Middleware
Conference, page 14. ACM, 2016.

F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, and C. Wilson. Measurement and
analysis of private key sharing in the https ecosystem.
In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages
628-640. ACM, 2016.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai. Sgxpectre attacks: Leaking enclave secrets via
speculative execution. CoRR, abs/1802.09085, 2018.

Cloudflare. Aggregating multiple requests. https:
//developers.cloudflare.com/workers/
recipes/aggregating-multiple-requests/.
Cloudflare. Keyless SSL: The nitty gritty technical de-
tails. https://blog.cloudflare.com/keyless-
ssl-the-nitty-gritty-technical-details/,
2014.

Cloudflare. Overview of Keyless SSL. https://
www.cloudflare.com/ssl/keyless-ssl/, 2014.

Cloudflare. Incident report on memory leak
caused by Cloudflare parser bug. https:
//blog.cloudflare.com/incident-report-
on-memory-leak-caused-by-cloudflare-
parser-bug/, 2017.

Cloudflare. Cloudflare worker. https://www.
cloudflare.com/products/cloudflare-
workers/, 2018.

D. Goltzsche, S. Riisch, M. Nieke, S. Vaucher, N. We-
ichbrodt, V. Schiavoni, P.-L. Aublin, P. Costa, C. Fet-
zer, P. Felber, et al. Endbox: Scalable middlebox func-
tions using client-side trusted execution. In Proceed-
ings of the 48th International Conference on Depend-
able Systems and Networks. DSN, volume 18, 2018.

11

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Google. Google Cloud CDN - low latency content de-
livery. https://cloud.google.com/cdn/, 2018.

Intel. Intel software guard extensions developer guide.
https://download.01.org/intel-sgx/linux-
1.7/docs/Intel_SGX_Developer_Guide.pdf,
2016.

D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, and
P. Steenkiste. And then there were more: Secure com-
munication for more than two parties. In Proceed-
ings of the 13th International Conference on emerg-
ing Networking EXperiments and Technologies, pages
88-100. ACM, 2017.

D. Naylor, K. Schomp, M. Varvello, 1. Leontiadis,
J. Blackburn, D. R. Lépez, K. Papagiannaki, P. Ro-
driguez Rodriguez, and P. Steenkiste. Multi-context
TLS (mcTLS): Enabling secure in-network function-
ality in TLS. In ACM SIGCOMM Computer Commu-
nication Review, volume 45, pages 199-212. ACM,
2015.

E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai
network: a platform for high-performance Internet ap-
plications. ACM SIGOPS Operating Systems Review,
44(3):2-19, 2010.

D. O’Keefe and J. Tian. SGXSpectre: Sample
code demonstrating a Spectre-like attack against an
Intel SGX enclave. https://github.com/lsds/
spectre-attack-sgx, Jan. 2018.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silber-
stein. Eleos: Exitless OS services for SGX enclaves.
In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys *17, pages 238-253,
New York, NY, USA, 2017. ACM.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
Blindbox: Deep packet inspection over encrypted traf-
fic. ACM SIGCOMM Computer Communication Re-
view, 45(4):213-226, 2015.

X. Shuai, L. Yao, and Z. Wang. QAT: Evaluation of a
dedicated hardware accelerator for high performance
web service. In Advanced Communication Technol-
0gy (ICACT), 2018 20th International Conference on,
pages 277-280. IEEE, 2018.

The CloudLab Team. The CloudLab website. https:
//cloudlab.us.

B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bha-
totia, and C. Fetzer. Shieldbox: Secure middleboxes
using shielded execution. In Proceedings of the Sym-
posium on SDN Research, page 2. ACM, 2018.

C.-C. Tsai, D. E. Porter, and M. Vij. Graphene-SGX:
A practical library OS for unmodified applications on
SGX. In Proceedings of the USENIX Annual Technical
Conference (ATC), page 8, 2017.

https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://developers.cloudflare.com/workers/recipes/aggregating-multiple-requests/
https://developers.cloudflare.com/workers/recipes/aggregating-multiple-requests/
https://developers.cloudflare.com/workers/recipes/aggregating-multiple-requests/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details/
https://www.cloudflare.com/ssl/keyless-ssl/
https://www.cloudflare.com/ssl/keyless-ssl/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://www.cloudflare.com/products/cloudflare-workers/
https://cloud.google.com/cdn/
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://github.com/lsds/spectre-attack-sgx
https://github.com/lsds/spectre-attack-sgx
https://cloudlab.us
https://cloudlab.us

[34]

[35]

L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard Al problems for security. In
Proceedings of The International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), May 2013.

C. Weng, J. Li, W. Li, P. Yu, and H. Guan. STYX:
A trusted and accelerated hierarchical SSL key man-
agement and distribution system for cloud based CDN
application. In Proceedings of the ACM Symposium
on Cloud Computing (SOCC), Sept. 2017.

12

	Introduction
	Background and Related Work
	Intel SGX
	TLS and Keyless SSL
	Related Work

	Threat Model
	Design
	Example Applications
	Secure Cookie DoS Prevention
	Site-Specific DoS Authentication
	Content Aggregation at the Edge
	Keyless SSL

	Implementation
	Evaluation
	Microbenchmarks
	End-to-end Benchmark
	Case Study

	Conclusion and Future Work

