
Supporting Docker in 
Emulab-Based Network Testbeds

David	Johnson,	Elijah	Grubb,	Eric	Eide	
University	of	Utah



�2



�2



�2



�2



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



• over	the	course	of	a	study…	

• prototype	on	laptop	

• network	testbed	

• commercial	cloud	

• need	to	move	experimental  
artifacts	around

�3



This talk

• extended	Emulab	so	users	can	create	experiments 
in	which	some	or	all	nodes	are	Docker	containers	

• challenges	
• preserving	users’	“testbed	experience”	
• meshing	with	Emulab’s	infrastructure	

• results	
• just	works:	52/60	top	Docker	Hub	images	automatically	adapted	
• supports	large	(5K-node)	experiments

�4



Docker

�5



Docker

• based	on	containers	

• filesystems	populated	via	images	

�5

Physical	Host
Host	OS
Docker

Container

Filesystem

App



Docker

• based	on	containers	

• filesystems	populated	via	images	

• images	created	via	Dockerfiles

�5

Physical	Host
Host	OS
Docker

Container

Filesystem

App

ImageDockerfile



Emulab

• testbed	management 
software	

• allocates	physical	and  
virtual	resources	to	users	

• configures	resources	

• isolates	users	from	each  
other

�6



Emulab

�7



Emulab

• organized	around	profiles	

• profiles	are	instantiated  
to	make	experiments	

�7

Profile



Emulab

• organized	around	profiles	

• profiles	are	instantiated  
to	make	experiments	

• nodes’	disks	populated 
via	disk	images	

�7

Profile



Emulab

• organized	around	profiles	

• profiles	are	instantiated  
to	make	experiments	

• nodes’	disks	populated 
via	disk	images	

• in-experiment	services

�7

Profile Disk	images



Goal: Emulab + Docker should “just work”

�8



Goal: Emulab + Docker should “just work”

• containers	in	Emulab	are	just	another	kind  
of	virtual	node

�8

Docker	images



Goal: Emulab + Docker should “just work”

• containers	in	Emulab	are	just	another	kind  
of	virtual	node
• Emulab	user	can	choose	any	Docker	image	

• preserve	Emulab’s	experimenter	services	
• e.g.,	SSH,	local/remote	storage	access,	…

�8

Docker	images



Goal: Emulab + Docker should “just work”

• containers	in	Emulab	are	just	another	kind  
of	virtual	node
• Emulab	user	can	choose	any	Docker	image	

• preserve	Emulab’s	experimenter	services	
• e.g.,	SSH,	local/remote	storage	access,	…

• preserve	Emulab’s	network	services	
• e.g.,	control	network,	traffic	shaping,	…

�8

Docker	images



Goal: Emulab + Docker should “just work”

• containers	in	Emulab	are	just	another	kind  
of	virtual	node
• Emulab	user	can	choose	any	Docker	image	

• preserve	Emulab’s	experimenter	services	
• e.g.,	SSH,	local/remote	storage	access,	…

• preserve	Emulab’s	network	services	
• e.g.,	control	network,	traffic	shaping,	…

• preserve	Docker	user	experience	
• e.g.,	“docker	commit”

�8

Docker	images



�9

httpd:latest



Preserving Emulab’s experimenter services

• shell	access	to	nodes	

• remote	and	local	storage	

• network	configuration	
• addressing,	routing,	shaping	

• startup	programs

�10



Preserving Emulab’s experimenter services

• shell	access	to	nodes	

• remote	and	local	storage	

• network	configuration	
• addressing,	routing,	shaping	

• startup	programs

• typical	Docker	images	are	
minimal	appliances	

• run	the	application	only	
• not	prepared	to	host	other	
services

�10

httpd:latest



augmentation

generate	a	new	Dockerfile, 
starting	from	the	user’s	chosen	image, 

and	adding	testbed	software



Augment the startup

�12

httpd:latest



Augment the startup

• make	temporary	container

�12

httpd:latest

Container



Augment the startup

• make	temporary	container
• add	build	toolchain

�12

httpd:latest

Container
build	tools



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit

�12

httpd:latest

Container
build	tools

runit



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit

�12

httpd:latest

Container
build	tools

runit

runit



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit

�12

httpd:latest

runit



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit

�12

httpd:latest

runit

FROM	httpd:latest	

COPY	…runit…	
RUN	…runit-setup…



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit
• add	Dockerfile	instructions	to	
install	runit

�12

httpd:latest

runit

FROM	httpd:latest	

COPY	…runit…	
RUN	…runit-setup…



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit
• add	Dockerfile	instructions	to	
install	runit
• configure	runit	to	run	the	
original	ENTRYPOINT

�12

httpd:latest

runit

FROM	httpd:latest	

COPY	…runit…	
RUN	…runit-setup…



Augment the startup

• make	temporary	container
• add	build	toolchain
• compile	and	package	runit
• add	Dockerfile	instructions	to	
install	runit
• configure	runit	to	run	the	
original	ENTRYPOINT
• when	augmented	image	is	used,	
set	ENTRYPOINT	to	runit

�12

httpd:latest

runit

FROM	httpd:latest	

COPY	…runit…	
RUN	…runit-setup…



Add the Emulab “client-side” software

• make	temporary	container	
• compile	and	package	Emulab	
client-side	software	
• add	Dockerfile	instructions	to	
install	the	software	

• user-selectable	levels	of	
augmentation

�13

FROM	httpd:latest	

COPY	…	
RUN	…runit-setup…	
				&&	…emulab-setup…



Local registry

�14

Docker	registry



Local registry

• cache	augmented	images	in	a	
testbed-local	Docker	registry	

• speeds	subsequent	experiment	
creation	

• integrated	with	Emulab’s	user	
authentication	&	authorization	
model

�14

Docker	registry

httpd:latest perl:5.28

redis:4.0 node:8.11.3

mysql:5.7 erlang:21.0



Preserving Emulab’s network services

• separate	control	network	

• experiment	traffic	shaping	

• control-network	firewalls	

• DNS

�15



Preserving Emulab’s network services

• separate	control	network	

• experiment	traffic	shaping	

• control-network	firewalls	

• DNS

• Docker’s	Container	Network	
Model	(CNM)	is	mismatched	to	
demands	of	a	network	testbed	

• too	abstract	

• tries	to	control	too	much	

• missing	features

�15



leverage the physical host

manage	network	services 
on	the	physical-host	side	of 

containers’	virtual	network	interfaces



Control network

�17

Physical	Host

physical	control	
network



Control network

• at	physical-host	boot	
• create	dockercnet	virtual	
network	

• bridge	to	the	physical	control	
network	

�17

Physical	Host

dockercnet

physical	control	
network



Control network

• at	physical-host	boot	
• create	dockercnet	virtual	
network	

• bridge	to	the	physical	control	
network	

• at	container	startup	
• connect	to	dockercnet	
• set	up	NAT	to	expose	SSH	over	the	
physical	host’s	public	IP	address

�17

Physical	Host

Container Container Container

dockercnet

physical	control	
network



Traffic shaping and firewalls

�18

Physical	Host

dockercnet

control	network

experiment	networks



Traffic shaping and firewalls

• Emulab	subscribes	to	life-cycle	
events	of	each	container	

• at	container	startup	
• install	tc	rules	for	expt.-network	
traffic	shaping	

• install	iptables	rules	for	control-
network	firewalling	

�18

Physical	Host

dockercnet

control	network

experiment	networks



Traffic shaping and firewalls

• Emulab	subscribes	to	life-cycle	
events	of	each	container	

• at	container	startup	
• install	tc	rules	for	expt.-network	
traffic	shaping	

• install	iptables	rules	for	control-
network	firewalling	

• at	container	shutdown	
• remove	the	rules

�18

Physical	Host

Container Container Container

dockercnet

control	network

experiment	networks

firewall

shaping



Dedicated and shared modes

�19

Physical	Host

Container Container Container

experiment	networks



Dedicated and shared modes

• dedicated—containers	run	on	
physical	machine	reserved	to	one	
experiment

�19

Physical	Host

Experiment

Container Container Container

experiment	networks



Dedicated and shared modes

• dedicated—containers	run	on	
physical	machine	reserved	to	one	
experiment
• shared—physical	machine	may	
host	containers	from	several	
experiments	

�19

Physical	Host

Expt.	1 Expt.	2

Container Container Container

experiment	networks



Dedicated and shared modes

• dedicated—containers	run	on	
physical	machine	reserved	to	one	
experiment
• shared—physical	machine	may	
host	containers	from	several	
experiments	

�19

Physical	Host

Expt.	1 Expt.	2

Container Container Container

experiment	networks

192
.168

.1.1

192
.168

.1.1



Dedicated and shared modes

• dedicated—containers	run	on	
physical	machine	reserved	to	one	
experiment
• shared—physical	machine	may	
host	containers	from	several	
experiments	

• we	modified	Docker	to	support	
multiple,	isolated	layer	2	nets	on	
a	single	physical	host

�19

Physical	Host

Expt.	1 Expt.	2

Container Container Container

experiment	networks

192
.168

.1.1

192
.168

.1.1



Implemented & deployed

• supported	OSes	
• Alpine	Linux	3.6,	3.7,	3.8	
• CentOS	7	
• Debian	8,	9,	sid	
• Ubuntu	14.04,	16.04,	18.04	

• registries	at

�20

…



evaluation
•	60	most	popular	images	from	Docker	Hub  

•	four	research	Docker	images 
•	time	to	augment	Docker	images 
•	time	to	create	large	experiments



�22

Category Docker	Images

Linux	distro alpine,	centos,	debian,	ubuntu,	amazonlinux,	
busybox,	fedora

Debian buildpack-deps,	cassandra,	chronograf,	drupal,	
elasticsearch,	ghost,	golang,	gradle,	groovy,	
haproxy,	httpd,	influxdb,	java,	jenkins,	jruby,	
kibana,	logstash,	mariadb,	maven,	memcached,	
mongo,	mysql,	nextcloud,	nginx,	node,	openjdk,	
owncloud,	percona,	perl,	php,	postgres,	python,	
rabbitmq,	redis,	rethinkdb,	rocket.chat,	ruby,	
sentry,	solr,	sonarqube,	tomcat,	wordpress,	
telegraf

Alpine consul,	docker,	kong,	neo4j,	vault,	registry

Scratch hello-world,	nats,	swarm,	traefik



�22

Category Docker	Images

Linux	distro alpine,	centos,	debian,	ubuntu,	amazonlinux,	
busybox,	fedora

Debian buildpack-deps,	cassandra,	chronograf,	drupal,	
elasticsearch,	ghost,	golang,	gradle,	groovy,	
haproxy,	httpd,	influxdb,	java,	jenkins,	jruby,	
kibana,	logstash,	mariadb,	maven,	memcached,	
mongo,	mysql,	nextcloud,	nginx,	node,	openjdk,	
owncloud,	percona,	perl,	php,	postgres,	python,	
rabbitmq,	redis,	rethinkdb,	rocket.chat,	ruby,	
sentry,	solr,	sonarqube,	tomcat,	wordpress,	
telegraf

Alpine consul,	docker,	kong,	neo4j,	vault,	registry

Scratch hello-world,	nats,	swarm,	traefik

fully	supported	
partially	supported	
not	supported



�23

Category Docker	Images

Linux	distro alpine,	centos,	debian,	ubuntu,	amazonlinux,	
busybox,	fedora

Debian buildpack-deps,	cassandra,	chronograf,	drupal,	
elasticsearch,	ghost,	golang,	gradle,	groovy,	
haproxy,	httpd,	influxdb,	java,	jenkins,	jruby,	
kibana,	logstash,	mariadb,	maven,	memcached,	
mongo,	mysql,	nextcloud,	nginx,	node,	openjdk,	
owncloud,	percona,	perl,	php,	postgres,	python,	
rabbitmq,	redis,	rethinkdb,	rocket.chat,	ruby,	
sentry,	solr,	sonarqube,	tomcat,	wordpress,	
telegraf

Alpine consul,	docker,	kong,	neo4j,	vault,	registry

Scratch hello-world,	nats,	swarm,	traefik

fully	supported	
partially	supported	
not	supported



�23

Category Docker	Images

Linux	distro alpine,	centos,	debian,	ubuntu,	amazonlinux,	
busybox,	fedora

Debian buildpack-deps,	cassandra,	chronograf,	drupal,	
elasticsearch,	ghost,	golang,	gradle,	groovy,	
haproxy,	httpd,	influxdb,	java,	jenkins,	jruby,	
kibana,	logstash,	mariadb,	maven,	memcached,	
mongo,	mysql,	nextcloud,	nginx,	node,	openjdk,	
owncloud,	percona,	perl,	php,	postgres,	python,	
rabbitmq,	redis,	rethinkdb,	rocket.chat,	ruby,	
sentry,	solr,	sonarqube,	tomcat,	wordpress,	
telegraf

Alpine consul,	docker,	kong,	neo4j,	vault,	registry

Scratch hello-world,	nats,	swarm,	traefik

fully	supported	
partially	supported	
not	supported

Emulab	automatically	adapted	
52/60	images	into	the	testbed	
environment	and	instantiated	
containers	from	them.



Scalability

• create	large	experiments	with	
Docker	containers	

• in	each	trial	
• 200	containers	per	physical	host	
• each	container	runs	augmented	
ubuntu:14.04	image	from	testbed’s	
local	registry	

• all	containers	attached	to	a	LAN	

• physical	hosts:	CloudLab	xl170	nodes	
running	Ubuntu	16.04

�24



Scalability

• create	large	experiments	with	
Docker	containers	

• in	each	trial	
• 200	containers	per	physical	host	
• each	container	runs	augmented	
ubuntu:14.04	image	from	testbed’s	
local	registry	

• all	containers	attached	to	a	LAN	

• physical	hosts:	CloudLab	xl170	nodes	
running	Ubuntu	16.04

• 1–25	physical	hosts	
• yielding	200–5,000	containers	

�24



Scalability

• create	large	experiments	with	
Docker	containers	

• in	each	trial	
• 200	containers	per	physical	host	
• each	container	runs	augmented	
ubuntu:14.04	image	from	testbed’s	
local	registry	

• all	containers	attached	to	a	LAN	

• physical	hosts:	CloudLab	xl170	nodes	
running	Ubuntu	16.04

• 1–25	physical	hosts	
• yielding	200–5,000	containers	

• measure	
• elapsed	time	to	first	container	
• avg.	creation	time	for	each	container	
after	the	first	

• elapsed	time	to	create	all	containers	on	
each	physical	host	

• elapsed	time	to	create	full	expt.	

�24



Scalability

• create	large	experiments	with	
Docker	containers	

• in	each	trial	
• 200	containers	per	physical	host	
• each	container	runs	augmented	
ubuntu:14.04	image	from	testbed’s	
local	registry	

• all	containers	attached	to	a	LAN	

• physical	hosts:	CloudLab	xl170	nodes	
running	Ubuntu	16.04

• 1–25	physical	hosts	
• yielding	200–5,000	containers	

• measure	
• elapsed	time	to	first	container	
• avg.	creation	time	for	each	container	
after	the	first	

• elapsed	time	to	create	all	containers	on	
each	physical	host	

• elapsed	time	to	create	full	expt.	

• repeat	each	trial	3×,	report	avgs.

�24



�25



�25

200	containers  
14	minutes



�25

200	containers  
14	minutes

5,000	containers  
1.87	hours



�25

200	containers  
14	minutes

5,000	containers  
1.87	hours

Conclusion:	acceptable	performance,	
but	more	server-side	optimization	will	
be	needed	for	large	experiments.



�25

parallelized



�25

one-time	setup



Conclusion

• Emulab	+	Docker	“just	works”	
• experimenter	services—automatic	augmentation	
• network	services—physical	host	control	&	minor 
Docker	mods	

• supports	existing	Docker	images	
• promotes	artifact	portability	
• promotes	research	repeatability	

• available	in	Emulab-based	testbeds	now!

�26

Eric	Eide	
www.cs.utah.edu/~eeide/	
email:	eeide@cs.utah.edu	
Twitter:	@eeide


