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Abstract
Researchers conduct experiments in a variety of comput-
ing environments, including dedicated testbeds and com-
mercial clouds, and they need convenient mechanisms for
deploying their software within these disparate platforms.
To address this need, we have extended Emulab so that it
can instantiate and configure container-based virtual de-
vices using Docker images. Docker is a de facto standard
for packaging and deploying software in cloud environ-
ments; now, researchers can use Docker to package and
deploy software within Emulab-based testbeds as well.
We describe how Emulab incorporates Docker and how
it extends Docker images to support the interactivity that
researchers expect within a testbed. We show that Emulab
can use many popular Docker images to create testbed
experiments. We expect that Emulab’s support for Docker
will make it easier for researchers to move their activities
freely, both into the testbed and out into production.

1 Introduction
Reliably initializing and configuring devices is essen-
tial for conducting repeatable experiments in a testbed.
Since its inception, the Emulab testbed-management sys-
tem [17] has used a custom disk-imaging subsystem for
installing operating systems and other software on de-
vices. That subsystem, called Frisbee [11], was built and
optimized for distributing disk images within a controlled
cluster of machines—and only within a cluster. Today,
however, many Emulab users rely on multiple platforms
to conduct experiments over the course of a full study.
In addition to using multiple clusters (e.g., Utah Emu-
lab, CloudLab, and Chameleon)1 to run tests atop myriad
hardware, a cybersecurity researcher might debug an ex-
periment by scaling it down to run in VMs on a laptop,
and perform “production testing” by scaling it up for a
commercial cloud. An experimenter who moves among
multiple platforms needs to deploy software and config-
ure devices in each of these environments—a task that
Frisbee was never designed to tackle.

Happily for testbed users, the DevOps community has
already met the challenge. Docker [6] is a popular tool

1https://www.emulab.net/, https://cloudlab.us/, https:
//www.chameleoncloud.org/

that allows a person to package a collection of software
into an image and then instantiate virtual devices based
on that image. Docker images are portable across multi-
ple infrastructures because they are based on containers,
which run atop an infrastructure-managed OS kernel and
hardware device. The Docker ecosystem includes public
repositories of popular “virtual appliances” and tools that
allow people to create and publish their own images.

We have extended the Emulab testbed-management
software to support the allocation and configuration of
container-based devices using Docker images. The main
benefit is to make it easier for experimenters to move ac-
tivities into Emulab-based testbeds—including the Utah
Emulab site, CloudLab, PhantomNet, and POWDER2—
and out to production or other environments. An addi-
tional and important benefit is scale. Because containers
are a lightweight virtualization technology, testbed users
can run experiments that involve large numbers of vir-
tual nodes while using only modest physical resources.
Obtaining these benefits was not straightforward. Our
goal was to add Docker support to Emulab in a way that
preserves both the Emulab features that testbed users ex-
pect and the Docker features that users of that ecosystem
expect. Smooth integration requires that existing Docker
images “just work” as the bases of devices in Emulab.
This paper describes how we met this challenge.

We make two contributions. First, we present the de-
sign and implementation of Docker support within Em-
ulab. Emulab automatically adapts Docker images for
use in a testbed: this allows container-based virtual de-
vices to (1) be “first-class citizens” within experiments
and (2) support features that researchers expect of devices
within Emulab, such as interactive login. Second, we
show that Emulab’s Docker support works with existing,
third-party Docker images. Emulab can automatically
adapt 52 of the 60 most popular images from Docker Hub
into the Emulab environment and instantiate containers
from them (§5.1). The process also works for images from
research projects that we selected as case studies (§5.2).
The time to adapt a Docker image for Emulab is suitable
for on-demand conversion, and Emulab can quickly create
large experiments using Docker images (§5.3).

2https://phantomnet.us/, https://powderwireless.net/
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2 Background: Emulab
Emulab is testbed-management software that supports
controlled and repeatable experiments in systems, net-
working, cybersecurity, and other areas of computing.
The Utah Emulab testbed manages hundreds of bare-metal
servers that have multiple network interfaces to a variety
of layer 1 and 2 switches. It provisions subsets of those
resources into isolated, emulated networks of physical
and virtual nodes for users on demand. Emulab resembles
the control software of today’s clouds, which provision
virtual machines and networks atop physical substrate, al-
though Emulab in general offers more kinds of resources,
lower-level resource control, and stronger isolation.

To allocate resources in Emulab, a user writes a profile,
which is a description of everything needed to build an em-
ulated, networked research environment: physical and/or
virtual hardware (servers, storage, switches), network con-
figuration (links and LANs, IP addresses, traffic shaping),
and software (operating systems, packages, scripts). The
user then instantiates the profile to create an experiment.
Emulab provisions the experiment with the hardware and
software described in the profile. The profile may request
specific hardware and configuration, such as requesting
specific physical machines, or asserting that some virtual
machines should run on specific physical host nodes. Al-
ternatively, the user can leave some or all of the node and
network configuration details to Emulab, which will find
a best-fit mapping onto its available physical resources.
Once an experiment is allocated, its creator has full con-
trol over its resources. Users interact with nodes over a
remotely accessible control network. In addition to simply
logging into nodes and running installed software, a user
can change software and configuration, capture disk im-
ages, change traffic-shaping parameters, take down links,
reboot nodes, and so on.

3 Leveraging Docker in a Network Testbed
The core abstraction that a network testbed provides to
its users is a collection of physical or virtual nodes, con-
nected into networks of links and LANs. A user provides
the testbed with a description of the environment he or
she requires: the hardware, network, software, and au-
tomation needed to run the user’s experiment(s). The
testbed maps this description to a subset of its resources,
configures them, and makes them available to the user.

Docker enables its users to create, deploy, and manage
containers, which are process-level “virtual machines” fa-
cilitated by the underlying operating system abstractions.
A container is an execution environment that sits atop a
host’s operating system kernel and hardware resources;
a collection of processes runs within the container. The
container determines the filesystems, device interfaces,
network stack, users, privileges, and other resources that

are visible to the processes running inside it. These may
be very different from the resources that are available to
processes that run on the host outside of the container;
indeed, through the careful selection of resources, con-
tainers are generally configured to isolate the processes
that run within them. Docker deploys containers along
with filesystem images: the user-space software running
within the container is therefore independent of the soft-
ware provided by the container’s host.

Prior to Docker, a variety of other systems (e.g., lxc,
OpenVZ, Linux vservers, and FreeBSD jails) provided
similar container experiences. The overwhelming success
of Docker can be attributed to its overall accessibility
to users, especially its image-management toolchain and
central, public image repository. Any system that seeks
to build on top of Docker, therefore, must be careful to
preserve the user experience that makes Docker attractive.

The primary use case envisioned by Docker’s devel-
opers was not that a Docker container would serve as a
kind of node in a testbed. Still, we assert that Docker can
be successfully integrated into testbeds, and that it can
provide useful provenance and reproducibility features
to experimenters. Below, we examine the possibility of
utilizing Docker as a type of network testbed node in Em-
ulab and discuss the challenges (C1–C4) we encountered
while designing our integration. Our goals were not only
to provide a testbed-oriented container orchestration ser-
vice, but also to allow users to seamlessly use the Docker
toolchain in concert with Emulab’s services and features.

3.1 Broadening the Process Model (C1)

The primary use case that Docker supports involves a
large collection of containers, potentially spanning many
machines, in which each container runs a single applica-
tion (one or more processes launched by a single parent)
that provides a specific service (i.e., a microservice ar-
chitecture). For instance, there are popular Docker im-
ages that run memcached and redis3 as services. In this
model, container images are tailored to support only their
single service, unencumbered by unnecessary software
or configuration. Many Docker images do not include an
init daemon to launch and monitor processes, or even a
basic set of user-space tools and libraries.

The Docker community discourages whole-OS-like
containers that run an init and the traditional litany of
supporting services, e.g., syslogd, sshd, and crond [9].
The rationale is that these services are not needed in ev-
ery container: in a large-scale deployment, if a single
service container crashes, orchestration software can sim-
ply spawn another container to fill the void. Docker 1.13
(API version 1.25) added the ability to run a containerized
service automatically from a simple init daemon called

3https://memcached.org/, https://redis.io/
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tini [13]. However, tini only runs a single service
process, reaps zombies,4 and forwards signals received
from outside the container to the service process. This is
sufficient to protect a poorly written service, but does not
support multiple services.

Testbed-based experimentation requires more than the
ability to run a single service per node. Within an ex-
periment, it is beneficial for each node to run basic OS
services (e.g., syslogd and sshd) to support activities
such as debugging and exploration. It is also beneficial
for each node to run a suite of testbed-specific services to
configure the node, conduct in-node monitoring, and au-
tomate experiment deployment and control (e.g., launch
programs or dynamically emulate link failures). This en-
vironment requires a full-featured init daemon and a
common, basic set of user-space software and libraries.

Thus, the first challenge is to support a full-featured
container environment with multiple processes and a real
init, transparent to the user, despite the fact that many
existing Docker images do not include such software.

3.2 Onboarding Docker Images (C2)
For a Docker container to be a first-class node within an
experiment, Emulab must install a suite of “client-side”
tools into the container. These talk to a central configu-
ration server that returns per-node metadata; they create
user accounts, install public keys, configure the network,
and install and run software. The most straightforward
way to install the client-side tools is to add them to the
Docker image that is used to create the container.

Docker images are structured in layers. This allows
many images to share one copy of common content (by
sharing layers), and it simplifies image change manage-
ment (because changes can be isolated to individual lay-
ers). Installing Emulab’s client-side tools into a Docker
image can be accomplished by creating a new image
that is like the original but adds a new layer with the
tools. This is tricky, however, because the tools must
be compiled against the software already installed in the
image. The Docker community recommends many best
practices for image builders [8], but the most important
are (1) minimizing the number of layers and (2) mini-
mizing the size of each layer. To follow these principles,
one must avoid introducing unneeded software and layers
(e.g., build-time-only dependencies) into the images that
are augmented with Emulab’s client-side tools. Once a
Docker image has been augmented with Emulab’s client-
side software, the testbed can cache the augmented image.

A final decision in integrating Docker images with an
existing testbed lies in simply deciding how users can
refer to them. Emulab’s image model has long supported
versioning and provenance, but images are referenced

4A zombie is an exited child process that a (poorly designed) parent
process does not wait for.

by unique identifiers, in contrast to the Docker image
registry’s content-addressed approach. Another difficulty
lies in managing permissions, e.g., making sure that a
user’s Docker images remain private.

In summary, the second challenge lies in managing
a testbed-local catalog of Docker images: augmenting
images as they enter the catalog, doing that flexibly and
at scale, and controlling access to the catalog.

3.3 Addressing the Network Architecture (C3)
Network testbeds and clouds offer similar core orchestra-
tion services to allocate and provision nodes and networks
for users. Both handle the tasks of mapping a logical net-
work description to physical and virtual resources; allocat-
ing node and network resources; creating isolated virtual
networks; performing physical- and virtual-node software
configuration; and image storage and capture. Both pro-
vide virtual network features at layer 2 (e.g., support for
bridges, bridge-based firewalls, and layer 2 isolation) and
layer 3 (e.g., IP endpoint configuration, DNS, tunnels,
and traffic shaping).

Docker’s Container Network Model (CNM) [5] de-
scribes simple network abstractions that support common,
container-based, virtual-network use cases. It describes
a model consisting of sandboxes (containers and their
private network stacks), endpoints (the connections be-
tween sandboxes and networks), and networks (collec-
tions of directly communicating endpoints). Although
this model is abstract and flexible, it does not specifi-
cally model network configuration at different layers of
the stack.5 Instead, the Docker libnetwork controller
provides de facto configuration patterns: for instance, it
provides all networks with a gateway address and assumes
that all networks may want interconnectivity via routing
at layer 3. Thus, in the Docker distribution, there are no
private, layer 2-only subnets whose address ranges could
safely be reused across different isolated networks. Be-
cause of this, two Emulab experiments cannot both have
isolated virtual networks that happen to have the same
subnet address on the same machine. This situation might
arise if Emulab places the Docker-based nodes of the two
experiments on a single shared physical host.

The third challenge to using Docker in a network test-
bed is to merge Docker’s simple model of the network
with the more complex model provided by the testbed.

3.4 Coordination (C4)
Docker offers limited extensibility to support uniquely
featured orchestration engines like testbeds. It provides
a limited plugin system (developers can write network-
driver, volume-driver, and IPAM plugins), but no support

5Contrast CNM with OpenStack’s networking service, which explic-
itly models well-known objects and their configuration—e.g., networks,
subnets, gateways, ports, routers—at different layers of the stack.
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for synchronous, per-container, run-time hooks at key life-
cycle container events, e.g., startup, shutdown, network
interface attach and detach, and snapshot. The ability
to hook these events would support extensibility by an
orchestration engine like a testbed, whose feature set is
more broad than what the single-host Docker daemon
provides. For instance, a hook that executes after virtual
network device creation, but prior to container boot, could
ensure that custom traffic-shaping rules are in place prior
to software execution inside the container.

Adding hook points to Docker for the testbed would
compromise compatibility with Docker outside the test-
bed. The fourth challenge, therefore, is to coordinate
the actions of the testbed with the life cycles of Docker
containers, without modifying Docker.

4 Docker-Emulab Integration
Our goal is to let Emulab users employ Docker containers
as networked, virtual nodes in their experiments, while
preserving as much of the Docker user experience as
possible. Below, we describe how we met our goal and
addressed the challenges discussed in §3.

We integrated Docker into Emulab’s virtual-node ab-
stractions: Docker containers are now a type of node that
a user can request. There were three main integration
points: (1) Emulab’s profile language, allowing users to
request and configure Docker containers as virtual nodes;
(2) Emulab’s server-side logic, which handles virtual node
and network allocation, provisioning, and image hosting;
and (3) Emulab’s client-side software, which handles con-
tainer creation, virtual-network configuration, and image
retrieval and augmentation. The first two are extensions or
implementations of existing abstractions, with the excep-
tion of Docker image support within Emulab’s server-side
software, which we discuss in §4.2. We encountered the
greatest difficulties while extending Emulab’s client-side
abstractions to use Docker to launch containers.

Once Emulab’s server-side processes have allocated re-
sources to an experiment, it reboots and reloads physical
machines with a disk image that contains Docker. Once
each machine boots, Emulab’s client-side software config-
ures its user accounts, network interfaces, and software,
and finally begins container deployment. When Emulab’s
client-side software builds the first container on each host
during experiment setup, it performs several one-time con-
figuration actions (e.g., configuring Docker’s network and
storage drivers; allocating all unused disk space to LVM
volumes for use by our software and by Docker; configur-
ing the Emulab control network in Docker; etc.). These
actions require a global lock to be held; once complete,
further container deployment is parallelized.

In our integrated system, Docker containers can be cre-
ated in dedicated or shared mode. In dedicated mode,
containers run on physical nodes that are reserved to the

user’s experiment, and the user has root-level access to the
underlying physical machine. In shared mode, containers
run on physical machines that host containers from poten-
tially many experiments, and users do not have access to
the underlying physical machine.

Docker allows containers to be privileged or unprivi-
leged: a privileged container has administrative access
to the underlying host. In our integrated system, only
dedicated-mode containers may be privileged. Shared-
mode containers must be unprivileged due to the Linux
and Docker security models.

4.1 Supporting Multi-process Containers (C1)
To support experimentation, a testbed node must run many
processes (§3.1). To achieve this for Docker-based nodes,
Emulab modifies Docker images to run an init system
rather than a single application. (It installs the init system
during augmentation, described in §4.2.)

Emulab builds and packages (in temporary contain-
ers with a build toolchain) and installs (in the final aug-
mented image) runit, a simple, minimal init daemon,
and sets it as the augmented image’s ENTRYPOINT. The
ENTRYPOINT is the command run by Docker as PID 1
inside the container. Emulab configures runit to spawn
sshd, syslogd, and the Emulab client-side services.6

Changing the ENTRYPOINT means that the new image
will not run the command that was specified for the orig-
inal image. Moreover, runit (or the user-specified al-
ternate init) must be run as root, but the image creator
may have specified a different USER for processes that ex-
ecute in the container. To fix these problems, we emulate
the original ENTRYPOINT as an runit service and handle
several related Dockerfile settings as well: COMMAND,
WORKDIR, ENV, and USER. The emulation preserves the
semantics of these settings, with the exception that the
user-specified ENTRYPOINT or COMMAND is not executed
as PID 1. Only the ENTRYPOINT and COMMAND processes
run as USER; processes started from outside the container
via “docker exec” run as root.

4.2 Onboarding Docker Images (C2)
Naming and storing images. When creating a profile,
Emulab users can specify the disk images to be run on
each physical or virtual node. To allow Docker contain-
ers to be configured in profiles, we extended Emulab’s
image toolchain to support the Docker image format and
deployment mechanisms.

Emulab users refer to images via imageids: an imageid
can be mapped to a path to the image content and a ver-
sion. This is a good match with Docker, because one
can identify a Docker image with a repository name (e.g.,

6If the original Docker image already has an init system, a user
can specify that it should be used instead of runit. Emulab supports
upstart and systemd.
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wordpress) and a tag that is attached to a specific ver-
sion of the repository content (e.g., 1.0). We adopt a
repository:tag convention for naming Docker images
in profiles, and we bind these names when users take
Emulab snapshots of Docker containers (i.e., when Emu-
lab effectively runs “docker commit” to capture a new
version of the image running in a container).

Traditional Emulab imageids point to the on-disk file(s)
that constitute an image, but Emulab Docker imageids
point instead to a Docker image inside a private, secure
registry [10]. The registry supports token-based authenti-
cation and authorization. We implemented a secure token
endpoint service that complies with Emulab’s user au-
thentication and authorization model, and integrates with
Emulab’s image-deployment mechanism.

Augmenting Docker images. To support standard Em-
ulab features for Docker-based nodes, Emulab adds its
client-side software to the Docker image specified by the
user. We call this process augmentation, and it is en-
tirely automated. If the Docker image is based on Ubuntu,
CentOS, Debian, or Alpine, Emulab will automatically
build and install the client-side software and its dependen-
cies. This process employs Dockerfile best practices to
preserve image provenance and avoid adding unnecessary
layers to the image [8]. For instance, the augmentation
process builds the Emulab client-side software and runit
in temporary containers to avoid polluting the final image
with unnecessary build dependencies; it copies only the
built artifacts into the final image.

The augmentation process supports four user-selectable
levels, each representing a trade-off between increased
image size and feature availability:
• basic: install sshd, syslogd, runit, and initscripts
• core: also install the Emulab client-side software

and its run-time dependencies
• buildenv: also install the build-time dependencies

for the client side
• full: also install some network-oriented utilities, to

be similar to a typical Emulab VM disk image
These options allow an Emulab user to select the feature
set he or she needs.

Emulab also supports the use of unmodified, external
Docker images. There are several drawbacks to unaug-
mented images (§3), but even in this situation, Emulab
can offer assistance to experimenters. If a container is run-
ning an unaugmented image in dedicated mode, Emulab
runs an sshd on the container host that listens on high-
numbered ports exposed to the user. That sshd is config-
ured to “docker exec” an interactive shell or command
of the user’s choosing in the unaugmented container.

4.3 Virtual Networking (C3)
Control network. The Emulab control network allows
users to access the nodes in their experiments from the

Internet. Physical machines have routable IP addresses,
but virtual machines and containers are assigned private,
unroutable addresses to support experiments that scale to
thousands of virtual nodes. Still, users need to be able to
reach their containers via the control network.

Emulab provides this accessibility in three steps. First,
when a container host boots for the first time, the Emu-
lab client-side software creates a “dockercnet” network
that is bridged to the Emulab control network. We sup-
port both macvlan and bridging for this virtual control
network. Second, Emulab configures per-node NAT to
expose sshd over the container host’s public IP address;
Emulab’s control software also utilizes NAT. Third, Emu-
lab augments Docker’s built-in firewalling with its own
service.

Isolated layer 2 virtual networks. When a user re-
quests a network (link or LAN) in a profile, Emulab mod-
els it as an isolated layer 2 virtual network. Experiment
networks may connect to one another via experiment
nodes acting as routers, but experiment-network traffic
has no default route out of the network.

Because Docker’s libnetwork does not provide iso-
lated, unrouted layer 2-only networks, we extended
libnetwork and its core bridge and macvlan drivers to
support a pure layer 2 mode, where layer 3 features such
as a default route via a gateway address are not configured
unless requested. We also extended libnetwork’s IPAM
driver to allow overlapping subnet address ranges to be
used in networks that are in layer 2 mode. Because there
is no connectivity between these layer 2, gateway-less net-
works, overlapping subnets on the same physical machine
are safe. Our extensions allow Emulab to create virtual
networks for separate experiments that involve containers
on a shared physical host (i.e., shared-mode containers).
(Our modified version of Docker includes Docker’s mas-
ter branch commits up to d4e48af4 on April 30, 2018,
and thus supports API v1.37.)

Docker does not support per-container traffic shaping.
To configure Emulab’s traffic-shaping features if the ex-
periment requires them, Emulab’s per-container event
listener (§4.4) watches for container creation and installs
the necessary tc rules on the container-host side of the vir-
tual interface being shaped. Because shaping is handled
outside the container, the container can remain unprivi-
leged (allowing shaping for shared-mode containers) and
a user cannot change shaping from inside the container.

Name resolution. Docker assumes that it controls
name resolution (/etc/hosts and /etc/resolv.conf)
on container hosts, but in Emulab it cannot do so, because
Emulab provides its own DNS (which names more than
just containers). In Emulab, a node’s FQDN maps to its
control-network IP address, and nodename-linkname
short names map to the IP addresses of experiment-
network (i.e., experiment-internal) endpoints.
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In our Emulab-Docker integration, we use Docker’s
/etc/hosts generation facility to populate the short-
names map that Emulab would normally configure within
the container. Emulab mounts /etc/resolv.conf in
read-only mode from the host into the container.

4.4 Extending Docker for Emulab (C4)
Our integration extends Docker containers with features
not found in Docker itself, such as traffic shaping, with-
out modifying Docker (§3.4). Although Docker does not
provide a hook mechanism, it does announce container
life-cycle events to listeners. After deploying each con-
tainer, Emulab subscribes to all container events, such as
start, restart, and commit. When a container has been cre-
ated and is starting or restarting, Emulab applies firewall
rules and traffic-shaping rules in the host context, once
the container’s network devices exist. When a container
is shutting down, Emulab removes these rules.

5 Evaluation
To validate our Emulab-Docker integration, we found
existing Docker images that are relevant to Emulab users
and tested whether Emulab can automatically instantiate
nodes using those images (§5.1, §5.2). For each image,
we used Emulab’s portal (web) interface to instantiate
an experiment with a node based on that image, and we
tested whether the default process defined by the image’s
Dockerfile was running on the allocated testbed node.
To better understand our Emulab-Docker integration, we
performed experiments to characterize the augmentation
process and overall run-time performance (§5.3).

5.1 Images from Docker Hub
We tested the 60 images registered at Docker Hub that
were most popular as of July 4, 2018. The current Emu-
lab Docker system supports images based on Debian 8,
9, and sid; Alpine 3.6, 3.7, and 3.8; Ubuntu 14.04, 16.04,
and 18.04; and CentOS 7. This meant that 52 of the
60 images were potentially runnable on our testbed in-
frastructure. For each remaining image, we created an
experiment using the Emulab portal interface and deter-
mined if Emulab could automatically run the image.

Our results are summarized in Table 1 and categorized
into three possibilities: full support, partial support, and
not supported. We judged that an image was fully sup-
ported if, without any additional setup, the image booted
using the default COMMAND and ENTRYPOINT defined in
its Dockerfile; behaved as it would have, had it been
started using typical Docker tooling; and was fully ac-
cessible via Emulab’s network and monitoring tools. We
judged that an image was partially supported if it only
booted within Emulab and was accessible via Emulab’s
online and network interfaces. The only images that we

Linux Distro: alpine, centos, debian, ubuntu,
amazonlinux, busybox, fedora

Debian: buildpack-deps, cassandra, chronograf,
drupal, elasticsearch, ghost, golang, gradle,
groovy, haproxy, httpd, influxdb, java,
jenkins, jruby, kibana, logstash, mariadb,
maven, memcached, mongo, mysql,
nextcloud, nginx, node, openjdk, owncloud,
percona, perl, php, postgres, python,
rabbitmq, redis, rethinkdb, rocket.chat,
ruby, sentry, solr, sonarqube, tomcat,
wordpress, telegraf

Alpine: consul, docker, kong, neo4j, vault, registry
Scratch: hello-world, nats, swarm, traefik

Table 1: Images from Docker Hub tested on Emulab. Images
are categorized first by image base, then by whether the image
is fully supported, partially supported, or not supported.

Conf. Software Base
SNAPL Everest: verified HTTPS [1] ubuntu
OSDI KLEE: symbolic execution engine [3] ubuntu
PLDI FunTAL: FL with assembly [14] debian
S&P Angr: a binary analysis toolkit [16] ubuntu

Table 2: Research projects’ Docker images tested on Emulab

judged not supported were those built from scratch or
based on unsupported base-image types.

In some cases, judging the level support was tricky.
For example, to be useful, the wordpress image needs
an external mysql instance. While our Emulab Docker
integration does not support Docker’s --link flag for
connecting containers, it does support the specification of
environment variables, which wordpress can use to find
its database. Environment variables were also relevant
to our judgment that mariadb is fully supported. That
image requires the user to indicate a default password to
successfully run its ENTRYPOINT.

The default COMMAND and ENTRYPOINT of the haproxy
image fail, but we consider this image to be fully, not par-
tially, supported. This is because starting the image using
a typical “docker run” command leads to the same re-
sult. The documentation for haproxy recommends using
the image as a base and adding a new layer that injects a
configuration file. Running an Emulab experiment with
an image built in that way leads to success.

The telegraf image has unique semantics and is the
only image that we classify as partially supported. We
omit details due to space, but the cause of the problem is
that Emulab does not support the --net option to Docker.

5.2 Images from Research Projects

We also searched for available artifacts from research
projects that utilize Docker containers. For all the work-
ing artifacts we found, built on base images supported by
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Emulab, we were able to use the Docker images to create
experiments in the testbed. In addition, for each image,
we were able to repeat the tests and results described ei-
ther in corresponding papers or project websites. Table 2
describes the images we ran using our Emulab-Docker in-
tegration. The research artifacts shown represent a broad
array of use cases and demonstrate our system’s potential
value to researchers.

5.3 Benchmarks
We evaluated Emulab’s Docker support in two areas: the
image augmentation process and the creation of large
Docker experiments. Our experiments were performed on
CloudLab’s xl170 machines (10-core Intel 2.4 GHz E5-
2640v4 CPU, 64 GB RAM, one Intel DC S3520 480 GB
SSD, two dual-port Mellanox ConnectX-4 25 Gb NIC).

Augmentation. We analyzed the time needed to create
Emulab experiments using initially unaugmented Docker
images. In these cases, Emulab performs augmentation
on demand. We measured the time to augment each of
the ten supported base OS images into a new image that
supports Emulab’s features. We augmented each image at
the core level (§4.2) and performed our experiments on a
shared container host running Ubuntu 16.04. Previously,
we had deployed the first container on this machine, so
its one-time setup tasks had already been performed. We
ran each experiment creation three times and computed
the averages over the trials.

The results are shown in Table 3. The Total column
shows the total experiment creation time, from instanti-
ation to successful boot of the augmented image. Client
shows just the time to configure and deploy a container
running the augmented image, and Aug. shows just the
time to download the base image, analyze it, and build
and install its artifacts (e.g. runit and the Emulab client-
side software) and new packages. The Size column shows
the augmented image’s size, and the Incr. column shows
the relative size increase over the base image. From our
data, we conclude that the time to create experiments from
unaugmented Docker images is acceptable for on-demand
experiments. (Experiment creation is faster in practice,
because Emulab caches augmented Docker images.)

Large-scale experiments. We created large-scale
Docker experiments to assess the scalability of our soft-
ware and illustrate the experience an Emulab user might
have. For each experiment, we colocate 200 containers
onto each physical host, and vary the number of phys-
ical hosts, yielding total container counts between 200
and 5,000. All containers are attached to a layer 2 LAN,
and each runs an augmented ubuntu:14.04 image from
Emulab’s private Docker registry. The physical host ma-
chines run Ubuntu 16.04 with Docker Community Edition
v17 (API v1.27). For each physical host count, we con-
duct three trials and compute average times.

Time (s) Image Size
Image Total Client Aug. MB Incr.
alpine:3.6 144 101 97 274 72.3×
alpine:3.7 144 102 98 276 69.8×
alpine:3.8 144 104 100 279 66.3×
centos:7 205 161 157 303 1.6×
debian:8 244 204 200 254 2.1×
debian:9 163 125 121 225 2.3×
debian:sid 169 127 123 238 2.3×
ubuntu:14.04 332 292 288 272 1.3×
ubuntu:16.04 181 139 135 219 2.0×
ubuntu:18.04 183 142 138 193 2.5×

Table 3: Augmentation results for supported base images
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Figure 1: Times related to instantiating Emulab experiments that
include many (200–5,000) Docker-based nodes. Each physical
machine hosts 200 Docker containers. Note the log-scale y-axis.

Figure 1 shows our key results. The elapsed points
(top) show the average time from experiment start to suc-
cessful deployment of all containers. The per-host-total
data show the average total time each physical host spent
deploying its containers. The first-container points show
the average time required to deploy the first container
(which incurs significant one-time physical host configu-
ration). The remaining-containers points show the aver-
age time spent deploying each of the other 199 containers
on each physical host; these deployments are parallelized.

These results show an acceptable level of performance:
14 minutes to deploy a 200-container experiment (includ-
ing physical-host reboot, reload, and configuration), and
1.87 hours to deploy a 5,000-container experiment. They
show reasonable scalability on the container hosts and
that more optimization is required on the server side.

6 Related Work
In adding Docker support to Emulab, our goal was to help
users move their experiment-related activities among mul-
tiple platforms. The Kameleon system by Ruiz et al. [15]
has the same goal but takes an approach different from
ours. We have extended Emulab to work with Docker im-
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ages directly. In contrast, Kameleon is a “software appli-
ance builder” than inputs a specification and produces im-
ages for multiple environments including Docker, QEMU,
and the custom format used by the Grid’5000 testbed.
Kameleon offers the advantage of more explicit speci-
fications, which may aid reproducibility; our approach
has the advantage of stronger integration with existing
artifacts and ecosystems.

A secondary but important benefit of using Docker
containers in Emulab is scale, i.e., the ability to run exper-
iments that include greater numbers of virtual nodes. As
described by Wroclawski et al. [18], the DETERLab test-
bed supports flexible scaling through its container system:
a DETERLab user can instantiate a single experiment
specification in multiple ways—where nodes are realized
via physical devices, VMs, containers, processes, or even
threads—and thus trade-off fidelity and scale. This is
clearly a more dynamic range than that of the work pre-
sented in this paper, but the primary focus of Emulab’s
Docker support is not on scale, but on artifact portability.

Others have noted the usefulness of Docker for sup-
porting repeatable experiments in computer science [2, 4].
By adopting Docker as a node-imaging alternative for
Emulab, we aim to benefit from the Docker ecosystem
and support the reuse of Docker-based research artifacts
within Emulab-based testbeds.

One can think of Emulab as a kind of orchestrator.
Container orchestrators for cloud environments, such as
Kubernetes [12] and Docker Swarm [7], offer features that
are useful for maintaining applications: e.g., dynamic load
balancing, scaling, and monitoring. In contrast, Emulab
focuses on orchestration at experiment creation (e.g., node
placement and configuration) and then gets out of the way
so that researchers can conduct their experiments.

7 Conclusion
Our position is that experimenters need ways to transport
their research artifacts between the many environments
they may use over the lifetime of a study: from incep-
tion on a laptop, to evaluation on a testbed, to initial
deployment in a cloud. To streamline this migration, we
have extended the Emulab testbed software to support
container-based devices using Docker images. We have
shown that Emulab can automatically adapt many pop-
ular and research-derived Docker images to the testbed
environment, enabling migration while preserving testbed
features such as interactive experimentation.

Artifact sharing statement. Our support for Docker
containers in Emulab-based testbeds is part of the Emu-
lab open-source software, available at https://gitlab.
flux.utah.edu/emulab/emulab-devel.
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