
Auto-Tuning Active Queue Management
Joe H. Novak

University of Utah
Sneha Kumar Kasera
University of Utah

Abstract
Active queue management (AQM) algorithms preemptively

drop packets to prevent unnecessary delays through a network
while keeping utilization high. Many AQM ideas have been
proposed, but none have been widely adopted because these rely
on pre-specification or pre-tuning of parameters and thresholds
that do not necessarily adapt to dynamic network conditions.
We develop an AQM algorithm that relies only on network
runtime measurements and a natural threshold, the knee on
the delay-utilization curve. We call our AQM algorithm Delay
Utilization Knee (DUK) based on its key characteristic of
keeping the system operating at the knee of the delay-utilization
curve. We implement and evaluate DUK in the Linux kernel in
a testbed, that we build, and in the ns-3 network simulator.
We find that DUK can attain reduced queuing delay and
reduced flow completion times compared to other algorithms
with virtually no reduction in link utilization under varying
network conditions.

I. INTRODUCTION

Active Queue Management (AQM) tries to answer the ques-
tion, “What is the best way to preemptively drop packets to
prevent unnecessary delays through a network while keeping
utilization high?” Many ideas have been proposed to answer
this question1, yet despite the potential benefits of AQM, none
of the ideas have been widely adopted in routers and other
network elements. The key problem is that the existing ideas
require pre-specification of AQM parameters and thresholds
(e.g., RED [5], CoDel2 [2].) Given the dynamic nature of
networks due to changing traffic patterns and also due to
changes in link capacity or bandwidth, finding the right values
of the AQM parameters and thresholds is very hard. Moreover,
one cannot capture all network situations with the same set of
parameters. Another well-known existing work, PIE [3], uses a
pre-tuning approach where the AQM parameters are experimen-
tally determined for the network element and the environment
in which the AQM would be deployed. This approach also fails
to capture wide-scale changes in the network conditions. In this
paper, we tackle the challenge of designing an AQM method
that is based on the principle that no parameters should be pre-
specified or pre-tuned. Instead, we look for a threshold that
occurs naturally in queuing systems. Our AQM approach does

1Recently, it has been discussed in the context of the continuing or even
worsening bufferbloat problem [1], [2], [3], [4]. Bufferbloat is the oversizing
of buffers in network devices which can lead to excessive delays without any
real benefit to network providers.

2Contrary to its claims, CoDel requires specification of parameters including
a minimum queuing delay.

not require pre-specification of even those parameters including
EWMA3 weights or protocol timer intervals that are routinely
specified in protocol design and implementation.

When we view the network link in terms of utilization
and the queue corresponding to the link in terms of delay
(Fig. 1 shows a typical delay-utilization curve), we see that
as utilization increases, delay also increases. At a certain point,
however, there is a very large increase in delay for only a small
improvement in utilization. This disproportionate increase in
delay is of little to no value to the applications at the endpoints.
We want to avoid this unstable region of high increase in delay
with little increase in utilization. As a result, a natural threshold
becomes apparent. This point at which the change in delay
becomes greater than the change in utilization is the knee on
the curve. Rather than pre-specified queue length thresholds or
delay parameters, we use this natural threshold to derive an
expression for the AQM packet drop or marking probability.4
We recognize that the delay-utilization curve is valid over large
time scales. However, networks operate over short time scales.
We do not have the luxury of taking measurements or reacting
over a long time. Conceptually, we base our approach on the
delay-utilization curve, but implement it at short time scales.

Our AQM algorithm adapts to network environments without
the need for tuning or adjustment of thresholds. Very impor-
tantly, it does not require any buffer sizing, i.e., it does not
require setting limits on buffer sizes and hence our AQM
mechanism does not depend on tail drops. We call our AQM al-
gorithm Delay Utilization Knee (DUK in short) based on its key
characteristic of keeping the system operating at the naturally
occurring knee of the delay-utilization curve. The primary goal
of DUK is to quickly adapt to any bandwidth or offered load
without reducing link utilization or unnecessarily increasing
queuing delay. We implement and evaluate DUK in the Linux
kernel in a testbed, that we build, and in the ns-3 simulator [7]
under a variety of network operating conditions. Our results
indicate we can obtain robustness to changing and differing
network environments without sacrificing performance. Very
importantly, we demonstrate that with ECN, our approach
decreases flow completion times compared to other algorithms.
We compare DUK with two contemporary algorithms, CoDel
and PIE, and find that DUK can attain decreased queuing
delay with virtually no reduction in the link utilization. We
choose to compare DUK to CoDel because it claims to have
no parameters or thresholds to tune to the network environment.

3Exponentially Weighted Moving Average.
4AQM algorithms probabilistically drop packets or mark them using Explicit

Congestion Notification (ECN) [6] when they detect congestion.

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

978-1-5090-4250-0/17/$31.00 ©2017 IEEE 136

We compare DUK to PIE to demonstrate the advantages of a
self-adaptive algorithm compared to one that needs to be pre-
tuned and may not react well when network conditions change.
Thus, DUK offers a highly robust alternative to existing AQM
methods and can be widely deployed without worrying about
pre-selection or pre-tuning of AQM parameters.

II. DUK GOALS AND APPROACH

The key goals in designing DUK are as follows. First, DUK
should not depend upon any pre-tuning or pre-specifcation of
parameters but only on runtime measurements. Second, DUK
should not make any traffic source behaviour assumptions. The
traffic at a network node can be a mix of different flavors
of TCP, multimedia traffic or other types of traffic with their
own congestion control mechanisms, etc. Thus, determining
parameters based on any particular flavor of TCP is not likely
to be optimal across different traffic types. In designing DUK,
we do not necessarily aim for optimality. Unlike some of the
existing work on self-tuning AQM [8], we do not make any
TCP assumptions. DUK adapts its drop or marking probability
using local measurements only. Third, DUK does not require
any per-connection information such as per-connection round
trip times (RTTs) required by some existing approaches [3], [9].
Moreover, per-connection information is also not necessarily
available when traffic is encrypted (e.g., when using IPsec).

Dependence on a Natural Threshold
Given that the primary goal of an AQM algorithm is to

balance the queuing delay with the link utilization, we choose
the knee on the delay-utilization curve as the desired natural
threshold. At this point, the first derivative of the delay D with
respect to the utilization U is equal to unity. We label this
point dD/dU = 1 in Fig. 1. We want to avoid the region
that lies to the right of this point because this is where the
delay increases more quickly than the utilization and makes the
queueing system unstable. One could possibly argue choosing
dD/dU slightly greater than 1 or possibly less than 1. Our
choice maximizes utilization while keeping the delays low
without any flirtation with the unstable region.

The tangent at the knee is always 1 regardless of the
time units we use for delay. As the granularity of runtime
measurements becomes finer, the measured change in utilization
decreases proportionally. Thus, the knee location naturally
scales to the time units. For example, if we measure the
change in delay over 1 second, the change in utilization will be
proportionally higher than if we measure the change in delay
over 10 ms. Although the delay-utilization curve is valid for
long time scales, we base our approach on this concept. In
practice, we must react over small time scales. We choose time
units in terms of the resolution of the system clock for greatest
accuracy. The time interval algorithm described later ensures
that the time units are appropriate for the network environment.

III. AQM PROBABILITY DETERMINATION

In this section, we derive an expression for the probability
of dropping or marking packets with ECN using the natural

Utilization

D
el

ay

= 1dD
dU

Knee

100%
45°

Fig. 1: Delay-Utilization Graph

threshold dD/dU = 1 for a router queuing system comprising
a FIFO queue and a link with a certain bandwidth. DUK does
not need a priori knowledge of the link bandwidth. Let dD

dU |Ui

be the point where the queuing system is initially operating.
The utilization at this point is Ui. Let dD

dU |Uf be the point that
the queuing system reaches after some packets are admitted or
dropped (or marked). The utilization at this point is Uf . Let
Ui−1 be the utilization during the previous evaluation of the
algorithm.

In order to determine the packet drop or marking probability,
we make the simplifying assumption that the second derivative
of the delay-utilization curve is constant over a short time.
Note that we neither control nor enforce this assumption in
our experiments. Under this assumption,

dD

dU
|Uf=

dD

dU
|Ui +

d2D

dU2
(Uf − Ui) (1)

DUK calculates dD
dU |Ui from measurements taken at run time.

Given our goal to reach dD
dU |Uf= 1, we have:

1 =
dD

dU
|Ui +

d2D

dU2
(Uf − Ui) (2)

We derive an expression for d2D
dU2 (Uf − Ui) as follows. We

compute the change in delay dD over a short time dt as the
difference between the admit rate a and the transmit rate β
divided by the capacity C as shown in Equation 3. We assume
the arrival rate A and the capacity C remain constant over dt.
We do not control these assumptions in our experiments.

dD

dt
=

a− β

C
=

a− UC

C
(3)

Here, U is the link utilization. The admit rate is equal to the
probability of admitting or keeping a packet pk multiplied by
the arrival rate.

a = pkA (4)

Using Equation 3 and the chain rule we obtain:

dD

dU
=

dD

dt

dt

dU
=

a− UC

C
/
dU

dt
(5)

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

137

Algorithm 1 DUK Algorithm
// section 1-initialize and check idle
A = arrival rate
C = estimate of capacity
k = queue length in packets
dD
dU |Ui = current d(delay) / d(utilization)
∆t = estimate of measurement time interval
Ui − Ui−1 = change in utilization
if (k == 0 or A == 0){ p = 0; return }
// section 2
Compute p as per Equation 9
if (p < 0) { p = 0 } else if (p > 1) { p = 1 }

We differentiate Equation 5 with respect to time to obtain the
second derivative as shown in Equation 6.

d2D

dU2
= −1/(

dU

dt
)− a− UC

C

d2U

dt2
/(

dU

dt
)3 (6)

To reach our desired point on the delay-utilization curve, we
find the second derivative at U = Uf . Over a short time interval
∆t, we approximate dU/dt by (Uf −Ui)/∆t, and d2U/dt2 by
((Uf − Ui)− (Ui − Ui−1))/∆t2. We plug these into Equation
6 to obtain the following:

d2D

dU2
(Uf − Ui) = −(1 +∆t) +

Ui − Ui−1

Uf − Ui
(7)

At our reference point, dD = dU , we have Uf − Ui/∆t =
(a − UfC)/C. We also find Uf − Ui to be equal to ∆t(a

C −
Ui)/(1+∆t) and use Equations 7 and 2 to obtain Equation 8.

1 =
dD

dU
|Ui −(1 +∆t) +

(Ui − Ui−1)(1 +∆t)

∆t(a
C − Ui)

(8)

Finally, we plug Equation 4 into Equation 8 and solve for pk.
We obtain the drop or marking probability p = 1 − pk from
Equation 9 on which we base the DUK algorithm.

p = 1− C

A

[
(Ui − Ui−1)(1 +∆t)

(1− dD
dU |Ui +(1 +∆t))∆t

+ Ui

]
(9)

The various parameters in the above equation can be computed
very efficiently with minimal overhead as we discuss in the next
section. Equation 9 can evaluate to values outside the range [0,
1] during abrupt changes in delay or utilization. We account
for this in the DUK Algorithm described below.

IV. DUK ALGORITHM

We show the DUK algorithm in Algorithm 1. The router
queuing system executes the algorithm on a periodic basis. The
algorithm computes a drop or marking probability for packets
received over the subsequent period. The device then drops
or marks the packets with the probability determined by the
algorithm. If a packet is not dropped, the device accepts it and
appends it to the tail of the transmission queue.

The algorithm consists of two sections. The first initializes
variables and detects idle link conditions. Here, DUK sets the
drop or marking probability to zero any time the queue becomes

Algorithm 2 Time Interval Algorithm
//Plast|cur = previous or current congestion
//level as per Equation 10
//βold|cur|new = old, current, or new estimate of
//transmission rate
//∆told|cur|new = old, current, or new measurement
//time interval
if (Pcur != Plast){

if (βcur>=βold at Pcur and ∆tcur<∆told at Pcur{
βnew at Pcur = βcur

∆tnew at Pcur = ∆tcur}
Set m and c from curve fit of Equation 11}

∆tnew = mPcur + c

empty or when no data is being received. We measure all values
used in Equation 9. The utilization is the transmission rate
divided by the estimate of the link capacity U = β

C . We develop
an efficient algorithm for estimating C; however, we omit the
description due to a lack of space.

The second section computes the drop or marking probability
according to Equation 9. It is possible for this equation to return
a value outside of [0, 1] when abrupt changes in the delay-
utilization curve occur. Our algorithm checks for this condition
and truncates the probability to valid limits.

Interval Determination: The measurement time interval
∆t between iterations of the algorithm can affect stability. Ex-
isting AQM approaches use a non-adaptive, arbitrarily specified
value for this interval. Following the primary theme of this
paper, we use a measurement-based self-adaptive approach for
determining ∆t, as we describe below and show in Algorithm
2, that does not rely on pre-specifications.

We express the backlog or congestion at the network queue as
a percentage as shown in Equation 10 where P is the percentage
of congestion, M is the estimate of the ingress link capacity
and C is the estimate of the egress link capacity.

P = 100 ∗ (M − C)/M (10)

We collect triples (Pi,∆ti,βi) of congestion level Pi, time
interval samples ∆ti, and transmission rate βi as the network
environment changes. We want to find the minimum ∆ti for
the current Pi. For each Pi we encounter, we update ∆ti and
βi if the current transmission rate is greater than or equal to
any previous sample and the current time interval is less than
any previous sample. Effectively, we keep the smallest time
interval for which the transmit rate does not decrease. When
we encounter a new congestion level Pi, we do not have an
initial value for ∆ti. To remedy this, we fit a line (Equation
11) to the data points we have collected so far and use this as
the initial value for the new congestion level. In Equation 11, m
is the slope and c is the vertical axis intercept (corresponding
to the time interval when there is no congestion).

∆t = mP + c (11)

We use Algorithm 2 to determine the next time interval
∆tnew. We note the slope of the line in Equation 11 is expected

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

138

to be negative because of the following intuition: the higher the
congestion level, the faster the AQM algorithm should react,
and correspondingly, the lower should be the value of ∆t.

Implementation: We note that the computational overhead
of DUK’s probability calculation is minimal because it is
evaluated only once per time interval. However, to minimize
computation cost, we use scaled integer rather than floating
point arithmetic. We also reduce the number of divisions
required by simplifying the ratio of C/A. DUK keeps track of
the number of bytes of the numerator and denominator over the
same time interval and performs a single division to obtain the
ratio. With these simplifications, there are three divisions (one
for each of dD/dU , C/A, and the primary term over ∆t) and
three multiplications in the probability calculation. By compar-
ison, PIE’s probability calculation involves one division and
two multiplications. Our commodity Linux box can evaluate
DUK’s probability 25 million times per second. At this rate,
the minimum time interval is about 40 nanoseconds which is
more than sufficient for today’s highest network speeds.

PIE estimates the current queuing delay by dividing the
queue length by the average departure rate thus requiring
an EWMA parameter. We instead use a technique similar to
CoDel which uses timestamps to determine the queuing delay.
We run the interval determination algorithm as a low priority
background task that refines the fitted line. It is not in the
critical path and does not impact performance.

V. EXPERIMENTAL SETUP

We implement DUK in the Linux kernel on physical hard-
ware in a testbed that we build. We extensively compare its
performance with CoDel and PIE. Before we describe our
setup, we briefly review CoDel and PIE and their parameters.

CoDel: The CoDel algorithm measures the sojourn time
each packet in the queue. CoDel always admits packets to the
queue and makes a drop or marking decision each time a packet
is removed from the queue based on the measured sojourn
time. If the sojourn is above a target time of 5 ms for a period
of at least 100 ms, CoDel enters a drop/mark state. While in
this state, CoDel drops or marks packets with exponentially
increasing frequency until the sojourn falls below 5 ms.

PIE: PIE is based on a feedback system that uses var-
ious parameters and thresholds to control its estimates and
calculations. We use the default values for these parameters
and thresholds. When a packet is dequeued, PIE estimates the
queuing delay from the queue length and an EWMA of the
dequeue rate. Using PIE’s notation, every update period of
Tupdate = 30ms, it increments or decrements the probability of
dropping or marking a packet by adding two weighted factors.
The first is the difference between the delay estimate and a
reference delay. The weight for this factor is α̃ = 0.125Hz and
the reference delay is delay_ref = 20ms. The second is the
difference between the current and previous delay estimates.
The weight for this factor is β̃ = 1.25Hz. Estimates are
updated only if the queue length is greater than a threshold of
dq_threshold = 10KBytes. PIE uses a token bucket design
that allows packets to be excluded from the drop or marking

100 Mbps
or 1 Gbps
Physical

Router with
Token Bucket

100 Mbps
or 1 Gbps
Physical

Transmitter Receiver

Bottleneck

Fig. 2: Configuration 1 - Single Transmitter

Transmitters Receivers

10
Mbps

10
Mbps

100
Mbps

10
Mbps
Bottle-
neck

100
Mbps

100
MbpsRouter

Fig. 3: Configuration 2 - Dual Transmitters

decision during an initial congestion transient. The duration of
this is controlled by the parameter max_burst = 100ms.

We base our CoDel and PIE modules on their respective
kernel [10] and reference implementations [11]. Additionally,
we simulate DUK in ns-3 to conduct large scale experiments.
We use the ns-3 CoDel model [12]. We port PIE to ns-3.

We run DUK, CoDel, and PIE in each experiment for com-
parison. To compare the performance of the base algorithms,
we eliminate the maximum queue limits at which CoDel and
PIE revert to DropTail. We add a variable RTT component to
the network to mitigate synchronization effects.

Physical Hardware: We run Linux Kernel 3.9.10 with
TCP CUBIC in our testbed. Our modules are Linux qdisc5

modules [13]. We use two network configurations for our
experiments. The first consists of a single transmitter, a router,
and a receiver (Figure 2). We set the physical link speeds
to either 100 Mbps or 1 Gbps depending on the experiment.
We use a token bucket to create a bottleneck between the
router and receiver. We program the token bucket to run a
bandwidth schedule specific to the experiment. In the second
configuration (Fig. 3), we add an additional transmitter and
receiver. We connect the transmitters to the router through
a link layer switch. We connect the receivers to the router
through a separate link layer switch. This configuration ensures
the queuing algorithms in the switches do not interfere with
the results. The link rates shown create a physical bottleneck
between the router and the switch on the receiver side. We do
not use a token bucket in this configuration.

We use commodity Intel-based hardware for all machines.
The router is a 3 GHz Core i5-2320. In Fig. 2, the transmitter
is a 3.4 GHz i7-4770 and the receiver is a 2.26 GHz Core
i5 430M. For diversity (Fig. 3), we add a 2 GHz Pentium 4
transmitter and a 1.6 GHz Atom N2600 laptop receiver.

We use TCP flows unless otherwise stated. We use the Linux
netem qdisc delay [14] to add delay to the RTT. This delay

5A qdisc (queuing discipline) is a network scheduler that is part of the
network traffic control subsystem in the Linux operating system.

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

139

Transmitters 100
Mbps

Receivers100
Mbps

Router
(AQM)

20
Mbps
Bottle-
neck

Delay
Node

CUBIC
Always-On

New Reno
Always-On

HTCP
Always-On

CUBIC
On-Off

New Reno
On-Off

HTCP
On-Off

CUBIC
Always-On

New Reno
Always-On

HTCP
Always-On

CUBIC
On-Off

New Reno
On-Off

HTCP
On-Off

Fig. 4: Large Scale Configuration

simulates a link level delay and affects all traffic on the link. We
set the netem buffer size high enough that it does not interfere
with the experiments. The netem program takes delay and jitter
as parameters. Delay is normally distributed and the delay
parameter is the mean of the distribution. Unless otherwise
stated, we use a delay of 50 ms and a jitter of 10 ms.

We set the packet size to 1448 bytes. We use a custom TCP
application that simulates bulk transfer of a large data stream
such as file transfer or video streaming. In some scenarios, we
create short-lived flow transmitters to simulate web browsing.
When a short-lived transmitters finishes sending a flow, it
creates another to take its place. The application sets the TCP
buffer sizes as large as the operating system allows to minimize
effects of host limitations. We use iperf to generate UDP traffic.

Simulation: We implement DUK in ns-3 version 3.19 to
create large scale environments. We port PIE to ns-3 and we add
wrapper code to CoDel that allows it to interface to our statistics
module. We use the Network Simulation Cradle (NSC)6 to run
various TCP stacks. We load New Reno, CUBIC, and HTCP to
create a heterogeneous environment. We create transmitters that
continually send data to simulate large file transfers or video
streaming. We create short-lived flow transmitters to simulate
web browsing. When a short-lived flow completes, the sender
creates another to take its place. We do not run ECN in ns-3
because it is not supported with NSC.

Fig. 4 shows our ns-3 network topology. We create this
topology with the transmitters and receivers separated by router
and delay nodes. We run the AQM algorithms on the router.
We modify the BridgeNetDevice ns-3 class to create a delay
node in which we can configure the RTT and jitter. We set the
delay to 50 ms and the jitter to 10 ms. We set the transmitter
and receiver sides of the network to 100 Mbps. We create a
bottleneck by setting the router’s egress link to 20 Mbps.

VI. RESULTS

There is little variation between runs of the same experiment
for the same algorithm. Nevertheless, we run each experiment
5 times and report averages. We evaluate the following metrics:
(i) Queuing delay: is the amount of time a packet spends in the
queue and being served. (ii) Queuing delay standard deviation:
shows the queuing delay variation over the the experiment and

6NSC allows the simulator to run on a real world TCP stack by loading a
Linux TCP stack. We use nsc 0.5.3 with liblinux2.6.18.

quantifies jitter. (iii) Queuing delay interquartile range (IQR):
is a measure of the statistical dispersion of the queuing delay
and quantifies stability. (iv) Utilization: is the percentage of the
available capacity used by the system. (v) Drops/marks: is the
percentage of packets dropped or marked. (vi) Completion time:
is the amount of time for flows to complete. In some cases, we
report third quartile completion times for the short-lived flows.

The importance of ECN
We would like to make an important point about ECN before

describing our experimental results. We believe that ECN is
important to the successful deployment of AQM systems. As
our drop experiments show, DUK is able to control the queue
length much better than competing mechanisms; however, that
comes at the cost of the increased drop probability. This is
not surprising, as with TCP flows a decrease in queuing delay
induces a quadratic increase in drop or probability [9]. Using
the well known "square-root p" formula of TCP throughput, if
we have N flows passing through a congested link, then we
have C =

√
2/pN/R where p is the drop probability and R

is the round trip delay. If the AQM mechanism is successfully
able to reduce the delay to Raqm, we have C =

√
2/pN/R =√

2/paqmN/Raqm. This implies paqm = (R/Raqm)2p. Thus,
any gains from reducing the queuing delay are lost (quadrat-
ically) in the loss rate. With higher loss rate comes a greater
potential to cause timeouts and to introduce application jitter,
especially in shorter flows. However, if we use ECN instead of
drops, paqm is simply a feedback signal and we can get lower
latency at zero cost. This logic applies to all AQM mechanisms
and hence it is our strong belief that AQM works best with
ECN. Since ECN is widely deployed now, time is ripe for
successful deployments of AQM as well.

We now present our results. We refer to Fig. 2 as config-
uration 1 and Fig. 3 as configuration 2. We summarize drop
experiments in Table I and ECN in Table II. We show results
after initial transients have settled. We show graphs of sample
runs in Figs. 5 and 6 for drops and ECN, respectively. We
average the data once per second for clarity at the expense
of resolution. This obscures oscillations; however, the standard
deviation and IQR indicate the severity. Note that in each graph,
DUK has the least amount of queuing delay and is the lowest
plot in each figure. DUK’s queueing delay in most cases is less
than half the queuing delay of either CoDel or PIE. In the VoIP
experiment, it is about one tenth of the other algorithms.

Experiment 1 - Vary Link Capacity: We use configuration
1 at 100 Mbps. Initially, the token bucket sets the capacity to
100 Mbps. We create 40 short-lived flows of 250 KB each. At
15 seconds, the token bucket sets the capacity to 50 Mbps, 20
Mbps at 30 seconds, 50 Mbps at 60 seconds, and 100 Mbps at
75 seconds. We end the experiment at 90 seconds.

The tables show metrics during the most severe congestion
which occurs at 20 Mbps capacity. We show sample runs in
Figs. 5(a) and 6(a) averaged over two-second intervals for
clarity. DUK exhibits a 10x improvement in queuing delay,
standard deviation, and IQR in the drop experiment. We see
that the third quartile ECN flow completion times for DUK

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

140

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(a) Experiment 1 - Vary Link Capacity

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(b) Experiment 2 - Data Center Environment

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(c) Experiment 3 - Vary Flows

0 20 40 60 80 100 120
0

3

10

13

20

23

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(d) Experiment 4 - Vary RTT

0 50 100 150
0

10

20

30

40
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(e) Experiment 5 - VoIP

0 10 20 30 40 50 60
0

50

100

150

200

250
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(f) Experiment 6 - Large Scale

Fig. 5: Queuing Delay, Drop Packets

TABLE I: Experiment Summary Data, Drop Packets

Experiment Algorithm Mean
Queuing

Delay (ms)

Std. Dev. of
Queuing

Delay (ms)

IQR of
Queuing

Delay (ms)

Utilization
(%)

Packet
Drops (%)

1 - Vary Capacity DUK 1.00 1.16 1.00 98.5 16.96
CoDel 30.76 11.99 18.00 99.7 9.73

PIE 25.82 9.18 13.00 99.8 9.86
2 - Vary Capacity, DC DUK 0.19 0.42 0.00 99.9 24.33

CoDel 14.10 3.86 7.00 99.9 7.55
PIE 18.85 0.90 1.00 100.0 5.91

3 - Vary Flows DUK 0.80 0.98 1.00 99.9 15.19
CoDel 17.62 6.06 8.00 100.0 6.41

PIE 19.50 6.02 8.00 100.0 5.73
4 - Vary RTT DUK 0.47 0.84 1.00 99.2 1.98

CoDel 12.20 6.38 8.00 99.7 0.96
PIE 24.77 5.94 8.00 99.8 0.60

5 - VoIP DUK 3.43 4.29 5.00 99.6 14.92
CoDel 30.52 10.04 15.00 100.0 8.44

PIE 27.50 9.68 14.00 100.0 7.27
6 - Large Scale DUK 37.73 31.89 45.55 93.0 25.81

CoDel 94.42 78.35 106.80 93.1 24.60
PIE 112.65 105.63 145.88 93.3 11.24

are about 1.25 seconds shorter than PIE or CoDel. This
improvement comes from the shorter queuing delay.

Experiment 2 - Vary Link Capacity, Data Center Envi-
ronment: This is similar to Experiment 1, but at higher link
capacity. Figs. 5(b) and 6(b) show sample runs. Unfortunately,
testbeds that operate at higher data rates, that are typical in data
center networks, that would also allow changes in the queue
management, are not available to us. We use a 1 Gbps link rate,
the maximum supported by our hardware, in configuration 1 to
approximate a data center environment. We remove the netem
link delay to simulate the low RTTs typical of data centers [15].
Initially, the token bucket sets the capacity to 1 Gbps. The short-
lived flow sender creates 100 flows of 2500 KB each. At 15

seconds, the token bucket sets the capacity to 500 Mbps, 200
Mbps at 30 seconds, 500 Mbps at 60 seconds, and 1 Gbps at
75 seconds. We run the experiment for 90 seconds.

The tables show data for the 200 Mbps interval. Utilization is
nearly identical, but DUK significantly outperforms in queuing
delay. It also improves completion times. In a real data center,
we expect the timer interval to be less than 1 ms; however,
we are limited by the resolution of our Linux implementation.
With a higher precision timer, DUK can attain lower delays.

Experiment 3 - Vary Flows: Figs. 5(c) and 6(c) show
sample runs. We evaluate the response to changes in offered
load using configuration 2. We begin with 5 bulk TCP flows
between the first sender-receiver pair. At 30 seconds, we add 5

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

141

TABLE II: Experiment Summary Data, Mark Packets with ECN

Experiment Algorithm Mean
Queuing

Delay (ms)

Std. Dev. of
Queuing

Delay (ms)

IQR of
Queuing

Delay (ms)

Utilization
(%)

Packet
Marks (%)

Third Quartile
Completion

Time (seconds)
1 - Vary Capacity DUK 11.86 6.67 9.00 99.9 38.54 6.17

CoDel 24.21 7.07 10.00 99.9 30.67 7.43
PIE 28.07 17.87 23.00 99.8 37.12 7.43

2 - Vary Capacity, DC DUK 11.05 0.55 0.00 100.0 39.13 9.49
CoDel 17.13 0.74 1.00 100.0 13.58 11.96

PIE 19.40 0.72 1.00 100.0 9.92 12.05
3 - Vary Flows DUK 5.70 5.38 9.00 99.8 19.28 N/A

CoDel 17.57 6.14 8.00 100.0 9.39 N/A
PIE 20.50 5.59 8.00 100.0 8.11 N/A

4 - Vary RTT DUK 0.67 1.34 1.00 98.5 5.67 N/A
CoDel 11.33 5.03 7.00 100.0 0.00 N/A

PIE 24.26 7.25 10.00 100.0 0.00 N/A

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(a) Experiment 1 - Vary Link Capacity

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(b) Experiment 2 - Data Center Environment

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(c) Experiment 3 - Vary Flows

0 20 40 60 80 100 120
0

3

10

13

20

23

50
Queuing Delay

Time [seconds]

De
lay

 [m
s]

DUK
CoDel
PIE

(d) Experiment 4 - Vary RTT

Fig. 6: Queuing Delay, Mark Packets with ECN

flows between the second pair. At 60 seconds, we add 5 flows
of cross traffic from the first sender to the second receiver. At
90 seconds, we add 5 flows from the second sender to the first
receiver. At 120 and 150 seconds, we remove 5 flows from
each sender. The tables show data for the 20-flow time. DUK’s
queuing delay is 20x lower for drops and 3x lower for ECN.

Experiment 4 - Vary Round Trip Time: We set the RTT
between the first sender-receiver pair to 25 ms with a jitter of
5 ms. We set the RTT between the second pair to 100 ms with
a jitter of 15 ms. We run 3 bulk flows between each pair for

120 seconds. We show sample runs in Figs. 5(d) and 6(d).
With a light load, PIE becomes unstable. This in line

with the prediction in [16] which states that AQM systems
become more unstable with fewer flows and higher RTTs. A
principled approach to make the PI controller self-tuning has
been presented in [8] but PIE is not self-adaptive in that sense.
As a result, PIE begins to oscillate and introduces significant
jitter. With ECN, CoDel and PIE mark only a few packets.
DUK is able to maintain a consistent and low queuing delay.

Experiment 5 - VoIP: We evaluate DUK in the presence
of unresponsive UDP flows. Note that ECN marking is not an
option with UDP. We simulate a small VoIP network with 5
Mbps dedicated to voice calls. Each call is 87.2 Kbps [17] and
the link saturates with 58 simultaneous calls. Using configura-
tion 1, we add 10 UDP flows every 10 seconds for 60 seconds.
Beginning at 90 seconds, we remove 10 UDP flows every 10
seconds. Fig. 5(e) shows a sample run. We compute metrics for
the saturated time. DUK shows a 10x lower queuing delay.

Experiment 6 - Large Scale Heterogeneous Network Sim-
ulation: We use ns-3 to evaluate DUK in a large scale network
with a mix of TCP implementations. We create one always-on
sender of each TCP variant. We connect three receivers to each
sender for a total of 9 bulk flows to simulate video streaming
or large file transfers. We create one short-lived flow sender of
each TCP variant and connect 9 receivers to each. Each pair
runs 50 simultaneous connections (1350 total) to simulate web
traffic. In total, there are 44 nodes and 1809 connections. This
experiment illustrates DUK’s ability to scale to large networks.
DUK shows 2x-3x improvement in delay, IQR, and standard
deviation. Fig. 5(f) shows a sample run.

With IQR, a lower number indicates higher stability. In
nearly every case, DUK’s IQR is lower than the other algo-
rithms and in many cases significantly lower. It is 1/3 lower
for VoIP and 1/2 lower for large scale simulation.

Flow Completion Times: We perform additional ECN
experiments to investigate flow completion times. Because of its
shorter queuing lengths, DUK’s times are shorter. We illustrate
with CDFs (Cumulative Distribution Functions).

In the first experiment, we use configuration 1 at 100 Mbps
with a 20 Mbps bottleneck. We run 25 senders that continually

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

142

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Time (seconds)

Completion Time CDF

Pro
bab

ility

DUK
CoDel
PIE

(a) 25 ms RTT

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
0

0.2

0.4

0.6

0.8

1

Time (seconds)

Completion Time CDF

Pro
bab

ility

DUK
CoDel
PIE

(b) 50 ms RTT

0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

Time (seconds)

Completion Time CDF

Pro
bab

ility

DUK
CoDel
PIE

(c) 1 Gbps Link Speed

Fig. 7: Completion Time CDFs

send short-lived flows of 250 KB each. We observe in Figs. 7(a)
and 7(b) that improvement is dependent on RTT. The third
quartile of DUK’s completion times is nearly 50% lower with
25 ms RTT and 33% lower with 50 ms RTT.

In the second experiment, we use configuration 1 at 1 Gbps
with a 500 Mbps bottleneck. We remove the delay node. We
run 250 bulk flows background traffic. We run 50 senders that
continually send short-lived flows of 25 KB each. The third
quartile shows a 30% to 40% reduction in time.

Fairness: We compute Jain’s Fairness Index [18] for
experiments with long-lived TCP flows. In all experiments, all
algorithms exhibit an index within 0.5% of each other.

VII. RELATED WORK

Many existing AQM approaches [5], [19], [20], [21], [22] are
hard to configure and require specification of parameters. More
recent algorithms such as CoDel and PIE focus on queuing
delay. Hollot et al. [9] use classical control theory to develop
the PI (Proportional-Integral) controller. PIE is based on this
work. PIE is a linear feedback control system with thresholds
of queuing delay and maximum queue length. Its parameters
include deviation from a target queue delay and a balance
between queuing delay deviation and jitter. Hong et al. [23]
set a probability to maintain a reference queue length which
is an arbitrarily chosen constant tuned to the network. Our
work differs in that we set the drop probability to maintain a
naturally occurring position on the delay-utilization curve. Chiu
and Jain [24] define the knee of a throughput versus offered load
curve. In [25], Jain presents CARD TCP end-point congestion
avoidance. It uses the gradient of the RTT vs. TCP window size
curve to determine if the TCP window size should be increased

or decreased. We implement an AQM algorithm rather than a
per-flow TCP end-point algorithm and use a different curve.

VIII. CONCLUSIONS

We developed an AQM approach called DUK that operates
based on a natural threshold and runtime measurements instead
of relying on pre-specified or pre-tuned parameters. We found
that DUK achieves similar performance in terms of link uti-
lization but reduces queuing delays and flow completion times
compared to two of its leading contemporaries.

ACKNOWLEDGEMENTS

We thank Professor Vishal Misra at Columbia University for
many discussions related to this research. This material is based
upon work supported by the National Science Foundation under
Grant No. 1302688.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Communications of the ACM, vol. 9, no. 11, pp. 57–65, 2011.

[2] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications
of the ACM, vol. 55, no. 7, pp. 42–50, 2012.

[3] R. Pan et al., “Pie: A lightweight control scheme to address the bufferbloat
problem,” ftp://ftpeng.cisco.com/pie/documents, 2013.

[4] G. White and D. Rice, “Active queue management algorithms for docsis
3.0: A simulation study of codel, sfq-codel and pie in docsis 3.0
networks,” http://www.cablelabs.com, 2013.

[5] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” Networking, IEEE/ACM Trans. on, vol. 1, no. 4, 1993.

[6] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN),” RFC 3168.

[7] “The network simulator (ns-3),” http://www.isi.edu/nsnam/ns, 2014.
[8] H. Zhang et al., “A self-tuning structure for adaptation in tcp/aqm

networks,” in Globecom 2003, vol. 22, no. 1, 2003, pp. 3641–3645.
[9] C. V. Hollot et al., “On designing improved controllers for aqm routers

supporting tcp flows,” in INFOCOM 2001, vol. 3. IEEE, 2001.
[10] “Codel source code,” http://git.kernel.org/cgit/linux/kernel/git/stable/

linux-stable.git/tree/net/sched/sch_codel.c,.../include/net/codel.h, 2013.
[11] “Pie source code,” ftp://ftpeng.cisco.com/pie, 2013.
[12] “Codel source code for ns-3,” codereview.appspot.com/6463048, 2014.
[13] “Linux qdsic,” https://wiki.archlinux.org, 2013.
[14] “Netem,” http://www.linuxfoundation.org, 2013.
[15] M. Alizadeh et al., “Dctcp: Efficient packet transport for the commodi-

tized data center,” Proceedings of SIGCOMM, 2010.
[16] C. Hollot et al., “Analysis and design of controllers for aqm routers

supporting tcp flows,” IEEE Trans on Automatic Control, 2002.
[17] “Voice over ip-per call bandwidth consumption,” www.cisco.com, 2015.
[18] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness

and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation, 1984.

[19] W.-c. Feng et al., “Blue: A new class of active queue management
algorithms,” Technical Report, UM CSE-TR-387-99, 1999.

[20] C. Long et al., “The yellow active queue management algorithm,”
Computer Networks, vol. 47, no. 4, pp. 525–550, 2005.

[21] B. Wydrowski and M. Zukerman, “Green: An active queue management
algorithm for a self managed internet,” in ICC 2002, vol. 4. IEEE, 2002.

[22] S. S. Kunniyur and R. Srikant, “An adaptive virtual queue (avq) algorithm
for active queue management,” Networking, IEEE/ACM Transactions on,
vol. 12, no. 2, pp. 286–299, 2004.

[23] J. Hong et al., “Active queue management algorithm considering queue
and load states,” Computer comm, vol. 30, no. 4, pp. 886–892, 2007.

[24] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks and
ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[25] R. Jain, “A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,” ACM SIGCOMM Computer
Communication Review, vol. 19, no. 5, pp. 56–71, 1989.

2017 9th International Conference on Communication Systems and Networks (COMSNETS)

143

